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Abstract

We refine previous investigations on de Sitter space and extremal surfaces anchored

at the future boundary I+. Since such surfaces do not return, they require extra

data or boundary conditions in the past (interior). In entirely Lorentzian de Sitter

spacetime, this leads to future-past timelike surfaces stretching between I±. Apart

from an overall −i factor (relative to spacelike surfaces in AdS) their areas are real and

positive. With a no-boundary type boundary condition, the top half of these timelike

surfaces joins with a spacelike part on the hemisphere giving a complex-valued area.

Motivated by these, we describe two aspects of “time-entanglement” in simple toy

models in quantum mechanics. One is based on a future-past thermofield double type

state entangling timelike separated states, which leads to entirely positive structures.

Another is based on the time evolution operator and reduced transition amplitudes,

which leads to complex-valued entropy.
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1 Introduction and summary

It is of great interest to understand holography for de Sitter space (see the review [1]). In de

Sitter (and cosmology more generally) perhaps the natural asymptotics are in the far future

or the far past: this thinking leads to dS/CFT [2, 3, 4] (and [5] in the higher spin context),

which associates a hypothetical non-unitary dual Euclidean CFT at the future boundary

I+, with several dramatic differences from AdS [6, 7, 8]. A particularly fascinating question

is whether de Sitter entropy [9] can be understood as some sort of entanglement entropy.

It is then natural to ask if the extensive investigations of holographic entanglement in AdS

[10, 11, 12] can be generalized to de Sitter space.

One possible generalization of the Ryu-Takayanagi formulation to de Sitter space is to

consider the bulk analog of setting up entanglement entropy in the dual Euclidean CFT on

the future boundary [13]. We restrict to some boundary Euclidean time slice as a crutch,

define subregions on these slices, and look for extremal surfaces anchored at I+ dipping

into the holographic (time) direction. Analysing this extremization interestingly shows that

surfaces anchored at I+ do not return to I+, i.e. there is no I+ → I+ turning point, so there

are no spacelike surfaces connecting points on I+. There exist analytic continuations of RT

surfaces in AdS which lead to complex extremal surfaces [13, 14, 15, 16]. In [17, 18], entirely

timelike future-past extremal surfaces were studied, stretching from I+ to I−.

In this note, we develop this further, stitching together an overall perspective which

hopefully adds value to the understanding of these studies. The absence of I+ → I+ returns

for surfaces implies that surfaces starting at I+ continue inward, to the past: this suggests

that they require extra data or boundary conditions in the interior, or far past to be well-

defined. One obvious possibility for an entirely Lorentzian de Sitter space (sec. 2.1) is that

the surfaces then end at the past boundary I−. Analysing this in detail leads to future-

past surfaces stated above [17, 18]. These are timelike extremal surfaces stretching between

subregions at I+ and equivalent ones at I−: they are akin to rotated analogs of the Hartman-

Maldacena surfaces [19] in the eternal AdS black hole. Being entirely timelike, their area

has an overall −i factor, relative to the familiar spacelike extremal surfaces in AdS (this
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overall −i was discarded in [17, 18]; see below). Since we obtain codim-2 surfaces (when

they exist), their area scales as de Sitter entropy.

Another possibility for the interior boundary conditions arises from modifying de Sitter

from being entirely Lorentzian in accord with the Hartle-Hawking no-boundary prescription,

i.e. to cut dS in the middle and remove the bottom half, replacing it with a hemisphere

(sec. 2.2). Now we join the top timelike part of the extremal surfaces above with regularity

at the mid-slice to a spatial extremal surface that goes around the hemisphere (thus turning

around): see [20, 21] for dS3. This spacelike part has real area so that the total area is

complex-valued. The top part of the surface (in the Lorentzian de Sitter) is the same as in

the entirely timelike surfaces above: this reflects consistency of the future-past surfaces with

Hartle-Hawking boundary conditions. The finite real part of the area of the no-boundary

surfaces arises from the hemisphere and is precisely half de Sitter entropy for any dimension

when the subregion at I+ becomes maximal. In sec. 4, we give some comments on these

future-past and no-boundary surface areas in terms of time contours, and argue that they

can be regarded as space-time rotations from timelike subregions in AdS-like spaces.

Imaginary values also arise in studies of quantum extremal surfaces in de Sitter with re-

gard to the future boundary [22, 23], stemming from timelike-separations (sec. 2.3). Complex-

valued entanglement entropy was also found quite explicitly in studies of ghost-like theories,

including simple toy quantum-mechanical models of “ghost-spins”, e.g. [24, 25].

