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1 Introduction

In conventional quantum theory the states of a system are represented by
the rays in a complex Hilbert space H, and the time-evolution is given by a
one-parameter group of unitary operators

Ut = eiHt : H → H

(for t ∈ R), generated by an unbounded self-adjoint operator H called the
Hamiltonian. Positivity of the energy corresponds to the fact that H is
positive-semidefinite, i.e. that the spectrum of H is contained in R+. This
is clearly equivalent to saying that the operator-valued function t 7→ Ut is
the boundary-value of a holomorphic function t 7→ Ut which is defined in the
upper half-plane

{t ∈ C : Im(t) > 0}
and is bounded in the operator norm.1

The holomorphic formulation helps us see what a strong constraint the
positivity of energy is. The boundary value of a bounded holomorphic func-
tion in the upper half-plane must vanish identically if it vanishes on an open
interval of the real axis, and so, if taken literally, positive energy implies that
a state ξ ∈ H for which Ut(ξ) belongs to a closed subspace H0 of H for all

1The physically relevant condition is actually that the energy is bounded below: re-
placing the Hamiltonian H by H − c makes no observable difference. Rather than asking
for Ut to be bounded for Im(t) > 0 we could require ||Ut|| ≤ ecIm(t) for some c.
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t < 0 must remain in H0 for all t ≥ 0, i.e. “nothing can happen for the first
time” — a paradox pointed out by Fermi as early as 1932 [F].

How can this notion be adapted to the context of quantum field theory?
The essential feature of quantum field theory is that the observables of the
theory are organized by their positions in a given space-time M , which we
shall take to be a smooth d-dimensional manifold with a Lorentzian metric
g = (gij). We expect that energy, and its positivity, should also have a
local aspect, which is encoded, for any quantum field theory, in the energy-
momentum tensor, its most basic local observable.

In the usual formulations of quantum field theory such as [SW], for each
space-time point x ∈M there is a topological vector space Ox of observables
at x, and the Ox fit together to form a vector bundle on M . The content of
the theory is completely encoded2 in multilinear ‘maps’

Ox1
× . . .×Oxk

−→ C (1)

(f1, . . . , fk) 7→ 〈f1, . . . , fk〉(M,g)

for all sequences {x1, . . . , xk} of points in M , defining generalized functions3

on the products Mk. The functions (1) are called vacuum expectation values.
To come from a field theory they must satisfy a long list of conditions such as
the Wightman axioms given in [SW]. These include a causality axiom which
asserts that if the points x1, . . . , xk are spatially separated (i.e. no two can be
joined by a path whose speed is never faster than light) then the expectation
value is independent of the ordering of the points.

One motivation for this formulation is the “path-integral” picture (cf.
[FH]), according to which the theory arises from a mythological superstruc-
ture consisting of a space ΦM of “fields” of some kind which are locally defined
on the Lorentzian manifold (M, g). In this picture the vector space Ox of
observables at x is the space of smooth functions f : ΦM → C such that f(φ)
depends only on the restriction of φ to an arbitrarily small neighbourhood

2This is an oversimplification just for this introduction. In a gauge theory, for example,
an observable such as a “Wilson loop” — the holonomy of the gauge field around a closed
loop in space-time — is localized not at a point but at a loop, and we shall not exclude
such features.

3The Wightman axioms ask for the vacuum expectation values to be distributions on
Mk (which morally means that the theory has a logarithmic-conformal limit at short dis-
tances), but our formulation will not exclude such examples such as the sigma-model with
a circle as target, for which, when d ≥ 3, the vacuum expectation values are hyperfunctions
but not distributions.
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of x. All of the physics of the theory is determined by an action functional
Sg : ΦM → R which notionally defines a complex-valued measure on the
space ΦM , symbolically denoted by e−iSg(φ)/~Dφ . The parameter ~ here —
the unit of action — is Planck’s constant. The vacuum expectation values
are given in terms of the measure by

〈f1, . . . , fk〉(M,g) =

∫

ΦM

f1(φ) . . . fk(φ)e
−iSg(φ)/~Dφ.

The smallness of the unit ~ of action means that the notional integral is
very highly oscillatory, and so the measure on ΦM is effectively concentrated
near the critical points of the action. These points are the solutions of the
classical equations of motion, and they form the classical state space of the
system.

