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Abstract: Multiple lines of evidence suggest that the Hilbert space of an isolated de Sitter

universe is one dimensional but can appear larger when probed by a gravitating observer. To

test this idea, we compute the von Neumann entropy of a field theory in a two-dimensional

de Sitter universe which is entangled in a thermal-like state with the same field theory on a

disjoint, asymptotically anti-de Sitter (AdS) black hole. Previously, it was shown that the

replica trick for computing the entropy of such entangled gravitating systems requires the

inclusion of a non-perturbative effect in quantum gravity—novel wormholes connecting the

two spaces. Here we show that: (a) the expected wormholes connecting de Sitter and AdS

universes exist, avoiding a no-go theorem via the presence of sources on the AdS boundary;

(b) the entanglement entropy vanishes if the nominal entropy of the de Sitter cosmological

horizon (SdS = AdS
horizon/4GN) is less than the entropy of the AdS black hole horizon (SBH =

AAdS
horizon/4GN), i.e., SdS < SBH; (c) the entanglement entropy is finite when SdS > SBH. Thus,

the de Sitter Hilbert space is effectively nontrivial only when SdS > SBH. The AdS black hole

we introduce can be regarded as an “observer” for de Sitter space. In this sense, our result

is a non-perturbative generalization of the recent perturbative argument that the algebra of

observables on the de Sitter static patch becomes nontrivial in the presence of an observer.
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1 Introduction

Gibbons and Hawking argued that the cosmological horizon of de Sitter space acts as if it

carries a thermodynamic entropy SdS proportional to the horizon area [1]. If this entropy

has a conventional interpretation in terms of the dimension of the microscopic Hilbert space,

it should be possible to entangle the corresponding microstates with a reference universe,
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creating a state which appears, to observers in either universe, to have a large von Neumann

entropy.

Recent work [2–13] has tested this idea using methods pioneered in Refs. [14–16] for

studying the entropy of Hawking radiation. These results suggest that when the reference

universe does not gravitate, the entropy of entanglement is zero, implying that the de Sitter

Hilbert space is one dimensional, so that there is no way to form an entangled state with an

external reference system.1 If this is true, there is a tension with naive statistical interpreta-

tions of the Gibbons-Hawking argument for the entropy of cosmological horizons [1]. Related

arguments suggest that the Hilbert space of any closed universe is trivial [17, 18]. Another

idea, called static patch holography, states that the de Sitter static patch can be described in

terms of a nontrivial Hilbert space of degrees of freedom living on the cosmological horizon

(see Refs. [19–22] and Refs. [23–26]). Earlier approaches to de Sitter holography, some of

which use structures at past and future infinity, include Refs. [27–38].

To elucidate these issues concerning the de Sitter Hilbert space, in this paper we apply

the methods of Ref. [39] to study entanglement of a de Sitter universe with a gravitating

reference system. We choose the reference to be a black hole in anti-de Sitter (AdS) space

and consider entangled states of the form

|Ψ⟩ =
∞∑
i=1

√
pi |ψi⟩A|ψi⟩B,

∞∑
i=1

pi = 1, (1.1)

where A and B are de Sitter space and an AdS black hole, respectively. We assume that both

universes contain the same quantum field theory (QFT), whose states are being entangled.

We then compute the von Neumann entropy by a replica trick involving gravitational path

integrals (see [40–48] for related approaches).

Recent work has proposed that when applying the replica method to the entropy of

a gravitating spacetime entangled with a non-gravitating reference, we must include the

contributions of novel wormholes that connect the replica copies of the gravitating system

in order to obtain results consistent with unitarity [40, 41]. This suggests that when the

reference system is also gravitating, we should include additional wormholes connecting the

original system to the reference, if such wormholes exist. Indeed, Ref. [39] showed that this

procedure is necessary when both the original universe and the reference with which it is

entangled are AdS black holes. In this case, the entanglement is quantified by a generalized

entropy in a new spacetime constructed by appropriately gluing two AdS black holes.

1Reference [4] also proposed scenarios leading to a finite de Sitter entropy. As we will discuss later, these

settings involve the presence of a black hole and/or end-of-the-world brane truncating the locally de Sitter

geometry, and could be regarded as introducing “gravitational observers” of the de Sitter static patch similarly

to the present paper. For another way of seeing a finite de Sitter entropy in a gravitational setting, see Ref. [6].
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In this paper, we study what happens when we replace one of the two AdS black holes

with de Sitter space. In this case, the boundary conditions of the relevant gravitational path

integrals are imposed in Lorentzian spacetime at the asymptotic boundary at spatial infinity

on the AdS side and at future/past infinity on the de Sitter part of the geometry. While we

mostly work in a two-dimensional theory of gravity for the sake of calculability, our basic

argument does not seem to rely crucially on the low dimensional nature of the model, so we

expect that our findings will persist in higher dimensions.

We begin by showing that there is a Euclidean wormhole connecting de Sitter and AdS

spacetimes in our setting. This wormhole can be viewed as a Euclidean AdS black hole which

contains a de Sitter false vacuum bubble, separated from the true vacuum region by a domain

wall. Our construction evades an argument of Fu and Marolf [49] forbidding such solutions, by

including the effects of sources on the AdS boundary. These sources are required in our setting

to prepare the excitations |ψi⟩ in the entangled state (1.1) of the bulk QFT. The backreaction

of the matter stress tensor coming from these entangled field theory degrees of freedom allows

us to explicitly construct a wormhole solution with the desired properties in two-dimensional

Jackiw-Teitelboim (JT) gravity. Thus, the entanglement of the matter degrees of freedom

between the two systems is essential to our construction. When the entanglement is large, the

effect of our boundary sources can be described as injecting localized domain walls (particles

in two dimensions) at the boundary of Euclidean AdS. These walls propagate a short distance

into the bulk and then decay into the domain wall surrounding a de Sitter bubble. In this limit,

our approach resembles the construction of de Sitter bubbles within AdS by Mirbabayi [50].

(Also see the recent works [51–53] which construct AdS big bang-big crunch cosmologies as

bubbles behind an AdS black hole horizon.) When continued to Lorentzian signature, the

resulting wormhole describes an AdS black hole with an inflating region in its interior. Such

spacetimes were introduced to study inflation in AdS/CFT [54] and to try to find a way

of creating a universe in a lab [55, 56]; see also [57–60] for earlier work. The authors of

Refs. [61–65] have also studied how to realize two-dimensional de Sitter space inside AdS2

space in dilaton gravity.

As we will see, in our setting the entanglement between the two systems is quantified by

a generalized entropy computed on the dominant saddle of the replica path integral. We find

two phases when the QFT state is strongly entangled. First, if the area of the cosmological

horizon is smaller than that of the AdS black hole, so that the Bekenstein-Hawking entropies

of de Sitter (SdS) and the black hole (SBH) satisfy SdS < SBH, the saddlepoints consistent with

the boundary conditions do not have wormholes between the de Sitter and AdS components.

In this case, the entanglement entropy is computed by the same “island formula” that appears

when the reference spacetime is non-gravitating [4], and the entropy vanishes, suggesting a

one-dimensional de Sitter Hilbert space. In the opposite case, when SdS > SBH, and the
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bulk QFT is strongly entangled, the dominant saddlepoint includes a wormhole between the

de Sitter and AdS universes. The entanglement entropy is then given by the AdS black hole

entropy, suggesting that the de Sitter Hilbert space is nontrivial.

The AdS black hole that we introduced can be regarded as an observer for de Sitter space:

it probes the de Sitter degrees of freedom using entanglement with its own degrees of freedom.

Our result concerning the entanglement entropy described above is consistent with the recent

claim that in the presence of a gravitating observer the algebra of observables on a de Sitter

static patch becomes nontrivial [66]. In our setup, the gravitational interaction between

de Sitter space and the observer is embodied by the wormhole connecting them. Our result

implies that for an observer who consists of more than SdS qubits, the entanglement wedge

covers an entire de Sitter time slice, and accordingly the entanglement entropy vanishes. On

the other hand, for an observer consisting of less than SdS qubits, the static patch Hilbert space

can be probed using the observer’s Hilbert space, leading to a non-vanishing entanglement

entropy. This is consistent with Ref. [66] where the gravitating observer is a point particle,

and hence has access to fewer than SdS qubits.

Five sections follow. In Section 2, we set up our model which involves de Sitter space,

a black hole in AdS, and an entangled QFT state defined on these two spacetimes. We

then discuss the replica calculation of the entanglement entropy using gravitational path

integrals. A novel feature of the calculation is the appearance of wormholes connecting the two

universes. In Section 3, we explain how to construct these wormhole solutions in the simplest

case, namely Einstein gravity coupled with a codimension-one domain wall. Additionally we

include the backreaction of the QFT stress tensor of the entangled state (1.1). We explicitly

construct the Euclidean wormhole solution in two-dimensional JT gravity and show that in

order to connect de Sitter and AdS, the backreaction of the entangled state is necessary. In

Section 4, we discuss the behavior of the entanglement entropy by assembling the results

obtained in previous sections. In Section 5, we interpret our results, and discuss the relation

with algebraic perspective on de Sitter entropy offered in Ref. [66].

2 Replica calculation of the entanglement entropy

We are interested in entanglement between states on de Sitter space and those on a black

hole in AdS space. In particular, we would like to understand the role of possible wormholes

connecting these two spacetimes in light of Refs. [67, 68] when the entanglement between the

degrees of freedom in the two spacetimes is large.

2.1 Entanglement between two AdS black holes

Before discussing the entanglement between de Sitter and AdS spaces, we review the case

where both spacetimes have AdS asymptotics and contain black holes. This situation was
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studied in Ref. [39], where the following thermofield-double-like entangled QFT state on two

AdS spaces was considered:

|Ψ⟩ =
∞∑
i=1

√
pi |ψi⟩A|ψi⟩B, pi =

e−βEi∑
j e

−βEj
. (2.1)

Here, A and B are both gravitating, asymptotically AdS spacetimes, and {|ψi⟩A,B}∞i=0 are

energy eigenstates in QFTA,B, which we take to be the same conformal field theory (CFT).

For calculational convenience, we will focus on the situation where both A and B are two

dimensional.

The entanglement entropy S(ρA) between two “universes” A and B can be computed

using the replica trick

S(ρA) = lim
n→1

1

1 − n
ln trρnA, ρA =

∑
i,j

√
pipj ⟨ψi|ψj⟩B |ψj⟩A⟨ψi|. (2.2)

The trace quantity appearing here is given by

trρnA =
1

Zn
1

∑
{ik,jk}

n∏
k=1

√
pikpjk ⟨ψik |ψjk+1

⟩Ak⟨ψik |ψjk⟩Bk ≡ Zn

Zn
1

, (2.3)

where |ψin+1⟩An ≡ |ψi1⟩An , and

Z1 =
∑
i,j

√
pipj ⟨ψi|ψj⟩A⟨ψi|ψj⟩B. (2.4)

The overlaps ⟨ψi|ψj⟩A,B can be computed by a gravitational path integral on Euclidean AdS

space (a disk in two dimensions) with two local operator insertions on the boundary

⟨ψi|ψj⟩A = ⟨ψi(∞)ψj(0)⟩disk. (2.5)

Note that the overlap between two QFT energy eigenstates |ψi⟩A and |ψj⟩A (i ̸= j) does

not necessarily vanish in the presence of gravity, reflecting the fact that these eigenstates are

overcomplete. Since the right-hand side of Eq. (2.3) contains a product of 2n overlaps, the

gravitational path integral involves 2n copies of the universes, i.e., 2n copies of the disk. The

path integral can thus include contributions from saddles in which the copies of the universes

are connected by wormholes.

The rule for computing the gravitational path integral (2.3) in the semiclassical approx-

imation is to include all saddles consistent with the conditions imposed on the boundaries

of each universe, {∂Ak, ∂Bk}.2 Ref. [39] examined the possible saddles for the gravitational

2This corresponds to taking an ensemble average of the quantity in question over microstates that cannot

be discriminated at the semiclassical level. This makes, for example, the contribution to Z1 in Eq. (2.4) from

terms with i ̸= j non-vanishing, despite the fact that the same calculation for each factor provides a vanishing

result [40]. While semiclassical calculation using the gravitational path integral involves an ensemble averaging,

applying it in the context of the replica trick correctly reproduces the entanglement entropy of a microstate;

see Ref. [22] for discussion of this point.
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path integral. For example, there are saddles in which all the boundaries are disconnected

in the bulk, giving the thermal entropy Sth. Another saddle connects all copies of A via a

wormhole, while all copies of B remain disconnected. The authors of Ref. [39] argued that in

the high temperature limit β → 0, the dominant saddle connects all the copies of A and B

through a single wormhole. This is because in this saddle, the indices {ik, jk} on the right-

hand side of Eq. (2.3) labeling QFT excited states contract to form a single loop, giving a

large combinatorial factor. In other saddles, these indices do not form a single loop, giving

at least one Kronecker delta on the right-hand side of Eq. (2.3), significantly reducing the

value of the sum in the high temperature limit. As a consequence, they cannot dominate the

gravitational path integral.