For entirely Lorentzian dS, the entirely timelike future-past surfaces are akin to entirely

timelike geodesics for ordinary particles moving in time. Removing the overall −i in their

pure imaginary areas (relative to real spacelike surface areas) is akin to calling the length

of timelike geodesics as “time” rather than “−i·space”. Overall this suggests that the areas

of these dS extremal surfaces with timelike components encode some new object, “time-

entanglement”, distinct from usual spatial entanglement. In sec. 3, we describe two aspects

of this in ordinary quantum mechanics, which incorporate this entry of late and early time

boundary conditions. One is based on a future-past thermofield-double state [17] (see also

[26, 27]) which leads to entirely positive structures despite the timelike separation. The other

involves the time-evolution operator and “reduced transition amplitudes”, giving complex-

valued entropy. As we were preparing this, the work [28] appeared with partial overlap.

2 dS extremal surfaces from I+, boundary conditions

The simplest place to see the absence of I+ → I+ turning points [13] is in the Poincare

slicing with planar foliations, so

ds2
d+1 =

R2
dS

τ 2
(−dτ 2 + dy2

i ) =
R2
dS

τ 2
(−dτ 2 + dw2 + dx2

i ) . (1)
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Here we have singled out w ∈ yi as boundary Euclidean time, without loss of generality.

Taking the w = const slice, we consider at I+ a strip-shaped subregion (the natural sub-

regions consistent with planar symmetries), with width along x ∈ xi and extremal surfaces

anchored from one boundary interface of the strip. This leads to the area functional and

extremization,

SdS = −iR
d−1
dS Vd−2

4Gd+1

∫
dτ

τ d−1

√
1− (∂τx)2 → (∂τx)2 =

B2τ 2d−2

1 +B2τ 2d−2
. (2)

where B2 is some constant. The fact that there is a minus sign relative to the extremization

equation in AdS is the reflection of the absence of turning points back to I+. We see that

(∂τx)2 � 1 near the boundary τ ∼ 0 and remains bounded with (∂τx)2 < 1 throughout, for

any real B2 > 0. (The surfaces with B2 < 0 are equivalent to analytic continuations from

AdS RT surfaces [13, 14, 15, 16].) We will return to this later.

The absence of I+ → I+ return implies that the surfaces march on inward: this suggests

they end at I− if we focus on entirely Lorentzian de Sitter space. These lead to future-past

extremal surfaces, timelike codim-2 surfaces stretching from I+ to I−. We describe this now,

first in part reviewing the studies in [17, 18]. Alternatively we could modify Lorentzian dS

in accord with the Hartle-Hawking no-boundary prescription replacing the bottom half of

dS by a hemisphere, and then impose a no-boundary type boundary condition on extremal

surfaces. We will discuss these now.

2.1 Lorentzian dS

Static coordinates: These coordinates exhibit static patches exhibiting time translation

symmetry, but allowing analytic extensions to the entire de Sitter space. We have

ds2 = −(1− r2

l2
)dt2 +

dr2

1− r2

l2

+ r2dΩ2
d−1 . (3)

In the Northern/Southern diamond regions N/S, the static patches, t is time enjoying trans-

lation symmetry. Event horizons for observers in N/S are at r = l: the area of these

cosmological horizons is de Sitter entropy. Towards studying the future boundary, we use

τ = l
r
, w = t

l
, to recast as ds2 = l2

τ2

(
− dτ2

1−τ2 + (1 − τ 2)dw2 + dΩ2
d−1

)
: now τ is bulk time,

with τ = 0 the future/past boundary and the future/past universes described by 0 ≤ τ < 1.

In this case the boundary at I+ is R×Sd−1. We can take the boundary Euclidean time slice

as any Sd−1 equatorial plane or as the w = const slice.

Taking the boundary Euclidean time slice as some Sd−1 equatorial plane, we define a

subregion as ∆w×Sd−2 ∈ I+ and an equivalent one at I−. Then we obtain the area functional
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S = −i l
d−1V

Sd−2

4Gd+1

∫
dτ
τd−1

√
1
f
− f(w′)2 and extremization (with B2 > 0 some constant)

(1− τ 2)2(w′)2 =
B2τ 2d−2

1− τ 2 +B2τ 2d−2
, S = −i 2ld−1VSd−2

4Gd+1

∫ τ∗

ε

dτ

τ d−1

1√
1− τ 2 +B2τ 2d−2

.