There are two ways to introduce the idea of positive energy into this
picture. Both involve holomorphicity, and we shall refer to both — rather
vaguely — as ‘Wick rotation’. They derive from two different ways of viewing
the time t in the evolution-operator Ut of quantum mechanics. The tradi-
tional way is to regard the possibility of extending the map t 7→ Ut to the
upper half-plane as “creating” a complex time-manifold with the physical
time-axis at its boundary. In field theory this leads to viewing space-time M
as part of the boundary of a complex manifoldMC, and then the positivity of
energy is expressed by the property that the the vacuum expectation values
(1) are the boundary-values of holomorphic functions on a domain in (MC)

k.
This makes good sense when M is the standard Minkowski space M ∼= R3,1.
It is less natural in the case of a curved space-time, if only because a smooth
manifold does not have a complexification (or even a way of putting it on
the boundary of a complex manifold) until one chooses — non-canonically
— a real-analytic structure on it. Even then, M may have only a small
thickening as a complex manifold, while the holomorphic characterization of
positive energy makes use of the whole upper half of the t-plane.

An alternative approach — the one we present in this paper — is to treat
the time-parameter t as the length of an oriented time-interval, thinking
of it as a 1-dimensional manifold equipped with a Riemannian (or pseudo-
Riemannian) metric. Then we do not need to complexify the time-manifold:
we simply allow the metric on it to be complex-valued. (The authors have
independently spoken about this idea from time to time since the late 1980s
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— see Section 4 — but as far as we know no-one else has pursued it system-
atically.) There are two reasons why the approach fits well with the path-
integral picture when the time-interval of quantum mechanics is replaced by
the space-timeM of quantum field theory. First, the usual action-functionals
Sg depend explicitly on the Lorentzian metric g of M in a way that makes
sense when g is complex. Secondly and more importantly, the path-integral
is an oscillatory integral which does not converge even schematically. Its
archetype is an improper Gaussian integral of the form

F (A) =

∫

Rn

exp

(

i

2
xTAx

)

dx1 . . . dxn, (2)

where A is a real symmetric n × n matrix. The standard way to treat such
an integral is to begin with a complex symmetric matrix A whose imaginary
part is positive definite — i.e. a point A of the Siegel ‘generalized upper half-
plane’. For such matrices the integral converges and defines a holomorphic
function of A in the Siegel domain. The value of the original improper integral
is defined as the limit as A moves to the boundary of the domain.

The main point of the present paper is to introduce an interesting domain
MetC(M) of complex-valued metrics on a smooth manifoldM . The positivity
of energy of a quantum field theory is expressed by the property that it is
defined for space-time manifolds with metrics belonging to this domain. The
domain is a complexification of the manifold Met(M) of ordinary Riemannian
metrics on M , and the real Lorentzian metrics (but not real metrics of other
signatures) are a subset of its boundary. The special role of Lorentzian
signature is perhaps the most notable feature of our work. In Section 5
we shall explain how a theory defined on space-times with complex metrics
gives rise, under appropriate conditions, to a theory defined for Lorentzian
space-times which automatically satisfies the expected causality axiom when
the Lorentzian metric is globally hyperbolic. Finally, although we avoid
complexifying space-time, our approach leads us to a conjecture about a
question arising in the traditional treatment of quantum field theories defined
in Minkowski space M: how to characterize the largest domain in (MC)

k in
which the vacuum expectation values are holomorphic.
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The Shilov boundary

The relevant meaning of ‘boundary’ for the complex domains we are in-
terested in is the Shilov boundary. An account of this concept can be found
in [Hör], but our use of it will be little more than heuristic. It is the analogue
for a complex domain of the ‘extremal points’ of a bounded open subset U
of Rn. In the Euclidean situation the extremal points are the smallest subset
K of the closure of U such that every affine-linear function on U attains its
maximum on K, and the convex hull of U is the set of points x ∈ Rn where

inf
K
f < f(x) < sup

K
f

for every affine function f . For a complex domain, we replace affine-linear
functions by holomorphic functions. Thus if U is an open subset of a finite-
dimensional complex Stein manifold U+ (e.g. an affine space or an affine
algebraic variety), and the closure of U in U+ is a compact manifold X with
a piecewise-smooth boundary, then the Shilov boundary of U is the smallest4

compact subsetK ofX with the property that for every holomorphic function
f defined in a neighbourhood of X we have

sup
U
|f | = sup

K
|f |.