To illustrate this argument, let us consider the simplest example, i.e. the calculation of

Z1 defined in Eq. (2.4). The gravitational path integral contains two saddles: the discon-

nected saddle consisting of two disjoint disks and the connected saddle in which two disks are

connected by a wormhole. Thus, we write Z1 = Z1,disconn + Z1,conn, where the first term is

Z1,disconn = e−Sgrav[A]−Sgrav[B], (2.6)

since on this saddle the overlaps are proportional to δij . On the other hand, the contribution

from the connected saddle A#B reads

Z1,conn = e−Sgrav[A#B]
∑
i,j

√
pipj ⟨ψi(∞A)ψj(0A)ψi(∞B)ψj(0B)⟩A#B, (2.7)

where the QFT four point function on the right-hand side is evaluated on A#B. When

both A and B are asymptotically AdS, the connected saddle A#B depends on two moduli

parameters: the renormalized length ℓ and twist angle τ between the two disk boundaries ∂A

and ∂B. Reference [39] argued that in the limit β → 0, the moduli parameters of the wormhole

dominating the gravitational path integral satisfy ℓ→ 0 and τ → 0. This corresponds to the

OPE channel ψi(∞A) → ψi(∞B) and ψj(0A) → ψj(0B), which makes the above four point

function factorize

Z1,conn = e−Sgrav[A#B]ZCFT[A/B]2, ZCFT[A/B] =
∑
i

√
pi ⟨ψi(∞A)ψi(∞B)⟩A/B, (2.8)

where ⟨ψi(∞A)ψi(∞B)⟩ = ⟨ψi|ψi⟩A/B is a two-point correlator evaluated on a space A/B,

called a swap wormhole in Ref. [39], obtained by merging half of A and half of B. Since

ZCFT[A/B]2 grows indefinitely for β → 0, Z1,conn dominates over Z1,disconn in this limit.

By including the saddle in which all the copies of A and B are connected by a single

wormhole, we find that the entanglement entropy S(ρA) of universe B is given by

S(ρA) = Min{Sth, Sswap(ρA)}, Sswap(ρA) = MinExt
I

[
Area(A/B, ∂I)

4GN
+ Seff(I)

]
. (2.9)
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This expression is closely related to the island formula for the entropy of evaporating black

holes [14–16], but there is one significant difference. In the above formula, the minimization

and extremization in Sswap(ρA) must be done in the swap wormhole A/B in which the geom-

etry of the universe A and B are glued. Examples of such glued spacetimes are constructed

in Refs. [39, 47].

2.2 Entangling de Sitter and AdS spaces

The main goal of this paper is to use methods similar to those described above to compute

entanglement entropy for a state similar to that in Eq. (2.1) when one of the disjoint universes,

A, is de Sitter space and the other universe, B, is an AdS black hole. We begin by discussing

the relevant entangled state.

To define a state of the form in Eq. (2.1), suppose that the low energy effective field

theories in the two universes are the same CFT. The states |ψi⟩A in de Sitter space are then

prepared by performing the Euclidean path integral on half of a (d + 1)-dimensional sphere

Sd+1 with the CFT operator Oi corresponding to |ψi⟩A inserted at a pole, e.g., on the pole of

the southern “hemisphere.” Here, d is the number of spatial dimensions. Similarly, the states

|ψi⟩B are prepared by a Euclidean path integral on half of a ball Bd+1 with Oi inserted at

the pole. In this paper, we mostly focus on two-dimensional spacetimes, in which case the

relevant geometries are a half sphere S2/Z2 and a half disk B2/Z2.

In general, we can consider an entangled state of the form

|Ψ⟩ =

∞∑
i=1

√
pi |ψi⟩A|ψi⟩B,

∞∑
i=1

pi = 1. (2.10)

For definiteness, however, we take

pi =
e−β∆i∑
j e

−β∆j
, (2.11)

where ∆i is the conformal dimension of the operator Oi. We are mostly interested in the

“high temperature” limit β → 0 of this state,3 but the conclusions we draw for this limit also

apply to more general entangled states of the form in Eq. (2.10) if |Ψ⟩ receives contributions

from a sufficiently large number of |ψi⟩’s.
Note that while we insert operators on a background spacetime, the excited states effec-

tively include microstates of the geometry, not just perturbative excitations in the semiclas-

sical theory, when gravity is turned on. This is because the microstates can also be viewed as

excitations of blueshifted, i.e., locally high energy, excitations of low energy quantum fields;

see, e.g., Ref. [22]. A related phenomenon is that in the low energy QFT description of the

3This temperature characterizes the strength of the entanglement and is not related to the temperature of

de Sitter space or the AdS black hole.
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entanglement of a subregion of a gravitating spacetime, there is a scheme dependence in the

attribution of the contribution from the region near the entangling surface to the geometrical

area term or power-divergent contribution from low energy fields [69, 70]. See also [71, 72] for

related discussions for two-dimensional black holes. When we include the effects of quantum

gravity, the states |ψi⟩’s become overcomplete. The information about the correct number

of states, however, can still be extracted by using the island formula [14–16] or equivalently

including the contribution from replica wormholes in path integrals [40, 41, 72–74], which we

study here (see also footnote 2).

Our goal is to compute the entanglement entropy of the state in Eq. (2.10). We can

follow the same steps used in Section 2.1 to compute the entanglement entropy between

two AdS black holes using the replica trick. The relevant expressions Eqs. (2.2)–(2.4) con-

tain terms that are products of overlaps of excited states such as ⟨ψi|ψj⟩A⟨ψi|ψj⟩B and∏n
k=1

√
pikpjk ⟨ψik |ψjk+1

⟩Ak⟨ψik |ψjk⟩Bk , where the subscript A indicates the de Sitter factor

and the subscript B indicates the AdS factor. We will use the saddlepoint approximation

to the Euclidean gravity path integral to compute these products of overlaps. As described

above, each product will then be given by a sum of contributions of saddlepoints of different

topologies, some of which may be wormholes connecting de Sitter factors, AdS factors, or

de Sitter and AdS factors. Below we describe this zoo of possibilities and explain which ones

are expected to dominate the saddlepoint sum.

2.3 Gravitational path integrals for state overlaps

We want to calculate products of overlaps like ⟨ψi|ψj⟩A⟨ψk|ψl⟩B, and more generally products

that include multiple factors of each type of universe like ⟨ψi|ψj⟩A⟨ψk|ψl⟩A⟨ψm|ψn⟩B⟨ψo|ψp⟩B.

As we discussed above, the states on A (de Sitter space) are prepared by the Euclidean

path integral over a hemisphere with an operator applied at the pole, while the states on B

(AdS space) are prepared by the Euclidean path integral over a half-disk with an operator

placed again at the pole. But there is a critical difference between these constructions: in

the AdS case, the operator is placed at the spacetime boundary, but in the de Sitter case,

Euclidean de Sitter is a compact manifold without boundary. This difference raises a question

for how we should calculate the path integrals for the overlaps above. If both A and B

were asymptotically AdS, then both would have spacetime boundaries, and there is a well-

tested rule motivated by the AdS/CFT correspondence for the saddlepoint approximation

to the Euclidean gravity path integral: include all saddlepoints consistent with the boundary

conditions imposed at the boundary loci. However, there is no asymptotic boundary in

de Sitter space, and we do not have the guide of a holographic dual; hence, the rule for

selecting saddles is not a priori clear.

For Lorentzian de Sitter space, boundary conditions are naturally imposed at future
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and past infinities, as suggested, e.g., by the dS/CFT correspondence [27, 28]. We thus

interpret our state preparation algorithm as selecting a state in these asymptotic regions.

Since the gravitational path integrals computing the overlaps of interest, Eq. (2.3), involve

both Euclidean de Sitter and AdS spacetimes, our working hypothesis is that we should

select saddles whose continuations to Lorentzian signature contains future and past infinities

for de Sitter space, in addition to the conformal boundaries for AdS space. In the Euclidean

regime, this rule requires that the saddles contain the cosmological horizon (the fixed point of

the U(1) isometry of dS2) so that after the continuation to Lorentzian signature the geometry

will contain a future/past infinity.

With this hypothesis, the calculation of the entanglement entropy of the state in Eq. (2.10)

with Eq. (2.11) proceeds as in Section 2.1: we sum over all saddlepoint topologies for the given

boundary conditions, which here includes the requirement that the de Sitter past and future

infinities are contained in the Lorentzian continuation.

One saddlepoint topology that is always present consists of disconnected geometries com-

puting each of the overlaps in Eq. (2.3) (Fig. 1a). This contribution treats the overlaps as

independent and does not allow for topology-changing contributions, i.e., wormholes, in the

product of overlaps. This class of saddlepoints obviously exists since each factor exists. A

second class of saddlepoints includes wormholes connecting the replicas of the A universes

(de Sitter space in our case). The maximally symmetric member of this class is labeled

Type IIA in Fig. 1b. Similarly, there are wormholes between the B universes and we will

call the maximally symmetric one Type IIB. These Type II saddlepoints have been already

shown to exist in the JT gravity setting in Refs. [4, 39, 75]. Next, we can have simultaneous

wormholes between the A universe replicas and between the B universe replicas—we call these

Type III saddlepoints in Fig. 1c. If Type II saddlepoints exist, then so do Type III because

the wormholes between A universes and between B universes are solved for separately.

Finally, there may be wormholes that connect all replica copies of the A and B universes

together (Type IV wormholes in Fig. 1d). As described in Section 2.1, such wormholes

exist when both A and B are asymptotically AdS [39] and dominate the path integral at

high temperatures. The main task of the present paper, which we will take up in the next

section, is to demonstrate the existence of such wormholes when the two universes have

cosmological constants of opposite sign. As we will see, if such wormholes exist, they will

dominate the gravitational path integrals that compute Z1 and Zn in Eq. (2.3) in the high

entanglement temperature (β → 0) limit. This is for the same reason that they dominate

the high entanglement limit when both A and B are asymptotically AdS [39]: as described in

Section 2.1, increasing the entanglement in Eq. (2.1) or (2.10) by taking β → 0 increases the

number of matter excitations |ψi⟩ with significant support, and on a fully connected wormhole

geometry these states are able to contract to form a single loop giving a large combinatorial
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(a) (b)

(c) (d)

Figure 1: Possible gravitational saddles of the n = 3 Rényi entropy (2.3) connecting copies of the

universes A (de Sitter) and B (an AdS black hole). (a) Totally disconnected saddle where all copies of

A and B are disconnected. (b) Type IIA configuration where all copies of the universe A are connected

by a replica wormhole, but the copies of the universe B are disconnected. In the same way, we have

Type IIB configurations where all copies of universe B are connected by a replica wormhole. (c) In the

Type III configuration, each copy of A is linked by a replica wormhole, and each copy of B is linked

by a separate replica wormhole, but the two wormholes are not interconnected. (d) In a Type IV

configuration, all copies are connected through a single wormhole.
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factor in the overlap. This factor is controlled parametrically by β, and so when the other

parameters (e.g. cosmological constants) are fixed, there is always a β that is small enough

so that this contribution dominates, if the saddlepoint exists. However, we will also show in

Section 3 that if the size of the cosmological horizon is smaller than that of the AdS black

hole horizon, i.e. SdS < SBH, then the Type IV—or a de Sitter/AdS (dS/AdS)—wormhole

cannot exist.

2.4 Entanglement entropy vanishes without a dS/AdS wormhole

In the absence of a dS/AdS wormhole, or if it is sub-dominant because the entanglement

temperature is low, we can assemble results from previous work to argue that the entanglement

entropy vanishes. To do this, we will first discuss the path integral for the normalization Zn
1

in the denominator of (2.3), and then the path integral for the Zn factor in the numerator.

First, Z1 in Eq. (2.4) is a sum of terms each of which is a product of one de Sitter

overlap and one AdS overlap. In the absence of dS/AdS wormholes, each term is computed

by a disconnected diagram of the form in Fig. 1a, with one de Sitter path integral and

one AdS path integral, which evaluate the vacuum 2-point functions of the operators at the

poles creating states on the sphere and disk respectively. These two point functions will be

proportional to the identity, ⟨ψi|ψj⟩ ∝ δij . If we choose the normalization of the operators

so that the proportionality constant is 1, we see that the sum in Eq. (2.4) equals 1. More

generally, even if we do not fix the normalization of operators in this way, Z1 normalizes the

Rényi entropy and will not grow with the entanglement temperature.

For Zn, let us consider the saddle in which all copies of de Sitter space are connected by

a replica wormhole, while all copies of the AdS black hole are disconnected. In this case, the

AdS universes have no wormholes connecting them, so for the purpose of calculating the Rényi

entropy in Eq. (2.3) the AdS universes in this saddlepoint behave in the same way as a non-

gravitating system.4 Thus, the computation and resulting value of the entanglement entropy

will agree with the results in Ref. [4] for de Sitter space entangled with a non-gravitating

reference space. As discussed there, the result will be S(ρA) = 0 [4] unless we include

additional ingredients like end-of-the-world branes that effectively introduce boundaries into

the spaces, which we do not want to do here. Since zero is the smallest possible value for the

entanglement, the dominance of this saddle is guaranteed, implying that the entanglement

entropy vanishes.

This conclusion changes if a dS/AdS wormhole exists. This is because in this case, as

discussed in the previous section, Z1 will be dominated by the connected saddle at high

entanglement temperature, because of the contribution of the matter excitations. These con-

4Strictly speaking, the Rényi entropy is the logarithm of (2.3) divided by 1 − n, but we loosely call the

expression in Eq. (2.3) the Rényi entropy.
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tributions grow as the entanglement temperature increases, thereby increasing the number of

states |ψi⟩ with significant support in (2.10). Similarly, when the dS/AdS wormhole exists,

the fully connected saddle in Fig. 1d gives the dominant contribution to Zn at high entangle-

ment temperature, because of the matter contribution. Taking the n → 1 limit, we will see

that the leading, fully connected, contributions to Zn and Z1 lead to a finite entropy in the

high entanglement temperature limit, which is given by the generalized entropy formula on a

geometry that looks like a de Sitter bubble behind the horizon of an AdS black hole.