(4)

The factor of 2 in the area arises from considering both the top and bottom parts of the

extremal surface (see Figure 1, reproduced from [18]). There is now a real turning point τ∗ at

1−τ 2
∗ +B2τ 2d−2

∗ = 0 where |ẇ| → ∞: this lies in the N/S diamond regions where the surface

remains timelike. The surface from I+ can be joined to an equivalent one from I− (hence

the factor of 2 in S above) which then gives the full, entirely timelike, future-past surface

stretching from I+ to I−. These are rotated analogs of the Hartman-Maldacena surfaces in

the eternal AdS black hole [19]. There is a limiting surface as ∆w →∞ where the subregion

becomes the whole space I±. For dS4 this occurs at τ∗ =
√

2 which corresponds to B → 1
2

.

These surfaces have an area law type divergence (always) and a finite part: for the limiting

surface these are

Sdiv ∼ −iπl
2

G4

l

εc
, Sfin ∼ −iπl

2

G4

∆w [dS4]. (5)

It is not surprising that we obtain an overall scaling as de Sitter entropy πl2

G4
, which is akin

to the number of degrees of freedom in the dual CFT (recall that for an AdS4 black hole

the RT surface has area S ∼ R2

G4

(
V
ε

+ #T 2V l
)
). These future-past surfaces exhibit various

features [18]: e.g. the absence of I+ → I+ returns implies that mutual information vanishes.

−

F

N S

P

I
+

I

Figure 1: dS future-past extremal surfaces stretching between

I± on an Sd−1 equatorial plane. The red curve is for generic

subregion while the blue curve is a limiting curve as the subregion

becomes the whole space.

Considering the w = const slice as the boundary Euclidean time slice, we consider cap-

like subregions defined by θ = const latitudes on Sd−1 at I+ and equivalent ones at I−.

Then

S = −i2l
d−1VSd−2

4Gd+1

∫
dτ

τ d−1
(sin θ)d−2

√
1

1− τ 2
− (θ′)2 (6)

which is difficult to analyse explicitly for caps at generic θ. However at θ = π
2

it is straight-

forward to see that we obtain a future-past extremal surface from the hemispherical cap on
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Sd−1 ∈ I+ to the corresponding one at I− [17]. This gives area

S = −i2l
d−1VSd−2

4Gd+1

∫ 1

ε

dτ

τ d−1

1√
1− τ 2

dS4−−−→ −iπl
2

G4

1

ε
(7)

with no finite part.

Figure 2: Global dS future-past extremal surfaces stretching between

I± on any Sd equatorial plane in the IR limit (θ = π
2 ). This is also the

picture for the w = const slice in the static coordinates.

Global: Here we have sphere foliations with

ds2
d+1 = −dτ 2 + l2 cosh2 τ

l
dΩ2

d (8)

and we can take the boundary Euclidean time slice to be any Sd equatorial plane (which are

all equivalent). Then we obtain the area functional (with factor of 2 for top+bottom)

S = −i2l
d−2VSd−2

4Gd+1

∫
dτ (cosh τ)d−2 (sin θ)d−2

√
1− cosh2 τ (∂τθ)2 (9)

which has structural similarities to the w = const slice above. At θ = π
2

it is straightforward

to see a future-past extremal surface stretching from I+ to I− with area (focussing on dS4)

S = −iπl
2

G4

∫ τc/l

0

dτ cosh τ ∼ −i πl
2

2G4

eτc/l ∼ −i πl
2

2G4

l

Tc
. (10)

This is an area law divergence type term, with no finite part. The last expression has been

obtained by noting that near I+ we have ds2 = −dτ 2 + l2e2τ/ldΩ2
3 ∼ l2

T 2 (−dT 2 + l2dΩ2
3), with

cutoff Tc = le−τc/l ∼ 0 near τc → ∞. The area law divergence is structurally similar to the

static coordinates case earlier.

Poincare: The full de Sitter space is obtained from two Poincare patches joined at

the past horizon τ → −∞. Now based on the above descriptions for the static and global

coordinate systems, we can likewise construct future-past surfaces by imposing regularity

boundary conditions on the past horizon. For the surface stretching down from I+ described

by the extremization (2), we require that the derivatives ∂τx match smoothly onto the

corresponding ones for a corresponding surface stretching up from I−. Note that (∂τx)2 → 1

as τ → −∞. The detailed continuation is similar to that in [17, 18] for the static coordinates.