The Shilov boundary of a manifold is part of its topological boundary, but
can be much smaller, just as, for example, the only extremal points of a
Euclidean simplex are its vertices. In our examples its real dimension will
always be equal to the complex dimension of the domain. Thus, for the
polydisc

U = {(z1, . . . , zn) ∈ C
n : |zi| < 1},

the Shilov boundary is the torus |z1| = . . . = |zn| = 1
The most relevant example for us is the Siegel ‘generalized half-plane’ Un

of complex-valued quadratic forms on Rn with positive-definite real part, i.e.
the n×n complex symmetric matrices A with Re(A) positive-definite. As so
presented, Un is not bounded in the vector space of matrices, but it has an
alternative “unit disc” description as the complex symmetric matrices A such
that ||A|| < 1, or, equivalently, such that 1 − ĀA is positive definite. (The
second description is obtained from the first by the Cayley transform A 7→

4A short proof that there is a unique such smallest subset can be found in [Hör] p.67.

5



(A− 1)(A+ 1)−1.) In the first description, the purely imaginary symmetric
matrices lie on the boundary of the domain as the “generalized imaginary
axis”. They form a dense open subset of the Shilov boundary, just as the
imaginary axis is a dense open subset of the boundary of the usual right
half-plane. But to understand the Shilov boundary in this case it is better
to pass to yet another description of Un, as an open subset of the compact
complex manifold Lag(C2n) of complex Lagrangian subspaces of a symplectic
vector space C

2n.
To obtain this description, let us start from a real vector space V with

complexification VC. Complex-valued quadratic forms on V are the same as
symmetric maps A : VC → V ∗

C
, and the graph of such a map is a Lagrangian

subspace of the complex symplectic vector space VC ⊕ V ∗
C
. Now any La-

grangian subspace W of VC ⊕ V ∗C acquires a Hermitian inner product by the
formula 〈w1, w2〉 = iS(w̄1, w2), where S is the C-bilinear symplectic form of
VC ⊕ V ∗C . The Siegel domain U(V ) consists precisely of those W for which
the Hermitian form of W is positive-definite. The topological boundary of
the domain consists of all W whose Hermitian form is positive-semidefinite
but not positive-definite. It is a piecewise-smooth manifold stratified by the
rank of the Hermitian form. The lowest-dimensional stratum, where the
Hermitian form vanishes, is the smooth compact manifold Lag(V ⊕ V ∗) of
real Lagrangian subspaces of V ⊕ V ∗. It has a dense open subset consist-
ing of subspaces which do not intersect V ∗: these are the graphs of the real
symmetric maps A : V → V ∗.

In this example, and all the others we shall encounter, there is no difficulty
in identifying the Shilov boundary inside the topological boundary, for by the
maximum-modulus principle a point does not belong to it if it can be written
as f(0) for some non-constant holomorphic map f from a neighbourhood of 0
in C to the closure of the domain. In particular, we shall meet tube domains
of the form R

N × iC ⊂ C
N , where C is a convex open subset of RN : for them

the Shilov boundary is RN × iK, where K is the set of extremal points of C.

2 The domain of complex metrics

A Riemannian metric on a manifold M is a positive-definite symmetric bi-
linear form g : Tx × Tx → R on the tangent space Tx at each point x ∈ M .
The metrics we shall consider will be defined by symmetric R-bilinear maps
g : Tx × Tx → C at each point, with an appropriate generalization of the
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positivity condition.
To see what condition we should require, let us consider the simplest

example of a field theory: a free real scalar field of mass m. Then the space
of ‘fields’ ΦM is the vector space C∞(M ;R) of smooth functions, and in the
exponent of the path-integral we have the quadratic form

iSg(φ) =
1

2

∫

M

(dφ ∧ ∗dφ+m2φ ∧ ∗φ)

=
1

2

∫

M

{

∑

gij
∂φ

∂xi
∂φ

∂xj
+m2φ2

}

(det g)1/2|dx1 . . . dxd|.

Here (gij) denotes the inverse of the matrix g = (gij), and ∗ is the Hodge
star-operator defined by the metric, which takes differential forms of degree
p to forms of degree d − p twisted by the orientation bundle. (We shall not
assume the space-timeM is orientable.) In particular the star-operator takes
the constant function 1 to the volume element

∗1 = volg = (detg)1/2|dx1 . . . dxd| (3)

Notice that for a Lorentzian metric g the volume element ∗1 is pure imag-
inary. This agrees with the fact that the ‘action’ Sg should be real for a
Lorentzian manifold. We want the real part of the quadratic form iSg to
be positive-definite for all the complex metrics we allow. This imposes two
conditions. First, we need the real part of the twisted d-form volg defined
by the formula (3) to be a positive volume-form on M . We therefore require
that det g, which is invariantly defined up to multiplication by a positive real
number, is not real and negative, and we choose (det g)1/2 to have positive
real part.