3 dS/AdS wormholes

Our goal in this section is to construct a wormhole between Euclidean de Sitter and AdS

spaces, and also to describe the analytic continuation of this wormhole to Lorentzian signature.

Our solution will have the form of a bubble of de Sitter space behind the horizon of an AdS

black hole. There is a long history of constructions of this general kind in different settings. To

our knowledge, the first of these was an exploration of the possibility of creating a universe in

the lab. Although Penrose’s singularity theorem forces a singularity in a classical experiment

of this kind, there may be room to realize such spacetimes via quantum tunneling [55].

A constraint on de Sitter bubbles in AdS: In the context of the AdS/CFT correspon-

dence, Freivogel et al. [54] constructed an inflating bubble separated by a domain wall from

an asymptotically AdS geometry in a setup in which a false vacuum region with a positive

cosmological constant is embedded in a true vacuum with a negative cosmological constant.

The analysis in Ref. [54] emphasized an important constraint: the required gluing can only be

performed consistently with the Israel junction conditions when the area of the cosmological

horizon AdS is larger than the area of the horizon of the AdS black hole ABH, or, in terms of

the associated Bekenstein-Hawking entropies

SdS > SBH, (3.1)

if we impose reflection symmetry with respect to a Cauchy slice. This constraint arises

because the glued spacetime is effectively a “bag of gold” geometry—the cosmological horizon

is a “locally maximal” surface, whereas the event horizon of the AdS black hole is “locally

minimal.” Therefore, if we demand continuity of the metric on the separating domain wall,

we will need AdS > ABH. We will find the same constraint on the existence of our wormholes.

In fact, in our context there is a natural microscopic argument explaining why we must

have SdS > SBH when we entangle the de Sitter and AdS Hilbert spaces. Recall the idea of

static patch holography in de Sitter space. This hypothesis asserts that the degrees of freedom

describing the static patches of de Sitter space live on their stretched horizons with the Hilbert

space HdS. From this point of view, the region of global de Sitter space that contains future
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infinity emerges from entanglement between the left and right static patch degrees of freedom;

see, e.g., Ref. [22]. The area of the cosmological horizon naturally evaluates the dimension

of HdS. In our setup there are two Hilbert spaces HdS and HBH which are entangled. When

dimHdS < dimHBH, all the basis states of HdS are entangled with the microstates of the

AdS black hole.5 Therefore, there is no room for the matter states in the static patch of

de Sitter space to be entangled with the appropriate HdS. This means that if we realize this

bipartite entangled state in terms of semiclassical geometry, then it should not contain the

future or past infinity, because of the absence of the entanglement necessary to make the

horizon smooth.

A no-go argument for Euclidean de Sitter bubbles: We are interested in constructing

a Euclidean wormhole between de Sitter and AdS spaces. By cutting this geometry on the

time-reflection slice, we could interpret such a wormhole as a saddlepoint of a Euclidean

path integral preparing a de Sitter bubble inside an AdS universe. Fu and Marolf [49] have

advanced a no-go argument showing that this is not possible in a pure gravity theory even if

we allow codimension-one domain walls [49]. The argument is roughly as follows. The shape

of the Euclidean domain wall separating the true and false vacua is determined by a radial

trajectory in the Euclidean spacetime

Ṙ2 + VE(R) = 0, (3.2)

where Ṙ ≡ dR/dτE is the derivative of the domain wall profile with respect to Euclidean

time τE , and VE(R) is an effective potential determined from Israel junction conditions. The

domain wall position turns out to oscillate in some window rmin ≤ r ≤ rmax. If we take the

normal vector of the domain wall to point towards the asymptotic boundary at rmax, then the

associated component (one of the transverse directions) of the extrinsic curvature Ko(rmax)

must be positive because the transverse area increases in this direction; the geometry resulting

from gluing across the domain wall can contain the AdS boundary only in this case. However,

it turns out that if the interior is de Sitter then Ko(rmax) < 0, making the outward normal

actually point towards smaller r in the exterior. As a result, the AdS part of the glued

geometry cannot contain the asymptotic boundary.6

In the present paper, in addition to the domain wall, we have the entangled state of matter

(2.10), the stress tensor of which will backreact on the geometry. To create this excited state

5ThisHdS is what is necessarily to construct the region outside the de Sitter horizon. In a “single-sided”—or

cosmological—de Sitter space, this is the degrees of freedom on the stretched horizon, while in a “two-sided”—

or intrinsically global—de Sitter space, this is the degrees of freedom in the other static patch [22].
6While the argument of Ref. [49] was originally made in spacetimes with dimension d ≥ 3, the analogous

statement applies in d = 2 because the component of the extrinsic curvature Ko(r) which causes the problem

has a direct counterpart in JT gravity, namely the derivative of the dilaton along the normal direction of the

brane.
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we must insert operators on the Euclidean AdS boundary. We will see that these operators,

and the backreaction of the matter they create, allow us to evade the no-go argument of Fu

and Marolf. When the entanglement is large, we will see that our boundary sources can be

regarded as injecting energy that decays into a domain wall surrounding a de Sitter bubble.

This resembles a construction by Mirbabayi [50] which we review in the Appendix.

3.1 Action and equations of motion

We start from Einstein gravity coupled to a classical scalar field with a potential on a Eu-

clidean manifold M

I = − 1

16πGN

∫
M
dxd

√
g
(
R+ (∂φ)2 − V (φ)

)
+ logZQFT. (3.3)

In the action, we have also added the effective action logZQFT of a bulk QFT in which we

defined the entangled state (2.1). Suppose the potential has two local minima at φ = φA

and φB: one positive V (φA) > 0 and the other negative V (φB) < 0. In this setup, a

wormhole connecting de Sitter and AdS spacetimes is a domain wall connecting the two

vacua at φ = φA and φB. We will assume that the domain wall is thin, or equivalently, that

the energy difference between the de Sitter and AdS minima of V (φ) is small compared to

the barrier height.

The domain wall solution is thus constructed by first introducing a domain wall on

both spacetimes A and B and then gluing the two along the wall. The tension of the wall

is related to the difference between the two energy values κ = V (φA) − V (φB). In the

presence of the codimension-one domain wall D, the spacetime manifold splits into two pieces

M = M+∪M−, while the potential energy on either side of the wall is fixed. In the following,

we will use the convention that on M+ the value of the potential is V (φA) > 0, while it is

V (φB) < 0 on M−. The total action (3.3) reduces to

I = IAdS + IdS + Idomainwall + logZQFT, (3.4)

where the first term is the action of Einstein gravity with a negative cosmological constant

IAdS = − 1

16πGN

∫
M−

ddx
√
g

(
R+

2d(d− 1)

L2
AdS

)
+ Iboundary,

2d(d− 1)

L2
AdS

≡ V (φB). (3.5)

Here, Iboundary is defined on the conformal boundary of M− as well as on the domain wall D

Iboundary = − 1

8πGN

∫
∂M−

dd−1x
√
hK, (3.6)

where K is the extrinsic curvature of the boundary of M−. Similarly, we have the action IdS

of the de Sitter region M+ with V (φA) = 2d(d− 1)/L2
dS. There is also a term coming from

the domain wall, proportional to its volume

Idomainwall = κ

∫
D
dd−1x

√
h. (3.7)
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The construction of the wormhole solution to the resulting equation of motion is quite

involved because we have to take into account the backreaction of both domain wall and QFT

degrees of freedom. Below we will be mostly interested in the two-dimensional case, where

the dS (AdS) sides is described by dS (AdS) JT gravity, so next we will summarize the basic

properties of these theories.

3.2 Stress tensors

We want to compute the expectation value of the stress energy tensor ⟨Tµν⟩ on the dS/AdS

wormhole geometry. In general, the stress tensor depends on the background geometry and

vice versa, so to determine it we must solve the gravitational equation of motions. However,

in JT gravity there is a simplification because the background metric on either side of the

domain wall is locally dS or AdS, and the equation of motion only couples the stress tensor to

the dilaton. So we can take the metrics on the two sides to describe the vacuum dS and AdS

solutions, work out the matter stress tensors on these backgrounds, backreact these stress

tensors to find the dilaton profile, and then glue the solutions across the domain wall. Below

we will take the first step in this procedure: finding the stress tensor.

We are primarily interested in the large entanglement temperature limit. In this limit,

we argued that the correlation between degrees of freedom of the dS side, which we can think

of as located at future infinity, and degrees of freedom of the AdS side, which live on the

conformal boundary, becomes large. This suggests that when the entanglement is large, the

domain wall separating two sides in the Euclidean geometry approaches the AdS boundary.

We will assume this, and then show the self-consistency of the solution.

3.2.1 Stress tensor on the connected saddle

Let us first evaluate the stress energy tensor ⟨Ψ|Tµν(x)|Ψ⟩ on the candidate wormhole geom-

etry. If universes A and B are connected by a wormhole, the stress tensor value is evaluated

by the five point function

⟨Ψ|Tµν(x)|Ψ⟩ =
1

Z1,conn

∑
i,j

√
pipj ⟨ψi(∞A)ψj(0A)Tµν(x)ψi(∞B)ψj(0B)⟩, (3.8)

where Z1,conn is defined in Eq. (2.7), and is related to the four point functions of ϕi’s. As

we have argued, we expect that when β → 0, the domain wall approaches the conformal

boundary of AdS, and we have an OPE limit ψi(0B) → ψi(0A) and ψj(∞A) → ψj(∞B) as in

Fig. 2. Consider the stress tensor in the AdS region. Then Tµν(x) is on a (Euclidean) time

slice between ψj(0A) and ψj(0B). Here the slice is taken with respect to the time derived by

mapping the disk to a Euclidean strip plus points at infinities, which we refer to as global

time. Below we will also use Euclidean Rindler time. Both these times are shown in Fig. 3.
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Figure 2: The stress tensor expectation value ⟨Ψ|Tµν(x)|Ψ⟩ (3.8) on the dS/AdS wormhole.

Left: When it is inserted in the de Sitter region (the red dot), its expectation value vanishes

because of the OPE ψi(∞A) → ψi(∞B) as well as ψj(0A) → ψj(0B). Right: When it is

inserted in the AdS region, the expectation value is constant as shown in Eq. (3.10).

Figure 3: Two kinds of Euclidean time on the disk. Left: Euclidean Rindler time, defined in

Eq. (3.40). We will use this when we construct the dS/AdS wormhole by gluing (two copies

of) disk and Euclidean de Sitter in Section 3.4. Right: The global time on the disk induced

from the time on a Euclidean strip. Black dots represent operators on the dS/AdS wormhole

as in Eq. (3.9).

In the limit of high entanglement temperature, we thus have

⟨Ψ|Tµν(x)|Ψ⟩ =

∑
i

√
pi⟨ψi(0A)Tµν(x)ψi(0B)⟩∑
i

√
pi⟨ψi(0A)ψi(0B)⟩

, (3.9)

since
∑

i

√
pi⟨ψi(∞A)ψi(∞B)⟩ factors out from both numerator and denominator of the right-

hand side of Eq. (3.8). Moreover, since pi = e−βEi/Z is a Boltzmann factor, by picking up the

saddlepoint in the energy spectrum, the holomorphic part of stress-energy tensor is evaluated
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as follows

⟨Ψ|Tzz(x)|Ψ⟩ =

∑
i

√
pi⟨ψi(0A)Tzz(x)ψi(0B)⟩∑
i

√
pi⟨ψi(0A)ψi(0B)⟩

∼
EJ

√
pJ⟨ψJ(∞A)ψJ(0B)⟩

√
pJ⟨ψJ(∞A)ψJ(0B)⟩

= EJ(β), (3.10)

where J denotes this saddlepoint in the sum with respect to the spectrum. Here, EJ(β)

denotes the energy with respect to the global time of the Euclidean strip, which coincides with

the conformal dimension of the corresponding operator via the state operator correspondence.

We have used the fact that

Tzz(x)ψJ(0B)|0⟩ = EJ ψJ(0B)|0⟩, (3.11)

which is true because the operator is located at the south pole of the disk (which is t = −∞
of the strip); see Fig. 2. In more detail, insertion of a local operator at the south pole of

the disk is equivalent to having a globally excited state on the strip |EJ⟩strip via the state

operator correspondence:

Tzz(x)ψJ(0B)|0⟩disk = Tzz(x) |EJ⟩strip = EJ |EJ⟩strip. (3.12)

This shows in particular that the stress tensor is independent of the position x on the time

slice. The rest of position dependence in (3.10) cancels between the numerator and the

denominator. Here the (z, z̄) coordinates are the usual holomorphic and anti-holomorphic

coordinates on the AdS region of the disk, whose precise definition is given in Section 3.3.2.