This leads to just the area law term again, giving SdS4 ∼ −i 2l2

4G4

V
ε

.

5



Figure 3: Global dS no-boundary extremal surfaces, with a top timelike

part joining smoothly with a spatial part going around the hemisphere in the

bottom half. The blue curve is the IR limit (θ = π
2 ) on some Sd equatorial

plane. This is also the picture for the w = const slice in the static coordinates.

2.2 dS no-boundary surfaces

In accord with the Hartle-Hawking no-boundary prescription [30] (see also [31]), let us cut

global de Sitter space in the middle, on the τ = 0 time slice and join the top half with a

hemisphere in the bottom half: this hemisphere is given by the Euclidean continuation

ds2 = l2dτ 2
E + l2 cos2 τE dΩ2

d ; τ = ilτE , 0 ≤ τE ≤
π

2
. (11)

Consider now some Sd equatorial plane (i.e. Sd−1) and the timelike extremal surface in (9),

at θ = π
2

which is the IR limit of such surfaces. The top part of this surface from I+ hits the

τ = 0 mid-slice “vertically”: we join this smoothly at τ = 0 with a surface that goes around

the bottom hemisphere, Figure 3 (see [20] for dS3)). This joining being smooth implies

consistency with the Hartle-Hawking prescription. This IR surface is

ds2 = l2dτ 2
E + l2 cos2 τE(dθ2 + sin2 θ dΩ2

d−2))
∣∣∣
θ=π

2

= l2dτ 2
E + l2 cos2 τEdΩ2

d−2

and gives area

ld−1

4Gd+1

VSd−2

∫ π/2

0

dτE (cos τE)d−2 =
ld−1

4Gd+1

VSd−2

√
π Γ(d−1

2
)

2 Γ(d
2
)

=
1

2

ld−1 VSd−1

4Gd+1

, (12)

using the expression VSd = 2π(d+1)/2

Γ((d+1)/2)
for a d-sphere. This real part of the area of this spacelike

surface on the hemisphere is precisely half of de Sitter entropy. This recovery of the entropy

is in detail somewhat different from the realization of de Sitter entropy as the area of the

cosmological horizon from the point of view of static patch observers. In particular, one of

the hemisphere directions that enters here is the Euclidean continuation of the time direction

in the future universe.

Focussing on dS4, the full area for this no-boundary surface is the sum of the top timelike

part (which is half of the future-past area (10)) and the hemisphere part becomes

S = −i πl
2

4G4

l

Tc
+
πl2

2G4

. (13)

There are some similarities between these no-boundary surface areas and the semiclassical

Wavefunction ΨdS = eiScl for no-boundary dS4, with Scl the action. The top Lorentzian
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half has real Scl which gives a pure phase in ΨdS. The bottom hemisphere arises after the

continuation (11) to Euclidean time (the no-boundary point is τE = π
2

here): iScl continues

to the Euclidean gravity action −
∫
nbp

√
g (R− 2Λ) pertaining to the hemisphere, which for

dS4 gives 1
2

l4VS4

16πG4

6
l2

= πl2

2G4
as is well-known (see e.g. [32, 33]).

A similar calculation of the spatial surface on the hemisphere can be done for the timelike

future-past surface in the static coordinates discussed earlier. In this case, the boundary was

Rw×Sd−1 leading to either any Sd−1 equatorial plane or the w = const slice as the boundary

Euclidean time slice. The Euclidean continuation in this case is

ds2 = l2(cos2 ψ dτ 2
E + dψ2 + sin2 ψ dΩ2

d−1) , t = iτE , r = l sinψ , (14)

where τE ∈ [0, 2πl] and 0 ≤ ψ ≤ π
2

. First, considering the Sd−1 equatorial plane surfaces,

we saw that there is a limiting surface at τ∗ > 1 (this is τ∗ =
√

2 for dS4) which translates

to some limiting value ψ∗ given by sinψ∗ = r∗
l

= 1
τ∗

. Then the surface is described by

ds2 = cos2 ψ∗dτ
2
E+sin2 ψ∗dΩ2

d−2 → Area =

∫ πl

0

cosψ∗dτE (sinψ∗)
d−2 VSd−2

ld−2

4Gd+1

. (15)

Focussing on dS4 we have sinψ∗ = 1
τ∗

= 1√
2

giving the area 1
2

(πl) 2π l
4G4

= π2 l2

4G4
. This apparently

unrecognizable value is perhaps not surprising due to the limiting surface.