The second condition we need is that the real part of the matrix (detg)1/2g−1

— or equivalently of the inverse matrix (detg)−1/2g — is positive-definite.
The two conditions together would give us a domain whose Shilov bound-
ary (like that of the Siegel generalized half-plane) contains indefinite real
quadratic forms of all signatures, and not only the Lorentzian ones. But we
shall impose further conditions. A clue to what more is needed comes from
the theory of the electromagnetic field on M , with its field-strength given by
a real 2-form F on M , and with the action-functional

iSg(F ) =
1

2

∫

M

F ∧ ∗F.
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The Hodge ∗-operator makes sense for a complex metric: for a p-form α
we define a twisted (d − p)-form ∗α by taking the inner-product of α with
volg = ∗1, using the complex inner-product g. We regard volg as an element
of the complex line |∧d(T ∗x )|C, where |∧d (T ∗x )| is the tensor product of ∧d(T ∗x )
with the real orientation line of Tx, and |∧d (T ∗x )|C is its complexification, but
with the convention that the orientation-reversing automorphisms of Tx act
antilinearly. We say that an element of the real part of the line is positive if
it is a positive volume-element.

For the electromagnetic field we need the real part of the quadratic form

∧2(T ∗x ) −→ | ∧d (T ∗x )|C

given by F 7→ F ∧ ∗F to be positive-definite.
This makes it natural, if we are going to consider space-time manifolds

M of all dimensions, to propose

Definition 2.1 On a d-dimensional real vector space V a quadratic form
g : V → C is called an allowable complex metric if, for all degrees p ≥ 0, the
real part of the quadratic form

∧p(V ∗) −→ | ∧d (V ∗)|C

given by α 7→ α ∧ ∗α is positive-definite.

Fortunately, this definition has an equivalent formulation which is much
more explicit and illuminating.

Theorem 2.2 Definition 2.1 is equivalent to: there is a basis of the real
vector space V in which the quadratic form g can be written

λ1y
2
1 + λ2y

2
2 + . . .+ λdy

2
d,

where the yi are coordinates with respect to the basis, and the λi are non-zero
complex numbers, not on the negative real axis, such that

| arg(λ1)|+ | arg(λ2)|+ . . .+ | arg(λd)| < π. (4)

The complex-valued quadratic forms g : V → C on a real vector space
V which satisfy the conditions of (2.1) or (2.2) form an open subset QC(V )
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of the complex vector space S2(V ∗
C
). It follows from Theorem 2.2 that the

real inner products with signature (d − 1, 1) — but not those with other
signatures — lie on the boundary of the domain QC(V ). For if the metric is
real then each | arg(λi)| is either 0 or π, and the inequality (4) shows that at
most one of the | arg(λi)| can become π on the boundary.

Another consequence of (4) is that

max arg λi − min arg λi < π,

which shows that when v runs through V the complex numbers g(v) form
a closed convex cone in C disjoint from the open negative real axis. In
particular, g(v) can never be real and negative.

Using the criterion mentioned at the end of Section 1 we see that the
real Lorentzian metrics — and no other nondegenerate metrics — belong to
the Shilov boundary of QC(V ), when it is regarded as a bounded domain
in an affine variety (cf. the proof of 2.7 below). Indeed if g =

∑

λjy
2
j is

a complex metric for which the inequality (4) becomes an equality, and at
least two of the eigenvalues λj and λk are not on the negative real axis, then
(after rescaling the basis vectors ej and ek so that |λj| = |λk| = 1) we get
a holomorphic curve through g, in the closure of QC(V ), by changing λj to
(λj)

1+z and λk to (λk)
1−εz, where ε is +1 or −1 according as the arguments

of λj and λk have the same or opposite signs.
In fact the Shilov boundary of QC(V ) contains two disjoint copies of

the space of Lorentzian metrics on V , for an eigenvalue λ can approach the
negative real axis either from above or from below. The two copies are
interchanged by the complex-conjugation map on QC(V ). Because of our
choice to make the orientation-reversing elements of GL(V ) act antilinearly
on the orientation-line of V , we can say that the nondegenerate points of the
Shilov boundary of QC(V ) are the time-oriented Lorentzian metrics.

We define the space MetC(M) of allowable complex metrics on a smooth
manifold M as the space of smooth sections of the bundle on M whose fibre
at x is QC(Tx).