In contrast, when the stress tensor is located in the de Sitter region we have the factor-

ization

⟨ψi(∞A)ψj(0A)Tµν(x)ψi(∞B)ψj(0B)⟩ = ⟨ψi(∞A)ψi(∞B)⟩ ⟨Tµν(x)⟩ ⟨ψj(0A)ψj(0B)⟩. (3.13)

Therefore, when the stress tensor is in the de Sitter region, these OPEs tell us that the

expectation value coincides with its vacuum value ⟨Ψ|Tµν(x)|Ψ⟩ = ⟨0|Tµν(x)|0⟩. In a curved

spacetime with the metric ds2 = e2ωdzdz̄, it is given by

⟨0|Tzz(x)|0⟩ =
c

12π

(
∂2ω − (∂ω)2

)
+ τzz, ⟨0|Tz̄z̄(x)|0⟩ =

c

12π

(
∂̄2ω − (∂̄ω)2

)
+ τz̄z̄, (3.14)

and

⟨0|Tzz̄(x)|0⟩ = − c

12π
∂∂̄ ω, (3.15)

where τzz = τz̄z̄ = −c/48π are the stress tensors for the flat metric ds2 = dzdz̄. By explicitly

plugging in the Weyl factor of the de Sitter metric (3.18), we can show that the the terms in

⟨0|Tzz(x)|0⟩ and ⟨0|Tz̄z̄(x)|0⟩ coming from the Weyl factor ω cancel with the Casimir energies

in τzz and τz̄z̄ (also see Section 3.2 of Ref. [4]).

One might be puzzled by the fact that we start with an operator inserted at the south

pole of the sphere, so it would appear that the de Sitter region is excited by the operator
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and that there should thus be a non-vanishing stress tensor. But when the de Sitter region

is connected to AdS black hole, the effect of this local insertion is absorbed by the identical

operator located at the south pole of the AdS disk. This occurs in the large entanglement

limit, which is controlled by the OPEs of ψi. In this OPE limit, the two operators fuse

together to behave as if the identity operator has been inserted in the tip of the de Sitter

region.

3.2.2 Stress tensor on the disconnected saddle

In the disconnected saddle, the stress energy tensor on each side is just given by the thermal

expectation value in the high entanglement temperature limit. This is because in this limit

the local energy density is dominated by high frequency modes that are insensitive to the

spatial curvatures, which are larger scales. Thus, we have

⟨Tzz⟩A = ⟨Tzz⟩B =
c

24π

(
2π

β

)2

. (3.16)

The same result hold for ⟨Tz̄z̄⟩A = ⟨Tz̄z̄⟩B.

3.3 Solving for the dilaton

3.3.1 The dilaton on the dS side

First, we summarize the properties of de Sitter JT gravity studied in Refs. [76, 77] and specify

the solution of our interest. The Euclidean action is

− lnZ =
ϕ0

16πGN

∫
√
g R+

1

16πGN

∫
√
gΦ

(
R− 2

L2

)
− lnZCFT, (3.17)

where ZCFT denotes the partition function of the CFT which only depends on the metric gµν .

Varying the action with respect to the dilaton, we find that the metric satisfies R = 2/L2.

Below we will use global coordinates

ds2 = L2

(
dτ2 + dφ2

cosh2τ

)
, −∞ < τ <∞, 0 < φ < 2π. (3.18)

If we write the metric as ds2 = e2ωdzdz̄, with z = iτ +φ and z̄ = −iτ +φ, varying the action

with respect to the metric gives equations of motion

e2ω∂
[
e−2ω∂Φ

]
= 8πGN⟨0|Tzz|0⟩, e2ω∂̄

[
e−2ω∂̄Φ

]
= 8πGN⟨0|Tz̄z̄|0⟩, (3.19)

and

e2ωΦ + 2∂∂̄Φ = 16πGN⟨0|Tzz̄|0⟩. (3.20)

We have argued in the last section that in the de Sitter region the stress tensor is given

by (3.14) and (3.15):

⟨0|Tzz|0⟩ = ⟨0|Tz̄z̄|0⟩ = 0, ⟨0|Tzz̄|0⟩ =
c

48π2 cosh2τ
. (3.21)
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Inserting this stress tensor in the equation for the dilaton, we find that

ΦdS(τ, θ) = B
cosφ

cosh τ
+
cGN

3
, (3.22)

where the constant piece is the contribution of the anomalous term ⟨0|Tzz̄|0⟩.
We will find later that it is useful to work in static patch coordinates when deriving

the trajectory of the domain wall separating the dS and AdS parts of the geometry. This

is because, in static coordinates both the dS geometry and the AdS black hole have a U(1)

symmetry which we use to define a common angular direction. To this end, we start from

the embedding space representation of dS2

X2
0 +X2

1 +X2
2 = 1, ds2 = L2(dX2

0 + dX2
1 + dX2

2 ). (3.23)

Then global coordinates are defined by

X0 = tanh τ, X1 =
sinφ

cosh τ
, X2 =

cosφ

cosh τ
. (3.24)

On the other hand, static patch coordinates are given by

X0 = sin θ sin t, X1 = sin θ cos t, X2 = cos θ, (3.25)

and the resulting metric is ds2 = dθ2 + sin2θ dt2, with a dilaton Φ = B cos θ.

This dilaton profile describes the geometry of a Schwarzschild black hole in the Nariai

limit [76]. The value of the dilaton profile together with a constant piece ϕ0 + Φ is the area of

the manifold transverse to the 2d direction. Therefore, an extremal surface in the geometry

satisfies ∂Φ = ∂̄Φ = 0. For the profile (3.22), we have two such surfaces at (τ, φ) = (0, 0)

and (τ, φ) = (0, π). The first one corresponds to the cosmological horizon, since the dilaton

is maximal at the point, and the second one is the black hole horizon. The Penrose diagram

of the geometry is depicted in the left panel of Fig. 4.

3.3.2 The dilaton on the AdS side

The action of AdS JT gravity coupled with bulk CFT degrees of freedom [78, 79] is

lnZ =
ϕ0

16πGN

[∫
B

√
g R+ 2

∫
∂B
K

]
+

1

16πGN

[∫
Φ

(
R+

2

L̃2

)
+ Φb

∫
∂B
K

]
. (3.26)

We will work in global coordinates

ds2 = L̃2

(
dτ2 + dµ2

cos2µ

)
, −π

2
< µ <

π

2
. (3.27)

Again, by writing the metric as ds2 = e2ωdzdz̄, with z = iτ + µ and z̄ = −iτ + µ, the

equations of motion for the dilaton are given by (3.19) and by

−e2ω Φ + 2∂∂̄Φ = 16πGN⟨Tzz̄⟩, (3.28)
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Figure 4: The Penrose diagrams for the de Sitter black hole and the AdS black hole with

backreaction, which are used to construct a dS/AdS wormhole of interest. Left: de Sitter

black hole with the dilaton profile (3.22). The bifurcation surface of the black hole is depicted

by the blue dot, and the de Sitter bifurcation surface by the orange dot. Orange curves are

future and past infinity of de Sitter. Right: The two-sided black hole in AdS with the

backreaction (3.33). The green lines are the conformal boundaries. The blue shaded region is

in the black hole interior and is called the causal shadow because it is not causally connected

with the asymptotic boundary.

where the first term has the opposite sign from that in Eq. (3.20). If the stress tensor vanished

as it would in the vacuum, the dilaton profile would be given by

ΦAdS(τ, µ) = A
cosh τ

cosµ
, (3.29)

as can be checked by inserting it in the dilaton equation of motion. The coefficient A will be

fixed by the boundary condition. This dilaton profile, when continued to Lorentzian regime

describes an eternal black hole with a square Penrose diagram. On the dS/AdS wormhole,

however, the stress energy tensor on the AdS side is given by Eq. (3.10). We thus have to set

⟨Tzz⟩ = ⟨Tz̄z̄⟩ = EJ(β), and we get a solution of the following form:

Φ(τ, µ) = Φ0(τ, µ) − 16πGNEJ(β)(µ tanµ+ 1). (3.30)

Here, Φ0(τ, µ) satisfies the equations of motion with the vanishing stress energy tensor. This

portion is fixed by imposing a boundary condition at the asymptotic boundary µ → ±π/2.

In particular, we demand that (3.30) approaches the vacuum dilaton profile (3.29) [80] at the

boundary (in some SL(2, R) frame; see below).

To match the boundary condition, it is convenient to write

ϕ̄

π

(
b− 1

b

)
= 16πGNEJ(β), (3.31)

and set

Φ0(τ, µ) =
ϕ̄

2

(
b+

1

b

)
cosh τ

cosµ
. (3.32)
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As we will see, this form of the dilaton profile satisfies the boundary condition near asymptotic

infinity µ → ±π/2; i.e., the backreacted dilaton profile becomes (3.29) near infinity in some

SL(2, R) frame. To show this, we plug (3.31) and (3.32) into the backreacted solution (3.30),

and obtain

Φβ(τ, µ) =
ϕ̄

2

(
b+

1

b

)
cosh τ

cosµ
− ϕ̄

π

(
b− 1

b

)
(µ tanµ+ 1) (3.33)

→ ϕ̄

2

[(
b+

1

b

)
cosh τ

cosµ
−
(
b− 1

b

)
tanµ

]
(µ→ π

2
). (3.34)

The divergence as µ → π/2 occurs because we are approaching the AdS boundary in this

limit, and the dilaton measures the asymptotic growth of the transverse sphere in the higher

dimensional theory whose compactification gives rise to JT gravity. We now show that we can

bring this expression to the same form as the vacuum dilaton solution (3.29) by performing

an SL(2, R) transformation of the geometry, which is an isometry of the space.

To specify the necessary transformation, we realize AdS2 as a hyperbola

−X2
0 −X2

1 +X2
2 = 1, ds2 = L̃2

(
dX2

0 + dX2
1 − dX2

2

)
. (3.35)

Global coordinates (τ, µ) are defined by the embedding

X0 = tanµ, X1 =
sinh τ

cosµ
, X2 =

cosh τ

cosµ
. (3.36)

The SL(2, R) isometry of our interest is(
X0

X2

)
→

(
X ′

0

X ′
2

)
=

(
b+ −b−
−b− b+

)(
X0

X2

)
, b± =

1

2

(
b± 1

b

)
. (3.37)

Then, the following coordinate transformation

tanµ′ = b+ tanµ− b−
cosh τ

cosµ
,

cosh τ ′

cosµ′
= b+

cosh τ

cosµ
− b− tanµ (3.38)

brings (3.34) to the vacuum form

ΦAdS(τ ′, µ′) = A
cosh τ ′

cosµ′
, (3.39)

with A = ϕ̄.

We will later see that it is also useful to define coordinates (ρ, t)

X0 = sinh ρ cos t, X1 = sinh ρ sin t, X2 = cosh ρ. (3.40)

The metric is then given by ds2 = dρ2 +sinh2ρ dt2, and the dilaton profile is ΦAdS = A cosh ρ.

The dilaton profile in Eq. (3.33) describes an AdS black hole with long wormhole in

its interior region. For instance, there are two extremal surfaces at (τ, µ) = (0, µR) and

(τ, µ) = (0, µL), and one can check µR → π/2 and µL → −π/2 in the β → 0 limit. The

Penrose diagram of this black hole is depicted in the right panel of Fig. 4.
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3.4 Gluing dS to AdS

Having specified the dilaton profile of interest, we would like to construct the wormhole

solution connecting the dilaton in the de Sitter side ΦdS(θ) in (3.22) and the backreacted

solution in the AdS side Φβ(τ, µ) in (3.33), by solving the Israel junction conditions

ΦdS

∣∣
brane

= Φβ(τ, µ)
∣∣
brane

, ξµ∂µΦdS − ξµ∂µΦβ(τ, µ) = κ. (3.41)

These equations are used to specify the location of the domain wall τ = τβ(t), µ = µβ(t)

written in the coordinates in the AdS side. For this purpose, it is useful to use t coordinate

for the Euclidean timelike direction, commonly defined both on the de Sitter side (3.25) and

on the AdS side (3.40). In particular, on the de Sitter side, this is the direction of the U(1)

isometry. The first equation of Eq. (3.41) relates the brane profile in the coordinates of the

AdS side to the one in the de Sitter side θ(t). The brane profile on the de Sitter side does

not depend on the entanglement temperature because the stress tensor is vanishing on this

side in the connected geometry.

Finding the solution explicitly is difficult. However, in the high temperature limit β → 0,

the location of the domain wall approaches the asymptotic boundary of AdS, µβ(t) → ±π/2,

which simplifies the task. For instance, in the asymptotic region the backreacted dilaton

Φβ(τ, µ) reduces to (3.34), and using the coordinate transformation between the (µ, τ) and

(ρ, t) coordinates, obtained by equating Eqs. (3.36) and (3.40), we get

Φβ(ρ, t) =
ϕ̄

2

(
b+

1

b

)
cosh τ

cosµ
− ϕ̄

π

(
b− 1

b

)
(µ tanµ+ 1) (3.42)

→


Φ+(ρ, t) ≡ ϕ̄

2

(
b+ 1

b

)
cosh ρ+ ϕ̄

2

(
b− 1

b

)
sinh ρ cos t

(
−π

2 ≤ t ≤ 0
)

Φ−(ρ, t) ≡ ϕ̄
2

(
b+ 1

b

)
cosh ρ− ϕ̄

2

(
b− 1

b

)
sinh ρ cos t

(
−π ≤ t ≤ −π

2

) for ρ→ ∞.

(3.43)

By defining a new coordinate δ as

δ =

t+ π
2

(
−π

2 < t ≤ 0
)

−t− π
2

(
−π ≤ t ≤ −π

2

)
,

(3.44)

we see that the expressions for two dilaton profiles Φ+(ρ, δ) and Φ−(ρ, δ) become identical.