For the w = const slice (equivalently τE = const), the timelike surface from the θ = π
2

cap on Sd−1 leads on the hemisphere to

ds2 = dψ2 +sinψ2 dΩ2
d−2 → Area =

ld−1 VSd−2

4Gd+1

∫ π/2

0

dψ (sinψ)d−2 =
1

2

ld−1 VSd−1

4Gd+1

, (16)

identical to global dS (12) above, not surprising given the similarities in the calculation for

this slice. With the top timelike part from (7), the total area becomes S = −i πl2
2G4

1
ε

+ πl2

2G4
for

dS4.

Note that all these no-boundary surfaces turn around only in the bottom hemisphere:

the top timelike half is identical to the corresponding future-past surface and there is no

I+ → I+ turning point there. Thus if we consider two disjoint subregions the corresponding

no-boundary surfaces are unique (following from the top halves of the corresponding future-

past surfaces), with no new connected surface emerging: so S[A ∪B] = S[A] + S[B]. Thus,

as for the future-past surfaces [18], mutual information vanishes here as well.

2.3 2-dim CFT, timelike subsystems, complex EE

Now consider dS3, special for various reasons. In entirely Lorentzian global de Sitter, the

future-past surfaces on some S2 equatorial plane slice (9) give area S = −i l
G3

log l
Tc

. If we
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consider no-boundary dS3, the total area from the top timelike part and the hemisphere part

(12) becomes

SdS3 = −i l

2G3

log
l

Tc
+

πl

4G3

(17)

The last (real) term is half dS3 entropy πl
2G3

. The whole expression can be seen to be an

overall −i times the familiar c
6

log L2

ε2
[34, 35, 36] with c = 3lAdS

2G
the AdS3 central charge,

alongwith l2

T 2
c
→ − l2

T 2
c

(so log(−1) = iπ). Note that dS3/CFT2 has cdS3 = −i3ldS
2G

[4] which

for single intervals would give imaginary S as for the entirely Lorentzian future-past surfaces

stated above. So perhaps what is most striking in (17) is the real part arising from the

hemisphere which then requires an additional i, which is a novel feature of this Euclidean

CFTdS3 dual (in contrast with ordinary Euclidean CFTs with simply real spatial lengths and

no time). Further related comments appear in sec. 4.

To put this in perspective, for ordinary unitary 2-dim CFTs, the entanglement entropy

is

S =
c

6
log

∆2

ε2
=
c

6
log
−(∆t)2 + (∆x)2

ε2
. (18)

For ordinary spacelike intervals ∆2, we obtain the familiar S = c
3

log ∆x
ε

. On the other hand

suppose we rotate the subsystem to be entirely timelike with some width ∆t in the time

direction. This gives

S =
c

3
log

∆t

ε
+
c

6
(iπ) (19)

the imaginary part arising from log(−1) in the timelike separation in the interval (more

generally the real part contains ∆2 < 0). This imaginary part has appeared previously in

studies of quantum extremal surfaces in de Sitter with regard to the future boundary [22, 23].

The bulk matter is modelled as a 2-dim CFT with some central charge c > 0 but the timelike

separation of the quantum extremal surface gives ∆2 < 0 in (18) above.

The usual replica formulation of entanglement entropy for a single interval proceeds by

picking the interval ∆x ≡ [u, v] on some Euclidean time slice τE = const, then constructing

n replica copies glued at the interval endpoints. Evaluating TrρnA can be mapped to the

twist operator 2-point function which then leads finally to the entanglement entropy SA =

− limn→1 ∂nTrρnA. The only data here is the CFT central charge and the interval in question.

The above Euclidean formulation applies for a timelike interval as well, with the only change

being that the Euclidean time slice is x = const and the interval is ∆t ≡ [ut, vt]. However

in continuing back to Lorentzian time, we rotate ut, vt, to −iut, −ivt, and so we obtain

∆2 = −(vt − ut)2 = −(∆t)2, which gives (19) above. This of course requires that the CFT

contains some time direction.

It is also worth noting that complex-valued entanglement entropy arises quite explicitly in

studies of ghost-like theories and simple quantum mechanical toy models of “ghost-spins” [24,
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25]: in this case the reduced density matrix acquires minus signs due to contributions from

negative norm states. Defining contractions over the ghost-spin Hilbert space appropriately

leads to consistent expressions for the reduced density matrix and entanglement entropy,

which are in general complex-valued.

3 “Time-entanglement” in quantum mechanics

We have constructed future-past extremal surfaces stretching from I+ to I−. Since they are

entirely timelike, their area is pure imaginary, with an overall −i relative to the area of the

familiar spacelike RT/HRT surfaces in AdS. However, apart from this overall −i, the area

is real and positive: the overall −i is a uniform factor, for any subregion at I+. This is a

bit reminiscent of the length of timelike geodesics having an overall −i relative to the length

of spacelike geodesics. We call this timelike length as “time” rather than “−i·space”. This

suggests that the areas of the entirely timelike future-past extremal surfaces encode some

new object, “time-entanglement”.

Recall now the appearance of complex-valued areas for the no-boundary surfaces which

are closely related to the entirely timelike future-past surfaces: they comprise a timelike

component which is identical to the top half of the future-past one and a spacelike com-

ponent from the hemisphere glued in the bottom half. The area is now complex, with a

pure imaginary part from the top timelike component and a real part from the hemisphere

component.

We now describe two aspects of this notion of “time-entanglement” in quantum mechanics

(independent of de Sitter at this point). The first is based on the thermofield-double type

state described in [17, 18], while the second is based on the time-evolution operator, regarding

the timelike surfaces as some sort of transition amplitude.

3.1 A future-past thermofield double state

The entirely timelike future-past surfaces, akin to rotated Hartman-Maldacena surfaces [19],

suggest some sort of entanglement between I±, so consider

|ψ〉fp =
∑

ψi
F
n ,i

P
n |in〉F |in〉P , (20)

This was written down in [17] as an entirely positve object entangling identical F and P

components (with intuition based on the TFD state for the eternal black hole [29]). A partial

trace over the second (P ) copy gives a reduced density matrix with nontrivial entanglement

entropy. To see how this works, let us consider a very simple toy example of a 2-state system
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in ordinary quantum mechanics. The action of the Hamiltonian H on these (orthogonal

basis) eigenstates and the resulting (simple) time evolution are

H|k〉 = Ek|k〉 , k = 1, 2 ; |k〉F ≡ |k(t)〉 = e−iEkt|k〉P . [〈1|2〉 = 0] (21)

We consider the F and P slices to be separated by time t and obtain the F state from the

P state by time evolution through t. The future-past TFD state (20) in this toy case is

|ψ〉fp =
1√
2
|1〉F |1〉P +

1√
2
|2〉F |2〉P =

1√
2
e−iE1t|1〉P |1〉P +

1√
2
e−iE2t|2〉P |2〉P , (22)

We have normalized the coefficients for maximal entanglement at t = 0. For nonzero t, there

are extra phases due to the time evolution but they cancel in the reduced density matrix

obtained by tracing |ψ〉fp〈ψ|fp over the entire second copy as δijψ
ki
fp(ψ

∗
fp)

lj, so

ρfp = TrP |ψ〉fp〈ψ|fp =
1

2
|1〉F 〈1|F +

1

2
|2〉F 〈2|F . (23)

Now imagine a 2-spin analogy, with |1〉 = | + +〉, |2〉 = | − −〉, i.e. we identify 1〉, |2〉 with

the 2-state subspace |±±〉 of two spins with states |±〉 each for simplicity and concreteness.

Then a partial trace over the second component gives the reduced density matrix Tr2ρfp =
1
2
|+〉F 〈+|F + 1

2
|−〉F 〈−|F again with an entirely positive structure, and entropy log 2.

If the states in question are not ordinary spins but “ghost-spins” with negative norm

states, as discussed in [17] based on the studies in [24, 25], the fact that we have entangled

identical components in both the future and past copies ensures that the minus signs cancel

in γσρψ
ασ
fp (ψ∗fp)

βρ (with γij the indefinite ghost-spin metric) again yielding an entirely positive

structure.

This future-past TFD state with timelike separation is quite different in principle from

the usual TFD state. This positive structure despite the timelike separation is in some sense

similar in spirit to the areas of the entirely timelike surfaces after stripping off the universal

overall −i.

3.2 Time-evolution and reduced transition amplitudes

Unlike AdS where specifying boundary data fixes the extremization problem, dS extremal

surfaces starting at late times on I+ do not return, thus requiring extra data on boundary

conditions in the far past. This is reminiscent of scattering amplitudes, i.e. final states from

initial states, or equivalently time evolution. It is then amusing to ask for entanglement-

like structures arising from the time evolution operator U(t) after a partial trace over some

environment: in other words, we look for a “reduced transition amplitude” and its entropy.