This implies that near the conformal boundary, Φβ(ρ, t) can be thought of as obtained by

first preparing two identical dilaton profiles with a single bifurcation surface, and gluing them

along t = 0. This is exactly how to treat the backreaction of the particle which starts from

the boundary and then propagates into the bulk of the Euclidean black hole. The backreacted

black hole constructed in this way is called a partially entangled state (PETS) [71]. We review
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its construction in the Appendix. A notable feature of the PETS geometry is that since the

dilaton profile is constructed by gluing two identical profiles Φ+(ρ, δ) and Φ−(ρ, δ) each of

which has a horizon, the resulting dilaton profile, which we denote by ΦPETS(ρ, t), has two

black hole horizons.

The argument here implies that near the asymptotic boundary ρ→ ∞, the profile Φβ(ρ, t)

obtained by solving the backreaction of the globally excited state (3.30) coincides with the

dilaton profile of the PETS

Φβ(ρ, t) = ΦPETS(ρ, t) at ρ→ ∞. (3.45)

This is natural because we start from the excited state in the global AdS2 and in the disk

frame the excited state is specified by the insertion of a local operator whose backreaction is

treated by the junction condition (A.1).

Gluing between the PETS geometry specified by ΦPETS and the de Sitter geometry given

by ΦdS was studied in a paper by Mirbabayi [50], whose construction is reviewed in the

Appendix. Since the de Sitter bubble is realized in the PETS geometry, the Euclidean bulk

spacetime can be regarded as describing a particle starting from the asymptotic boundary,

propagating for a while in the Euclidean black hole, and then decaying into the domain

wall separating the interior de Sitter region and the exterior AdS region (the right panel

of Fig. 12). This construction avoids the no go argument by Fu and Marolf [49], since the

domain wall profile has a kink due to the intersection with the particle trajectory in the AdS

side used to construct the PETS. The backreaction of the particle here creates a large interior

region within the AdS black hole to accommodate the de Sitter horizon behind the black hole

horizon.

Each of the dilaton profiles Φ±(ρ, δ) in Eq. (3.43) used in constructing Φβ(ρ, t) (or

ΦPETS(ρ, t)) is related to the original profile ΦAdS = A cosh ρ for the Euclidean black hole

by the SL(2, R) transformation (3.37). The rest of the procedure is then parallel to that of

Ref. [50]. In particular, the location of the domain wall in the original global coordinates

(τβ(t), µβ(t)), i.e., the solution of Eq. (3.41), is obtained by applying the SL(2, R) transfor-

mation to the Mirbabayi’s solution ρ = ρ(t) presented in (A.2). More explicitly, from the

relation between these two coordinates, we have

tanµβ(t) = b+ cosh ρ(t) + b− sinh ρ(t) cosh t,
cos τβ(t)

cosµβ(t)
= b− sinh ρ(t) cosh t+ b+ cosh ρ(t).

(3.46)

From the first equation, one can check that the location of the brane µ = µβ(t) solving (3.41)

indeed satisfies our ansatz, namely µβ(t) → π/2 in the high-temperature limit, because in

this limit the EJ(β) and b± both become large. This self-consistently justifies our assumption

that in the high entanglement temperature limit the domain wall approaches the boundary.
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Furthermore, in this way of treating the problem, the condition SdS > SAdS for the existence

of the wormhole solution is obvious. Continuity of the dilaton profile (the first equation of

(3.41)) reduces to Φβ = A cosh ρ = B cos θ = ΦdS, implying B > A. Since the black hole

bifurcation surface is located at ρ = 0, the black hole entropy is given by SBH = ϕ0 + A,

where ϕ0 is the constant part of the dilaton profile in Eq. (3.26). Similarly, the bifurcation

surface of de Sitter is at θ = 0, giving SdS = ϕ0 +B. Combining these, we conclude that that

SdS > SBH must hold.

Another notable feature of the solution described here is that the de Sitter side only

contains the cosmological horizon, and not a black hole horizon. This can be seen by recasting

the second equation of the junction conditions into the form of a one-dimensional potential

problem for the domain wall trajectory θ̇2 + V (θ) = 0. This equation tells us the range

θmin < θ < θmax in which the domain wall can move. We can check from this that the black

hole horizon is indeed excluded from the de Sitter bubble region.

Note that in constructing the dS/AdS wormhole solution, we only needed an excited

state on the AdS side, and not necessarily the entangled state between two sides (2.10). For

example, one can obtain a similar wormhole starting from a factorized state of the form

|ψ⟩A|ψ⟩B as long as both of factors are highly excited. However, a wormhole connecting dS

and AdS will only dominate the gravitational path integral for (2.3) when there is a large

entanglement between the two systems. This indeed occurs if the bulk QFT state is of the

thermofield double type (2.10) with small β, as we will discuss in the next section.

3.5 Continuation of the dS/AdS wormhole to Lorentzian signature

The Euclidean dS/AdS wormhole constructed in this way has a time reflection symmetric

slice. Therefore, it can be analytically continued to Lorentzian regime. The Penrose diagram

of the resulting spacetime is depicted in Fig. 5. This geometry describes an AdS black

hole with a de Sitter bubble in its interior. It can be explicitly checked that the de Sitter

region contains the cosmological horizon and fully contains the past and future infinity. In

Section 2.3, we required that all the saddles of the gravitational path integral should contain

the future/past infinity of de Sitter space when continued to Lorentzian signature. Therefore,

the dS/AdS wormhole constructed here indeed satisfies the boundary condition we demanded

for the gravitational path integral. In this construction, the de Sitter region does not contain

the bifurcation surface of a black hole.

Note that, as pointed out in Ref. [54], the null energy condition prohibits future infinity

of de Sitter space from being causally connected with the asymptotic boundaries of the AdS

black hole, as we see in the Penrose diagram of Fig. 5. This is because a future-directed null

congruence near future infinity is expanding, while such a null congruence has to shrink in

the interior region of the AdS black hole; the Raychaudhuri equation combined with the null
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Figure 5: The Lorentzian spacetime on which we compute the generalized entropy (in

Eq. (4.12)). This spacetime is obtained by continuing the Euclidean wormhole geometry

to Lorentzian signature along the reflection symmetric slice. This is an asymptotically AdS

black hole (whose conformal boundaries are depicted in green) with an inflating de Sitter

region in its interior (with future and past infinities depicted in orange curves). The blue

curves represent domain walls separating two geometries.

energy condition prohibits a smooth interpolation of these congruences.

In the next section, we will argue that the entanglement entropy in the high temperature

limit can be computed as a type of generalized entropy on the Lorentzian geometry obtained

in this way.

4 Calculation of the generalized entropy

4.1 Contribution from the fully connected saddle

We first note that in the high entanglement temperature limit β → 0, the gravitational

path integral is dominated by the contribution of the fully connected saddle even when one

of the universes is closed. This is because the argument for dominance, made in Ref. [39],

only relies on the configuration of operators in the expression (2.3) and does not depend on

the global geometry of the universes. Specifically, in the computation of the overlaps, the

indices of operators form a single loop only in the fully connected saddle, making this saddle

dominate in the β → 0 limit. This occurs through the effects of matter contributions to the

path integral, no matter what the gravitational contributions are. This argument presented in

Ref. [39] goes through here despite the difference in the cosmological constant of one universe.

We thus evaluate below the contribution from the fully connected saddle to trρnA when A
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Figure 6: Left: The path integral preparations of overlaps ⟨ψi|ψj⟩A and ⟨ψi|ψj⟩B com-

puted in Euclidean de Sitter (blue) and AdS black hole (green) spacetimes. They appear

in quantity (2.3) of our interest. The excited states are specified by inserting corresponding

operators. Right: Euclidean de Sitter and AdS black hole spacetimes are connected by a

wormhole. Such a wormhole appears, for example, in the gravitational path integral (2.4) for

the normalization of the reduced density matrix. We have already constructed this dS/AdS

wormhole solution in JT gravity in Section 3.4.

and B are de Sitter and AdS black hole spacetimes, respectively. The relevant expression is

Zn,conn = e−Sgrav[Mn]
∑

{ik,jk}

(
n∏

k=1

√
pikpjk

)〈
n∏

k=1

ψik(∞Ak)ψjk+1
(0Ak)ψik(∞Bk)ψjk(0Bk)

〉
Mn

,

(4.1)

where Mn represents the fully connected wormhole spacetime.

One way to construct the fully connected wormhole Mn out of 2n universes {Ak, Bk}nk=1 is

as follows. First, we connectAk andBk in the k-th replica by a wormhole as in Fig. 6. To do so,

as we showed in Section 3, we poke a hole that has a circular boundary of size b on A (a sphere)

as well as on B (a disk), and then we glue A and B along these circular boundaries, where

we place a domain wall. We saw in Section 3 that, after including the matter backreaction,

the equations of motion can be solved to find a metric, dilaton, and domain wall trajectory

consistent with the boundary conditions and the Israel junction conditions. The resulting

geometry (A#B)k again has the topology of a disk, which we refer to as the dS/AdS wormhole.

Obviously, the size b of the hole cannot exceed the size R of the sphere. Note that, as we

showed in Section 3, the domain wall separating the two regions with different cosmological

constants approaches the AdS boundary in the high entanglement temperature limit. We

then connect n copies of these dS/AdS wormholes, (A#B)k (k = 1, · · · , n), by a replica

wormhole. This can be done by introducing a cut on each (A#B)k and sewing these copies

along the cut, as shown in Fig. 7. To emphasize that the fully connected wormhole depends

on the cut C, we denote this spacetime by Mn ≡ Σn[C], and we assume n > 1 below. For
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Figure 7: The fully connected saddle for the gravitational path integral, Eq. (4.1), where all

copies of Euclidean de Sitter space as well as those of a Euclidean black hole are connected

by a single wormhole. One way to think about it is that we first connect the k-th copy of

Euclidean de Sitter space and AdS black hole by a dS/AdS wormhole, and then we connect

these wormholes by a replica wormhole (indicated by the red arrows).

now we will proceed by assuming that the sewed geometry can be constructed, and we will

later discuss how to select C so that the equations of motion are satisfied.

The contribution of the fully connected wormhole itself, Eq. (4.1), does not in general have

an interpretation in terms of a generalized entropy. However, such an interpretation becomes

available in the high entanglement temperature limit β → 0, where the dS/AdS wormhole

becomes shorter as described above. In this limit, one can take the OPE ψik(∞Ak) →
ψik(∞Bk) in the correlator to get

Zn,conn = e−Sgrav[Mn]ZCFT[A#B]n
∑
{jk}

(
n∏

k=1

√
pjk

)〈
n∏

k=1

ψjk+1
(0Ak)ψjk(0Bk)

〉
Σn[C]

. (4.2)
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Figure 8: Left: Each of the replica copies in the fully connected wormhole depicted in Fig. 7

with four operator insertions, connected by cut C (the red line). The contribution from this

wormhole appears in the quantity of our interest, trρnA in Eq. (2.3), and is given by Eq. (4.1).

The blue circle is the greater circle of the original Euclidean de Sitter space with two operator

insertions ψik(∞A) and ψjk+1
(0A). Right: The operator configuration in the same geometry

after taking the OPE ψik(∞Ak) → ψik(∞Bk) and factoring the corresponding component,

which is suppressed. By summing over the leftover indices, this leads to Eq. (4.9).

Here,

ZCFT[A#B] =
∑
i

√
pi ⟨ψi(∞A)ψi(∞B)⟩A#B. (4.3)

To emphasize that the operators in Eq. (4.2) are located on the new disk A#B, made by

gluing the sphere A with the disk B, from now on we write ψjk+1
(0Ak) = ψjk+1

(xA#Bk) and

ψjk(0Bk) = ψjk(0A#Bk), where xA#Bk denotes the location of the operator ψjk+1
in the k-

th copy of the new disk A#B, and 0A#Bk is its south pole. Using this new notation, the

correlator in Eq. (4.2) reads〈
n∏

k=1

ψjk+1
(0Ak)ψjk(0Bk)

〉
Σn[C]

=

〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

. (4.4)

The series of operations described here is depicted in Fig. 8. Here, we have assumed that the

cut goes between two operators. The reason why will be explained in the next subsection.

We can now use the identity (see for example Appendix A of [75])〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=

〈
n∏

k=1

ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

, (4.5)

where C̄ denotes the complement of the cut C in a Cauchy slice of the disk A#B in radial

quantization. The above identity holds because, in the covering space where all the sheets
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are glued together along the indicated cut, the left- and right-hand sides of (4.5) are actually

the same correlator. This does not depend on the details of the geometry of each sheet, and

hence holds for the dS/AdS wormhole as well. By using this identity, we see that the sum

over {jk} in Eq. (4.2) can be written in terms of the thermal CFT Rényi entropy

∑
{jk}

(
n∏

k=1

√
pjk

)〈
n∏

k=1

ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

= ZCFT[A#B]n
tr
(
ρβ

2
,C̄

)n
tr
(
ρvac,C̄

)n . (4.6)

Here, we have defined

ρβ
2
,C̄

=
1

ZCFT[A#B]
tr
C

[∑
i

√
pi ψi(0A#B)|0⟩⟨0|ψi(xA#B)

]
, ρvac,C̄ = tr

C
|0⟩⟨0|, (4.7)

where |0⟩ is the vacuum on a time slice of the disk. The quantity ρβ
2
,C̄

looks like a density

matrix; however, it is not Hermitian because the locations of the two operators in Eq. (4.7) are

not reflection symmetric in time. The von Neumann entropy of such an object is sometimes

called pseudo entropy, and was studied recently in Ref. [81].7 A discussion of the associated

island formula version appears in Ref. [82].

Note that pseudo entropy appears because one of the two universes here is de Sitter space.

For instance, if A and B were both asymptotically AdS, the matter part of the entropy would

be the usual entanglement entropy of bulk QFT. This is because, in this case, the connected

geometry is an annulus, and in the large entanglement limit the annulus pinches into two

disks [39]. In the new disks, the local operators are located at the boundaries. This implies

that the correlation functions still have interpretations in terms of CFT Rényi entropies.

In the current case, where one of the universes is Euclidean de Sitter space, the complete

connected geometry is a disk instead of an annulus. As a result, the local operator originally

located at the south pole of the de Sitter sphere lies at a bulk point of the disk. This prevents

us from interpreting the correlation function as a standard Rényi entropy.

By inserting Eq. (4.6) into Eq. (4.2), we obtain

Zn,conn = e−Sgrav[Mn]ZCFT[A#B]2n
tr
(
ρβ

2
,C̄

)n
tr
(
ρvac,C̄

)n . (4.9)

Note that the corresponding expression for Z1 does not have the last factor

Z1,conn = e−Sgrav[A#B]ZCFT[A#B]2, (4.10)

7In more details, let us consider the following density matrix like object involving two states |ψ⟩ and |ϕ⟩

ρA,ψ|ϕ =
tr|ψ⟩⟨ϕ|
⟨ψ|ϕ⟩ . (4.8)

Of course, this is not a density matrix; among other things, it is not Hermitian. The pseudo entropy of ρA,ψ|ϕ

is defined by SPE = −trρA,ψ|ϕ log ρA,ψ|ϕ. ρ β
2
,C̄

in Eq. (4.7) has precisely this form.
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since there is no cut in the spacetime A#B in this case. We thus obtain the following

expression for (the exponential of) the Rényi entropy in the high temperature limit β → 0:

trρnA −−−→
β→0

Zn,conn

Zn
1,conn

= e−Sgrav[Mn]+nSgrav[A#B]
tr
(
ρβ

2
,C̄

)n
tr
(
ρvac,C̄

)n . (4.11)

As argued in Ref. [83], the gravitational part of Eq. (4.11), e−Sgrav[Mn]+nSgrav[A#B], picks

up, in the n → 1 limit, the area of the fixed point of Zn replica symmetry in Mn, which

coincides with the boundary of C. This contribution is given by e−(n−1)A[∂C̄]/4GN . Finally,

the location of the fixed point ∂C̄ is determined by extremizing the total gravitational path

integral. By taking the n → 1 limit of the Rényi entropy, we thus find a formula for the

entanglement entropy of the form in Eq. (2.9):

S(ρA) = Min Ext
C̄

[
A[∂C̄]

4GN
+ SPE[C̄] − Svac[C̄]

]
, SPE[C̄] = −tr

(
ρβ

2
,C̄

ln ρβ
2
,C̄

)
, (4.12)

where the extremization is performed on the spacetime A#B. The “Min” in the formula

indicates that if there are multiple extremal surfaces, we choose the one giving the minimal

value.

To evaluate the actual value of the entropy, we need to know detailed properties of A#B.

While the bulk QFT entropy part of the above formula appears somewhat unusual, we will

see that in the high temperature limit β → 0, the entropy is dominated by the area term, and

the bulk pseudo entropy part does not play an important role. This can be explicitly shown

by going back to the expression of tr
(
ρβ

2
,C̄

)n
(whose n → 1 limit yields the pseudo entropy)

written in terms of the correlator, Eq. (4.6). It is straightforward there to see that the

correlator gets further factorized into two point functions when C̄ is small, and in this limit it

is canceled by the normalization factor of ρβ
2
,C̄

in (4.7). Indeed, C̄ must become small in the

large entanglement temperature limit because the entropy of entanglement cannot be greater

than the entropy of the black hole or of de Sitter; if C̄ remained of finite size in the high

temperature limit, then the bulk entropy part would become larger than the horizon areas,

and hence the resulting entanglement entropy as well. In the small C̄ limit, the bulk entropy

part as well as its variation with respect to the endpoints of the cut is almost vanishing, so

that the endpoints have to be located at the classical extremal surfaces, i.e. the horizons.

The net result is that in Eq. (4.11), ρβ
2
,C̄

is replaced with the vacuum reduced density matrix

ρvac,C̄ , so that the contribution of the pseudo entropy vanishes in this limit.

4.2 Classification of possible cuts

As discussed above, in the the Lorentzian continuation of the dS/AdS wormhole, the end-

points of the cut on which the replicas are connected lie near one of the horizons when the

entanglement temperature is large. While the relevant horizon could a priori be either the
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Figure 9: Three possible cuts C for the fully connected wormhole Mn which contributes

to the gravitational path integral for the Rényi entropy as in Eq. (4.9). Left: type A cut

located above two operators. Since two operators in the disk are not always the same, this

type of cuts only gives a subdominant contribution to the gravitational path integral (4.2).

Center: type B cut whose endpoints are located near the bifurcation surfaces of the AdS

black hole. Right: type B cut which ends near the cosmological horizon. One of the purposes

of this subsection is to argue that the endpoints of the cut of this type are not precisely on

the cosmological horizon. (If they were, it would result in a vanishing entropy S(ρA) = 0.)

cosmological horizon or the AdS black hole horizon, in this subsection we argue that when

SdS > SBH (which must be the case when the wormhole exists), the cut will not end near the

cosmological horizon.

The fully connected saddle was constructed by gluing n copies of the dS/AdS wormholes

along a cut C. We begin by discussing in which region of the disk the cut should be located

in order to maximize the value of the gravitational action. It is convenient to separate the

discussion into three cases, depending on the location of the cut. First, we separate two

classes: (1) type A: the cut is located above two operators, as in the left panel of Fig. 9, and

(2) type B: the cut is located in between two operators as in the middle and right panels of

Fig. 9. We would like to compute and compare the saddlepoint action of the Rényi entropy

in Eq. (4.2) for these two cases. In both cases, there are two further possibilities that we

discussed above, namely that the endpoints of the cut are located near the cosmological

horizon or the AdS black hole horizon.

Below we will be interested in evaluating the correlators in (4.2) in the limit where C

covers most of a time slice of the Euclidean strip, so that the size of its complement in the

same slice will be small |C̄| → 0. For the type A case, since the cut C is located above the

two operators ψjk+1
(0Ak) and ψjk(0Bk) (the left panel of Fig. 9) we can deform C upwards to

its complement C̄ without crossing the operators. This implies that the correlation function
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in (4.2) is invariant under the deformation from C to C̄:〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=

〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

. (4.13)

Notice that in the above equality the indices of the operator in the left- and right-hand sides

are identical; the only difference is the replacement C → C̄. The identity holds because we are

fixing the endpoints of the cut. When its size is large, |C̄| → 0, the right-hand side factorizes

into a product of two point functions〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

→
n∏

k=1

〈
ψjk+1

(xA#Bk)ψjk(0A#Bk)
〉
Σn[C̄]

for |C̄| → 0.

(4.14)

Since the indices of two operators in the expectation value on the right side are not generally

identical, we pick up a Kronecker delta δjk+1jk . This Kronecker delta reduces the value of

the saddlepoint action in the high temperature limit because the correlator contributes to

the saddlepoint action as in Eq. (4.6), so that the resulting sum with respect to the indices

is significantly reduced in the β → 0 limit.

On the other hand, for a type B cut, which is located in between the two operators (the

middle and right panels of Fig. 9), during the deformation C → C̄ the cut has to cross at

least one of these two operators. In this case, the relevant identity is〈
n∏

k=1

ψjk+1
(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=

〈
n∏

k=1

ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

, (4.15)

where, in the correlation function on the right side, the indices of the operators on the same

sheet are identical. This implies that in the large cut limit, |C̄| → 0, the correlator on the

right-hand side again factorizes〈
n∏

k=1

ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

→
n∏

k=1

⟨ψjk(xA#Bk)ψjk(0A#Bk)⟩Σn[C̄] , (4.16)

but in this case each two point function contains two identical operators. Thus, the sum in

Eq. (4.6) with respect to the indices is not suppressed.

By comparing these two behaviors, we conclude that type B cuts give the dominant

contribution in the gravitational path integral in the high temperature limit. There are two

possibilities for type B cuts. Since a cut almost entirely covers the time slice when β → 0,

as explained at the end of the previous subsection, the endpoints of the cut will be located

near either the cosmological or black hole horizon. Therefore, the resulting entropy S(ρA) is

almost twice the horizon area. Since the connected geometry only exists when the entropy
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Figure 10: Sequence of two dimensional surfaces used to compute the CFT sum (4.17). Left:

z disk on which the correlation functions in (4.17) are originally defined. The cosmological

horizon is depicted by the orange dot at the center, and the endpoints of the cut C̄ are located

near the horizon. Center: w disk on which one of the operators are located at the center of

this disk. The w and z disks are related by the map (4.18). Right: The w disk is mapped

to the T > 0 part of the cylinder by an exponential map. The operator at the center of the

w disk is now at T = ∞ and represented by an excited state |ψJk⟩ by the state operator

correspondence. The T < 0 part of the cylinder is provided by the copy of the w disk, which

naturally emerges when we compute the correlation function on the disk by the doubling trick

as in Eq. (4.22). This results in the same excited state |ψJk⟩ appearing at T = −∞ as well.

In the cylinder frame, Eq. (4.22) has an interpretation as a Rényi entropy, as in Eq. (4.26).

of the cosmological horizon SdS is larger than that of the black hole horizon SBH, we expect

that the cut will stretch between two black hole horizons as it gives a smaller area term in

Eq. (4.12). For this to be the case, however, we must make sure that the cut does not occupy

the entire time slice of the disk; this could happen if the endpoints of the cut were located

precisely on the cosmological horizon, in which case we would find S(ρA) = 0. We will argue

below that this does not happen.

To show this, we explicitly compute the location of the quantum extremal surface by

assuming it is located near the cosmological horizon (the left panel of Fig. 10). For this

purpose, the central task is to evaluate the sum of the CFT correlators

1

Zn
1,CFT

∑
{jk}

n∏
k=1

√
pjk

〈 n∏
k=1

ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

, Z1,CFT =
∑
j

√
pj⟨ψj(xA#B)ψj(0A#B)⟩

(4.17)

on the n sheeted cover Σn[C] of the disk (dS/AdS wormhole).
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In the disk describing the original dS/AdS wormhole, in which Zn,conn in (4.2) was defined,

this quantity does not itself have an interpretation as a Rényi entropy as one of the operators

ψjk(xA#Bk) is not located at a pole of the disk. Our goal here is to map this disk to another

one on which the sum of the CFT correlators (4.17) has an interpretation as a Rényi entropy

of an excited state |ψJ⟩. We can do this in several steps. Let z, z̄ be the coordinates on the

original disk, and map it to a second disk (which we call w disk) by

w(z) =

(
z − α

1 + ᾱz

)
, α = xA#Bk . (4.18)

The conformal boundary of the new disk is at |w| = 1. The purpose of applying this map

is to relocate ψjk(xA#Bk) to the center of the new disk w = w̄ = 0. Also, since ψj(0A#B)

is located at the conformal boundary of the original z disk, it is mapped to a point on the

boundary |w| = 1. See the central panel of Fig. 10 for an illustration.

If we pick up two terms in the sum of the CFT correlators defined in (4.17), then these

two correlators will transform differently under the conformal map because the operators

ψj ’s involved have different conformal dimensions (see the definition of the entangled state

in (2.1)). However, in the large temperature limit, the sum is dominated by correlators

consisting of operators with the particular conformal dimension ∆ = EJ(β) fixed by the

temperature. This results in the sum
∑

j over all states being replaced with a sum
∑

J over

the states at the fixed energy. In this saddlepoint approximation, the sum in (4.17) transforms

uniformly, i.e. just by the multiplication of a Jacobian factor of the form |∂w/∂z|∆, since all

the operators have the same conformal dimension. Now, in the left expression in Eq. (4.17),

the total Jacobian factor from the correlators in the numerator is canceled by the analogous

factor from the denominator. Therefore, this expression is evaluated on the w disk as

1

Zn
1,CFT

∑
{Jk}

(
n∏

k=1

√
pJk

)〈
n∏

k=1

ψJk(w(xA#Bk))ψJk(w(0A#Bk))

〉
Σn[C̄]

, (4.19)

where

Z1,CFT =
∑
J

√
pJ ⟨ψJ(w(xA#B))ψJ(w(0A#B))⟩ . (4.20)

The only differences between the above expression and (4.17) are the replacements xA#Bk →
w(xA#Bk) and 0A#Bk → w(0A#Bk) and the restriction on the range of the sum.