10



This suggests (taking A subregion, B environment)

ρt(t) ≡
U(t)

TrU(0)
→ ρAt = trB ρt → SA = −tr(ρAt log ρAt ) . (24)

The normalization is so we obtain ordinary entanglement structures at t = 0, as we will

see explicitly. To illustrate, consider again the very simple toy example (21) above. Since

everything is diagonal here, the normalized time evolution operator is simple, becoming

U(t) = e−iHt : ρt(t) =
1

2
e−iE1t|1〉P 〈1|P+

1

2
e−iE2t|2〉P 〈2|P =

1

2
|1〉F 〈1|P+

1

2
|2〉F 〈2|P . (25)

Now recall the 2-spin analogy: |1〉 = | + +〉, |2〉 = | − −〉. A partial trace over the second

components gives

ρAt =
1

2
e−iE1t|+〉P 〈+|P +

1

2
e−iE2t|−〉P 〈−|P , (26)

SA = −
∑
i

1

2
e−iEit log

(1

2
e−iEit

)
=

1

2
log 2(e−iE1t + e−iE2t) +

1

2
(iE1t)e

−iE1t +
1

2
(iE2t)e

−iE2t.

(27)

Normalizing U(t) by its trace at time t gives Trρt(t) = 1 for all t (not just t = 0), modifying

(24)-(27) to

ρt(t) ≡
U(t)

TrU(t)
⇒ ρt(t) =

∑
i

pi |i〉P 〈i|P , pi =
e−iEit∑
j e
−iEjt

,

→ ρAt =
∑
i

p′i |i′〉P 〈i′|P → SA = −
∑
i

p′i log p′i , (28)

where H|i〉 = Ei|i〉 and the second line arises after partial trace. There are similarities

with pseudo-entropy [37] although the details above look different a priori. There are close

interrelations between time entanglement above (entanglement-like structures based on the

time evolution operator regarded as a density operator) and pseudo-entropy: some of these

explorations in quantum mechanics with various interesting new features appear in [38],

which also elaborates on some results outlined below.

ρAt resembles an ordinary maximally entangled state at t = 0. Any later time t 6= 0

gives complex-valued entropy in general (although there are real subfamilies: e.g. (28) for

the 2-state case contains a single phase e−i(E2−E1)t and gives SA real). Further the different

normalizations give different results in detail, as is already clear in the simple cases above.

Overall these structures resemble the usual finite temperature mixed state entanglement,

except with imaginary temperature, i.e. β = it.

There are also related quantities that arise along similar lines. For instance the time evolu-

tion operator U(t) alongwith a projection operator onto a generic state |I〉 gives U(t)|I〉〈I| =
|FI(t)〉〈I| where |FI(t)〉 is the future state time-evolved from the initial state |I〉. Normalizing

11



at time t and performing a partial trace gives a reduced transition matrix which resembles

that in pseudo-entropy [37] but with the future state specifically corresponding to the time

evolved state. Relatedly, normalizing at t = 0 gives different structures. For instance, pro-

jection onto Hamiltonian eigenstates |EI〉 and performing partial trace gives simple phases

for ρA,It (essentially components of (26)), so the corresponding entropy (27) is of the form

e.g. iEIt e
−iEI t.

4 Discussion: dS surfaces, time contours, rotations

We have seen that the absence of I+ → I+ turning points for dS extremal surfaces anchored

at the future boundary leads to either future-past surfaces or no-boundary surfaces. Since

these surfaces are characterized by area integrals which ultimately reduce to simple integrals

over the time direction, they can be organized and recast in terms of time contours, which

leads to certain clarifications. Towards this, recall that the future-past and no-boundary

surface areas (9), (12), are of the schematic form (with a reduced area functional a(τ))

Sfp ∼ 2 · −iS0

∫ τ∗

τ
cF

dτ a(τ) , [τ : τ
cF
→ τ∗ → τ

cP
] ;

Snb ∼ −iS0

∫ τ∗

τ
cF

dτ a(τ) + S0

∫ nbp

τE∗

dτE aE(τE) , [τ : τ
cF
→ τ∗ → nbp] , (29)

where S0 is de Sitter entropy, τcF labels the anchoring cutoff slice at I+ and τ∗ is the bulk

point where the surface is going “vertically down” (Figures 2, 3). nbp refers to the no-

boundary point. In the no-boundary surfaces, the time contour goes along the real time

direction till τ∗ and then along the Euclidean time path till the nbp. As we saw, these

simplify in the IR limit to give

Sfp = −2iS0 I[τ
cF
, τ∗] ; Snb = −iS0 I[τ

cF
, τ∗] +

S0

2
;