We now evaluate each correlator in (4.19) and (4.20) defined on the disk A#B via the

standard doubling trick. To do so, we prepare a mirror copy Ã#B of the disk with the

same operator insertions and then glue A#B and Ã#B along the conformal boundary. The

resulting manifold is a sphere S2, and the correlator on the disk is equal to the correlator on

the sphere obtained by doubling the operator insertions

I =

〈
n∏

k=1

ψJk(w(xA#Bk))ψJk(w(0A#Bk))

〉
Σn[C̄]

(4.21)
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=

〈
n∏

k=1

ψJk(w(xA#Bk))ψJk(w(0A#Bk))ψJk(w̃(xA#Bk))ψJk(w̃(0A#Bk))

〉
Σn,S2 [C̄∪ ˜̄C]

, (4.22)

where w̃(xA#Bk) and w̃(0A#Bk) are mirror images of w(xA#Bk) and w(0A#Bk) in the copy

Ã#B. Since we have chosen the map (4.18) so that w(xA#Bk) is at the center of the disk,

on the sphere ψJk(w(xA#Bk)) is at its north pole uk = ∞k and its mirror ψJk(w̃(xA#Bk) is

at the south pole uk = 0k, where (u, ū) are the coordinates of the sphere. Furthermore, the

remaining two operators in (4.22) are at the identical point on the equator; so we can use the

OPE to fuse them, giving the identity as the leading term which dominates as the operators

actually coincide. Also, since there is a copy of the cut C̄ in the mirror, on the sphere we have

a disjoint union of cuts. Therefore, we denote the resulting branched sphere by Σn,S2 [C̄ ∪ ˜̄C],

and we indicated this explicitly in (4.22). In summary, by a sequence of the above operations,

the CFT correlator (4.17) becomes

In =
1

Zn
1,CFT

∑
{Jk}

(
n∏

k=1

√
pik

)〈
n∏

k=1

ψJk(∞k)ψJk(0k)

〉
Σn,S2 [C̄∪ ˜̄C]

, Z1,CFT =
∑
i

√
pi⟨ψj(∞)ψj(0)⟩.

(4.23)

The expression In in Eq. (4.23) is nothing but the thermal Rényi entropy of the region

C̄ ∪ ˜̄C on the cylinder, divided by the vacuum Rényi entropy [75]

In =
tr(ρ

β/2,C̄∪ ˜̄C
)n

tr(ρ
vac,C̄∪ ˜̄C

)n
. (4.24)

Concretely, the sphere and cylinder are related in the following way. Let (Θ, T ) be the

coordinates on the cylinder, where T is the coordinate of the Euclidean timelike direction,

−∞ < T < ∞, and Θ is the coordinate for the spatial direction, 0 < Θ < 2π. Then, the w

disk and the T > 0 part of the cylinder are related by the map w = eT+iΘ, and there is a

similar map between the copy of the w disk (which was used to form the sphere S2) to the

T < 0 part of the disk. The relation is illustrated in the right panel of Fig. 10.

In the high temperature limit, the size of the cut |C̄| gets small, so the Rényi entropy

factorizes as

tr(ρ
β/2,C̄∪ ˜̄C

)n = tr(ρβ/2,C̄)ntr(ρ
β/2, ˜̄C

)n = tr(ρβ/2,C̄)2n, (4.25)

where we have used tr(ρβ/2,C̄)n = tr(ρ
β/2, ˜̄C

)n because ˜̄C is a copy of C̄. There is a similar

factorization for tr(ρ
vac,C̄∪ ˜̄C

)n. So we have

In =

(
tr(ρβ/2,C̄)n

tr(ρvac,C̄)n

)2

. (4.26)
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In general, the Rényi entropy of a thermal state is a theory dependent quantity, but for a 2d

CFT with a holographic dual, it has the simple form

tr(ρβ/2,C̄)n =
1(

sinh 2π|C̄|
β

)∆n , tr(ρvac,C̄)n =
1(

sin π|C̄|
L

)∆n , (4.27)

where L is the size of the spatial circle of the cylinder, and

∆n =
c

12

(
n− 1

n

)
. (4.28)

So far, we have been computing the CFT part of (4.2) by making use of the doubling

trick, and the remaining task is to evaluate the gravitational part. In the n→ 1 limit, it picks

up the value of the dilaton profile at the endpoints of the cut e−(n−1)Φ[∂C], as in Ref. [41].

Since we are now assuming that the endpoints are located near the cosmological horizon on

the dS/AdS wormhole, the relevant dilaton profile is that of the de Sitter side ΦdS = B cos θ.

Since the static patch coordinates (t, θ) defined in (3.25) and the holomorphic and anti-

holomorphic coordinates (z, z̄) are related at least locally near the cosmological bifurcation

surface at θ = 0 by the map z = eit sin θ and z̄ = e−it sin θ, the dilaton profile in the latter

coordinates is ΦdS(z, z̄) = B
√

1 − zz̄. We further map the z disk to the w disk by (4.18), and

then to the cylinder by the exponential map w = eT+iΘ. This allows us to map the dilaton

profile to the cylinder.

By combining the result for the CFT part In (4.24) and the one for the gravity part

e−(n−1)Φ[∂C], we get the full contribution of the type B cut whose endpoints are located near

the cosmological horizon (right panel of Fig. 9). By taking the n → 1 limit, we get the

generalized entropy

Sgen[C̄] = ΦdS[∂C̄] + 2(Sβ[C̄] − Svac[C̄]) . (4.29)

The factor of 2 in front of the bulk entropy part comes from the square in Eq. (4.26). For a

CFT with a holographic dual we would also have

Sβ[C̄] =
c

3
log

[
β

π
sinh

2π|C̄|
β

]
, Svac[C̄] =

c

3
log

[
L

π
sin

π|C̄|
L

]
. (4.30)

In fact, in the high temperature limit where β → 0, the entanglement entropy of the thermal

density matrix of any CFT becomes universal. This is because the limit β/L → 0, where

L is the size of the spatial slice, is equivalent for a CFT to the limit  L → ∞. So, at high

entanglement temperature, the thermal density matrix of any 2d CFT acts as if it is defined

on an infinitely long line. Thermal entanglement entropy of a 2d CFT on a line is computed

by applying a conformal map to the vacuum entanglement entropy [84], and is given by

Eq. (4.30). The remaining task is to extremize Eq. (4.29) over the cut C to make the fully

connected replica wormhole Mn on shell.

– 36 –



By denoting the location of the cosmological horizon on the cylinder by (T,Θ) = (T0,Θ0),

we make the ansatz for C̄ : −x < Θ − Θ0 < x, T = T0. By expanding the dilaton near the

cosmological horizon, we obtain

Sgen(x) = ϕ̄

(
1 − |α|2x2

(1 − |α|2)

)
+
πx

β
. (4.31)

This means that the equation ∂xSgen(x) = 0 has a solution x ̸= 0, and therefore C̄ is non-

vanishing. We thus conclude that if the endpoints of a type B cut are located near the

de Sitter horizon, then its contribution to the entanglement entropy is non-vanishing and

given by S(ρA) = 2SdS. However, if the endpoints are located near the bifurcation surface

of the AdS black hole, we get S(ρA) = 2SBH. Recalling that extremization will select the

smaller of these, and that the connected solution exists only when SdS > SBH, we find that

the entropy coincides with the twice entropy of the black hole on the AdS side.

Summary: In Ref. [4], the entanglement entropy of a thermofield double type state (2.1)

defined on gravitating de Sitter space (universe A), described by the dilaton profile (3.22),

and a non-gravitating reference system (universe B) was studied using the replica trick. In

that case, the cut (or the “island” after analytically continuing to Lorentzian signature) covers

the entire time slice of de Sitter space. One way to interpret this is that the entanglement

entropy vanishes and that the Hilbert space on the de Sitter space is one dimensional.8 It is

interesting to understand the relationship between this previous finding and the current ones.

For this purpose, it is useful to recall from Ref. [4] the possible types of islands in de Sitter

spacetime described by the dilaton profile (3.22). The dilaton profile has classical extremal

surfaces at φ = 0 and φ = π. Since the dilaton is maximized at φ = 0, this corresponds to

the de Sitter cosmological horizon, and similarly φ = π corresponds to the de Sitter black

hole horizon because the dilaton is minimized there. So there are two types of possible island

region C, namely one that ends near the cosmological horizon (called type I in Ref. [4]; see

Figure 4 there), and the other is the region whose endpoints are near the black hole horizon

(called type III islands in Ref. [4]).

The type I island does not cover the entire Cauchy slice because the area of the cos-

mological horizon is locally maximum. To see this concretely, let us choose the ansatz for

the complement of the island C̄ by −x < φ < x, and since we are interested in the high

temperature limit we assume x≪ 1. Then the generalized entropy for island is schematically

given by Sgen(x) ∼ B(1−x2) +x/β when x≪ 1, where the first term comes from the dilaton

profile (3.22) and the second term is the bulk entropy part. Therefore, the solution of the

8In Re. [4], a scenario was also proposed in which the inclusion of end-of-the-world branes on the de Sitter

geometry led to a cut that did not occupy the entire Cauchy slice, and hence implied a finite entropy. In

Section 5, we will comment on the relation between this scenario and the present paper.
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∂xSgen(x) = 0 condition is nontrivial, i.e., x ̸= 0. This means that the endpoints of the island

are not precisely at the cosmological horizon. In this argument, the crucial thing was that the

dilaton is locally maximal so the sign of the coefficient of x2 is negative. On the other hand,

the endpoints of the type III island are precisely on the black hole horizon, because it is a

minimal surface. Again this can be seen by making the ansatz for C̄ by −x < φ−π < x; then

the generalized entropy for the region is schematically of the form Sgen(x) ∼ B(−1+x2)+x/β,

so the equation ∂xSgen(x) = 0 only has a solution at x = 0. Therefore, the type III island

always covers the entire Cauchy slice and dominates the entropy.

Now let us come back to our current case where we entangle de Sitter space with an

AdS black hole. As we have argued, when SdS > SBH and in the high temperature limit

β → 0, the generalized entropy on the dS/AdS wormhole computes the entanglement entropy

of the thermofield double state. In this case, there is no type III island because the de Sitter

bubble region of the dS/AdS wormhole does not contain the de Sitter black hole horizon.

Therefore, the only possibilities are that the island ends near the cosmological horizon which

is an analogue of the type I island in Ref. [4], or the island ends near the AdS black hole

horizon, and hence does not cover the entire Cauchy slice. This leads to a finite entropy.

4.3 Summary: Entanglement entropy and extremal surfaces

We can now combine all our results to arrive at a formula for the entanglement entropy

between the two universes (2.2) in various limits. The result depends on the three parameters

{SdS, SBH, β}. Since we compute the entanglement entropy by taking n→ 1 limit of the Rényi

entropy which involves two types of gravitational path integrals, namely Zn defined in (2.3)

and Z1 coming from the normalization of the reduced density matrix (2.4), it is useful to

discuss the dominant saddles for these path integrals separately. We will arrive at a phase

diagram for the entropy by dialing the values of the entanglement temperature T = 1/β and

the de Sitter horizon entropy while fixing the value of the entropy of the AdS black hole SBH.

Saddles for Z1: There are two possible saddles, namely the connected saddle and the

disconnected saddle as in Fig. 6. They are both consistent with the boundary condition for

the gravitational path integral, since when they are continued to Lorentzian signature they

both possess the future and past infinities of de Sitter space and the conformal boundary of

AdS space. The contribution of each saddle is computed in almost the same manner as in

Eqs. (2.6) and (2.7), by replacing one of the AdS universes in that example by Euclidean

de Sitter. In particular, the connected saddle, if it exists, becomes dominant in the high

entanglement temperature limit β → 0. The only difference from the AdS/AdS scenario is

that in the current dS/AdS case, the connected saddle exists only when the de Sitter entropy

is larger than the entropy of the AdS black hole as shown in Section 3.4. In summary, when
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SdS < SBH, the disconnected saddle is always the dominant one, but when SdS > SBH the

connected saddle becomes the dominant one above a critical temperature.

Saddles for Zn: We have listed all the saddles for Zn in Section 2.3 (also see Fig. 1).

Among them, the relevant saddles are (a) the fully connected one whose contribution is given

by (4.1), (b) the replica wormhole that only connects the de Sitter replicas, drawn in top

right of Fig. 1, and (c) the fully disconnected saddle in top left of the same figure.

Case 1: SdS < SBH

Again when SdS < SBH, there is no wormhole connecting the two universes in a manner

consistent with the boundary conditions, since, as explained above, any wormhole connecting

de Sitter and AdS has to satisfy the condition SdS > SBH because the cosmological horizon is

a locally maximal surface. Therefore, in all the saddles of the Rényi entropy (2.3), de Sitter

space and the AdS black hole must be disconnected when SdS < SBH. However, it is still

possible to connect copies of de Sitter by a replica wormhole. As explained in Section 2.4, the

result is that the dominant saddle for the Rényi entropy includes this replica wormhole con-

necting copies of de Sitter, leaving copies of the AdS black hole disconnected. The entropy is

computed by the same island formula for states on de Sitter entangled with a non-gravitating

reference system found in Ref. [4]. Therefore, as discussed earlier, the entanglement entropy

vanishes regardless of the temperature,9 and the de Sitter Hilbert space HdS looks one di-

mensional. In this case, the entanglement wedge of the AdS black hole, or more accurately

the dual CFT Hilbert space, covers the entire Cauchy slice. Thus the de Sitter region is

reconstructable from the Hilbert space of the asymptotically AdS universe. This makes sense

as the black hole’s Hilbert space has room to accommodate all the states in de Sitter.

Case 2: SdS > SBH

When SdS > SBH, there is a dS/AdS wormhole. As a result, the fully connected wormhole

where all copies of universes A and B are connected by a single wormhole exists as well

(bottom right of Fig. 1). In the low temperature regime, β ≫ 1, the disconnected saddle

dominates for Z1. Meanwhile for Zn the replica wormhole just connecting the de Sitter factors

dominates. Thus, just as in the SdS < SBH case, the entanglement entropy is vanishing.

However, in the high temperature regime where the connected saddle dominates Z1, the

fully connected wormhole dominates Zn because of the matter contribution as explained in

Section 2.4. In Section 4, we showed that when the fully connected wormhole dominates Zn,

and the dS/AdS wormhole dominates Z1, the entanglement entropy is given by a formula

9The contribution of the fully disconnected saddle gives the QFT result for the entanglement entropy which

coincides with the thermal entropy. Therefore, compared with the contribution from the de Sitter only replica

wormhole saddle, it is always subdominant.
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Figure 11: Phase diagram for the entanglement entropy S(ρA) (which is equal to S(ρB)

as the entire state is pure). In drawing this diagram, we fix the entropy of the AdS black

hole and change the entanglement temperature and the de Sitter entropy. The entanglement

entropy is non-vanishing only when SdS > SBH and temperature is large, where the fully

connected saddle dominates the gravitational path integral for the Rényi entropy.

which almost look like a generalized entropy (4.12), except that the bulk entropy part is

replaced by a pseudo entropy on the dS/AdS wormhole. When the connected wormhole

geometry is continued to Lorentzian signature, its Penrose diagram looks like Fig. 5. As we

discussed, there are then two possibilities for the location of the quantum extremal surface,

one near the de Sitter horizon and the other near the AdS black hole horizon. However, as we

argued in Section (4.2), the quantum extremal surface has to be always located near the AdS

black hole horizon, as this gives the dominant answer. Therefore, the entanglement entropy

is equal to twice the entropy of the AdS black hole.

Thus, when SdS > SBH our analysis predicts that the von Neumann entropy goes from

zero to twice the black hole entropy as we go from low to high entanglement temperature.

Phases of the von Neumann entropy: The behavior of the von Neumann entropy in

the parameter space {SdS, SBH, β} is depicted in Fig. 11. We have not studied the various

transitions in detail, and hence have not established whether they are sharp or whether

there is a smooth crossover. Indeed, we expect that when we go beyond the saddlepoint

approximation, the transitions will be smoothed out, at least with respect to the temperature.
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5 Interpretation of our results

The authors of Ref. [66] studied the von Neumann algebra for the static patch of de Sitter

space in the presence of gravity in a weak coupling limit, where matter does not backreact

on the geometry. In a gravitating systems all symmetries must be gauged, in particular when

the time slice is compact and without boundary. The von Neumann algebra of excitations in

the static patch is therefore obtained from the algebra of the matter QFT as the subalgebra

that commutes with all symmetry generators of the static patch. Naively, the commutant

with the static patch symmetries is trivial because the elements of the algebra that commute

with the charges are c-numbers [66]. To get a nontrivial algebra, we thus need to introduce

an observer of the static patch with its own Hilbert space and associated algebra. We can

then impose the constraint that the combined algebra of de Sitter space and the observer

commutes with the generators of the de Sitter isometries. The algebra obtained in this way

supports the reduced density matrix on the static patch and is of type II1 [66]. A type II1

algebra has a maximally entropic state which naturally corresponds to empty de Sitter space

with the Hartle-Hawking QFT state on it. Furthermore, the fact that the density matrix

which maximizes the entropy is proportional to the identity operator naturally realizes the

expectation that a reduced density matrix on the static patch has a flat spectrum [32].

These ideas align naturally with our analyses. Although the authors of Ref. [66] study the

weak gravity limit (GN ≪ 1) while we account for gravitational backreaction, our conclusions

are similar—de Sitter space acts as if it has a finite entropy only when viewed by a gravitating

observer. In our case the observer is an AdS black hole, and the observation in question occurs

through quantum entanglement. In our case, if the entanglement is too weak, de Sitter space

acts as if it has vanishing entropy, and it seems that there is a threshold beyond which

the effects associated to strong entanglement are sufficient to constitute a “gravitational

observer,” at least in the saddlepoint approximation. Note that the wormhole saddlepoint

is present even at weak entanglement—it just does not dominate the path integral. So we

should really expect a steep crossover of some kind, or a sharp phase transition, with the

entanglement entropy ramping from near zero to a plateau set by the entropy of the observer

as the entanglement strength is increased (see Fig. 11).

One interesting feature of our result is that de Sitter space acts as if it has a finite entropy

only when the observer, an AdS black hole, has a lower Bekenstein-Hawking entropy than

the nominal entropy of the cosmological horizon. Note that the Bekenstein-Hawking formula

SBH = ABH/4GN can be regarded as bounding the logarithm of the Hilbert space dimension

at a given energy in the presence of gravity. If there is no gravity in the AdS space, i.e.

GN → 0 in SBH, there is no such bound, and our results would suggest that de Sitter space

entangled with a non-gravitating observer should have vanishing entropy. This is consistent

with earlier work in which de Sitter space seems to have vanishing entropy when “observed”
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by entanglement with a non-gravitating observer [2–4, 16].

In fact, the authors of Ref. [4] also proposed ways in which an apparently non-gravitating

observer could nevertheless lead to a finite de Sitter entropy. One approach suggested there

was to imagine decompactifying de Sitter space and adding end-of-the-world branes to ter-

minate the geometry at, say, the poles of global de Sitter space. From the perspective of

Ref. [66] and the current paper, these branes which are coupled to the background geometry,

act as gravitational observers. Indeed, they play a role similar to the domain walls separating

the de Sitter and AdS regions of the wormholes described here.

In this paper, we studied the properties of such wormholes in the simplest setting: two-

dimensional dS and AdS JT gravity with scalar matter producing a domain wall separating

the regions with different cosmological constants. The low dimensionality and simple action

made it possible to work out the backreaction of the stress tensor of an entangled state on the

background geometry. There are pathways to generalize our analysis to higher dimensions

and more realistic theories of gravity. For example, excited states on the AdS black hole would

still be prepared by a Euclidean path integral with operators inserted on the boundary. In this

paper, the domain wall separating the dS and AdS parts of the geometry was nucleated by

energy density created by such injected particles that propagate behind the black hole horizon,

recalling the construction of Ref. [50] (reviewed in the Appendix). In higher dimensions we

could similarly create shells of matter that propagate behind the horizon [72, 74] and decay

to form domain walls with a different interior cosmological constant. From this perspective,

and following the reasoning of Refs. [72, 74], the de Sitter bubbles we have described can be

thought of exotic microstates of the exterior AdS black hole.

We have shown that the wormhole geometry exists only when the area of the de Sitter

horizon is larger than the area of the horizon of the observing AdS black hole. In this

regime, the reduced density matrix of the AdS black hole side obtained by tracing out the

degrees of freedom in the de Sitter side is almost maximally mixed at high entanglement

temperature since the von Neumann entropy coincides with black hole horizon entropy. If we

regard the AdS black hole as a gravitating observer of de Sitter space, this means that the

observer cannot get easily information about the de Sitter microstates through its quantum

entanglement, and hence will view it as an ensemble whose size is quantified by the entropy.10

One might speculate that when the SdS < SBH, the observer has enough “resolving power”

to actually sense the de Sitter microstate, thereby leading to a vanishing entropy.

Finally, in this paper we modeled a gravitating observer by an AdS black hole. However,

if our general paradigm is valid, we should be able to use any gravitating observer. For

10Note that this is different from saying that microstates of a black hole are highly complex and hence are

effectively inaccessible to asymptotic observers using simple probes [85]. Here, the black hole, with all of its

complexity, is the device which we are using to probe de Sitter space.
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example we could model the observer as a black hole in flat space (see [86] for related work),

or perhaps even another de Sitter space, although in the latter case we will have to confront

the absence of any asymptotic regions on a Cauchy slice. It would be interesting to analyze

these cases in detail.
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A Creating de Sitter bubbles in AdS

In this appendix, we briefly review a Euclidean path integral preparation of an AdS black

hole containing a de Sitter bubble in its interior in the presence of a source on the AdS

boundary, as discussed by Mirbabayi [50]. In this work, it was pointed out that an excitation

within a Euclidean AdS black hole can decay into a domain wall whose interior has a de Sitter

geometry. Here we will explain the detailed properties of this configuration, and its relation

to our analysis.

The construction begins with the gravitational description of an excitation in Euclidean

AdS black hole emanating from a point in the asymptotic boundary, traveling in the bulk,

and ending at another point on the boundary. The backreaction of such a particle is treated

by Israel junction conditions. In detail, the recipe is as follows:

• Step 1: Prepare two identical Euclidean disks, each of which is continued to a Lorentzian

eternal AdS black hole containing only one bifurcation surface (say the left AdS and

the right AdS).

• Step 2: Then introduce a brane in each of these two disks in the same way, and glue

them along the brane in a Z2 symmetric manner (see the left panel of Fig. 12). Choosing

the form of the Euclidean AdS metric to be ds2 = dρ2 + sinh2ρ dφ2, the dilaton profile
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Figure 12: The construction of the de Sitter bubble in the presence of matter backreaction,

which consists of two steps. Left: The first step is to construct the Euclidean AdS black hole

in the presence of the matter backreaction, which is modeled by a particle propagating in the

bulk. It is constructed by preparing two copies of a disk, introducing a particle trajectory

in each of them (black lines), and gluing the two along the trajectory. The green dot in

each disk represents the fixed point of Euclidean time translation, which after continuation

to Lorentzian becomes the horizon of the black hole. Right: The second step is to introduce

a domain wall (the blue curve) separating the de Sitter region and AdS in each disk. The

domain wall starts and ends on the particle trajectory, satisfying the junction condition (A.2).

on each disk is ΦAdS = A cosh ρ. The black hole horizon is located at ρ = 0. The brane

profile satisfies the equation

ξµ∂µΦAdS = κ0, (A.1)

where κ0 denotes the tension of the L-R brane, and ξ is its normal vector (the normal

vector of the left ξL and right ξR differ by a sign ξ ≡ ξR = −ξL).

In this construction, we need two copies of the AdS black hole because we would like

to realize a de Sitter bubble behind the black hole horizon, so the Euclidean black hole has

to have two bifurcation surfaces. (Such black holes are sometimes described as partially

entangled states [71].) These black holes, when continued to the Lorentzian regime, have

a long wormhole-like interior which can host an inflating region, as we will see below. In

the main text, we saw that in our case this first step is automatically implemented by the

backreaction of the CFT stress energy tensor (3.10).

The Euclidean black hole with two bifurcation surfaces prepared in this way is glued with

a de Sitter dilaton profile ΦdS for the Euclidean de Sitter space. It satisfies another junction

condition

ξµ∂µΦdS − ξµ∂µΦAdS = κ, (A.2)

where κ denotes the tension of the domain wall connecting the de Sitter region and the AdS

region. This is distinct from the tension associated with the excitation used to glue two copies
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Figure 13: The branching point ρ = ρ1 of the excitation in AdS2 (black line) with the

domain wall (two blue lines). We denote the angle between the blue and the black line by α.

of a Euclidean AdS black hole, and κ in Eq. (A.2) is in general different from the mass of the

excitation κ0 in Eq. (A.1).

Denoting the metric of the Euclidean de Sitter (sphere) by ds2 = dθ2 + sin2θ dφ2, the

dilaton profile of the de Sitter side is ΦdS = B0 + B cos θ.11 It has two horizons, the cosmo-

logical horizon at θ = 0 and the black hole horizon at θ = π. Let θ = θ(φ) be the brane

trajectory in the de Sitter side. Then, the junction condition (A.2) is again recast into the

equation of motion of particle in one dimension

θ̇2 + V (θ) = 0 (A.3)

with

V (θ) =

(
(B cos θ +B0)

2 − κ2 −B2 sin2θ

2κB sin θ

)2

− 1, A≪ B,B0. (A.4)

This is the two-dimensional analog of the Euclidean potential problem for higher dimensions,

Eq. (3.2). Again, the trajectory oscillates in the bounded region θmin ≤ θ ≤ θmax.

It remains to specify the location of the branching ρ = ρ1. Let ξR be the outward point

normal of the right part of the domain wall at the branching point and ξL be the similar

normal vector for the left part, as in Fig. 13. Denoting by ρ̇+ the velocity of the domain wall

in ρ direction at the branching point, its normal vector is

ξR =

(√
1 − ρ̇2+,

ρ̇+
sinh ρ1

)
. (A.5)

The normal vector for the excitation trajectory is

ξe =

(
sinh ρm
sinh ρ1

,

√
1 −

(
sinh ρm
sinh ρ1

))
, sinh ρm =

κ0
2A

, (A.6)

11In this appendix, we include the constant part to the dilaton profiles.
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where ρ = ρm is the closest approach to the horizon, located at ρ = 0. If we denote the angle

between these two normal vectors by π−α, then the angle between two normal vectors ξR, ξL

in the de Sitter side is 2α. This is because there is no conical singularity in the geometry at

the branching point, a conclusion coming from the equations of motion for the dilaton profile.

This yields the following equation:

sinh ρm
sinh ρ1

√
1 − ρ̇2+ +

(
1 − B sin θ1

B cos θ1 +B0

)√
1 −

(
sinh ρm
sinh ρ1

)2

= 0, (A.7)

which is solved to obtain θ = θ1 (or equivalently ρ = ρ1 in the coordinate in the AdS side).

When ρ1 ≫ ρm, one can easily see that θ1 ∼ θmin.
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