⇒ Sfp = Snb − S∗nb . (30)

In this light, it is reasonable to think that the future-past surface is made of two copies of

the no-boundary surface, but with the time contour schematically being [τ
cF
→ τ∗ → τ

cP
] =

[τ
cF
→ τ∗ → nbp] + [nbp → τ∗ → τ

cP
]. Then the real parts in the two copies of Snb cancel

to give a pure imaginary Sfp. Regarding Snb as some time entanglement entropy arising

from one dual boundary Euclidean CFT copy ZCFT = ΨdS via dS/CFT [2, 3, 4] suggests

regarding Sfp as arising from two copies Ψ∗dSΨdS. It would be interesting to flesh this out

more precisely from a replica formulation, perhaps developing [39] here.
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Looking now at the expressions in detail for dS3 and dS4, i.e. (17), (10), (13), we have

dS3 : Sfp = −i l

G3

log
l

ε
; Snb = −i l

2G3

log
l

ε
+

l

2G3

π

2
.

dS4 : Sfp = −i πl
2

2G4

l

ε
; Snb = −i πl

2

4G4

l

ε
+
πl2

2G4

, (31)

with ε ≡ Tc in the dS4 expressions (10), (13). For dS5 there are pure imaginary subleading

divergent terms as well, from the timelike I integral in (30). Writing the dS3 expression as

dS3 : Snb = −i
( c

3
log

l

ε
+
c

6
(iπ)

)
, c =

3l

2G3

, (32)

suggests that these no-boundary surfaces are a rotation from some surfaces in AdS3, with

central charge cAdS3 = c (recall that the dS3/CFT2 central charge is cdS3 = −ic): specifically

the overall −i arises from the AdS3 radial integral reinterpreted as a time integral in dS3. The

term inside the brackets is essentially the entanglement entropy (19) for a timelike interval

in 2-dim CFT: the real logarithmic part is a spatial area contribution in AdS3, while the

imaginary part is a timelike contribution). Thus the real spacelike part of the dS3 surface,

from the Euclidean hemisphere, maps to a pure imaginary, timelike, contribution in AdS3.

The dS4 case (13) can be similarly recast as

dS4 : Snb = −i
( πl2

4G4

l

ε
+ i

πl2

2G4

)
, S0 =

πl2

G4

, (33)

which again resembles an overall rotation from an AdS4 surface, encoded by the overall −i.
Again, the term inside has a real part corresponding to half of the Hartman-Maldacena-like

spacelike surface contribution while the imaginary part is a timelike contribution. The fact

that all de Sitter no-boundary surfaces have area of the form (30), i.e.

Snb = −i
(
S0 I + i

S0

2

)
, (34)

suggests that the surfaces can be regarded as space-time rotations from timelike subregions

in AdS-like spaces. In general these are distinct from analytic continuations of Poincare AdS

RT expressions, which correspond to distinct time contours (along imaginary time paths)

[13, 14, 15]: e.g. in dS4 those give real negative area. However these can be mapped to other

appropriate analytic continuations from AdS (see [28]).

Note that this is consistent with the dS future-past surfaces (see Figure 1) being akin to

space-time rotations of Hartman-Maldacena surfaces in the AdS black hole [19], as discussed

in [17, 18]. In that case, the dS area Sfp is pure imaginary, with the overall −i encoding the

rotation from a real spacelike area in AdS.
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The pure imaginary part of the no-boundary dS3 surface area can be identified with c
3

log l
ε

for a half-size interval in a Euclidean CFT on a circle [35]: the future-past surfaces have twice

this area, and so correspond to two copies. The real spacelike part of the no-boundary area,

arising from a deep interior Euclideanization of de Sitter, presumably indicates some new

IR aspect of the dual Euclidean CFT that encodes “interior regularity”.

There are some parallels in the thinking in sec. 3 via the time evolution operator and

viewing de Sitter space as a collection of past-future amplitudes [3]. This suggests using the

S-matrix |f〉〈i| with initial and final states appropriate to dS to analyse entanglement-like

structures. Needless to say, there are many things to explore here, in quantum mechanics,

de Sitter holography and time.
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