Before giving the surprisingly simple proof of Theorem 2.2 let us say
what motivated the two different-looking conditions. The desire to make
the real parts of natural quadratic action functionals positive-definite hardly
needs further comment, but choosing to focus on the ‘higher abelian gauge
field’ actions α ∧ ∗α — the ‘Ramond-Ramond’ fields of superstring theory

9



— may well seem arbitrary. Why not allow other kinds of tensor fields?
Our conditions do not imply that they will be positive-definite. Witten
has kindly suggested to us a justification for our focus, based on properties
of the classical energy-mometum tensor explained in [WW]. Including the
higher gauge theories does, in any case, impose an upper bound on the class
of complex metrics we can allow, for the partition functions of these theories
on a d-dimensional torus M with a flat Riemannian metric g are explicitly
known (cf. [Ke], [Sz](4.4)), and we can see to which complex metrics they
can be analytically continued. The gauge-equivalence classes of fields form
an infinite-dimensional Lie group which is a product of a torus, a lattice,
and an infinite-dimensional real vector space, and the partition function is
the product of three corresponding factors. More precisely, an abelian gauge
(p − 1)-field A has a field-strength FA, a closed p-form on M with integral
periods, which determines A up to the finite-dimensional torus Hp−1(M ;T)
of flat gauge fields with FA = 0. The space of fields is therefore a product

Hp−1(M ;T) × Φp × Γp,

where Φp is the vector space of exact p-forms on M , and Γp
∼= Harmp

Z
(M) ∼=

Hp(M ;Z) is the finite-dimensional lattice of harmonic (and hence constant)
p-forms with integral periods. The partition function is a Gaussian integral
on this product: the torus of flat fields contributes its volume (for an appro-
priate metric determined by the geometry of M), the lattice Γp of harmonic
p-forms contributes its theta-function

∑

α∈Γp

exp

(

−1
2

∫

M

α ∧ ∗α
)

,

while the vector space Φp contributes an ‘analytic torsion’ which is a power
of the determinant of the Laplace operator acting on smooth functions on
M (with the zero-eigenvalue omitted) — an analogue of the Dedekind eta-
function, but with the lattice of characters of the torusM replacing the lattice
Z+ τZ ⊂ C. Of these three factors, the first clearly extends holomorphically
to the space of all flat complex metrics onM , and the analytic torsion can be
continued to a non-vanishing holomorphic function in the open set of complex
metrics g for which (det g)−1/2g belongs to the Siegel domain U(V )); but the
theta-function cannot be continued beyond those metrics for which the real
part of the form

∫

α ∧ ∗α is positive.
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Approaching from the opposite direction, the inequality (4) is motivated
by the traditional analytical continuation of vacuum expection values to an
open subset of the k-fold product of complexified Minkowski space MC. The
Wightman axioms imply that the expectation values extend holomorphically
to a domain Uk called the ‘permuted extended tube’5, which is functorially
associated to MC with its C-bilinear metric. It is a basic result in the Wight-
man theory (cf. [SW], or [Ka](2.1)) that Uk contains the configuration space
Confk(E) of all k-tuples of distinct points of the standard Euclidean subspace
E ⊂MC. For a d-dimensional real vector space V with a complex metric the
complexification VC is isomorphic to MC, uniquely up to a complex Lorentz
transformation, and so the domain Uk(V ) is well-defined in (VC)

k. In the
next section we shall give a definition of a quantum field theory on space-
times M with complex metrics: it implies that the expectation values are
smooth functions on the configuration spaces Confk(M) of distinct k-tuples
in M . That makes it natural to ask which (constant) complex metrics on V
have the property that the configuration space Confk(V ) is contained in the
holomorphic envelope of Uk(V ), i.e. the largest Stein manifold to which all
holomorphic functions on Uk(V ) automatically extend. The original motiva-
tion of condition (4) was

Proposition 2.3 If a complex metric on a d-dimensional real vector space
V satisfies condition (4) then Confk(V ) is contained in the holomorphic en-
velope of Uk(V ).

We shall postpone the proof of this result to an appendix at the end of
this section.

Proof of Theorem 2.2 The first point is to show that a quadratic form which
satisfies the conditions of Definition 2.1 can be written in the diagonal form
∑

λjy
2
j with respect to real coordinates yj on V . To diagonalize a complex

form g = A + iB with respect to a real basis is to diagonalize its real and
imaginary parts simultaneously, which is possible if either A or B — or,
more generally, a real linear combination of them such as the real part of
(detg)−1/2g — is positive-definite. But 2.1, applied when p = 1, implies that
the real part of (detg)−1/2g is positive.

5A set of points x1, . . . , xk belongs to Uk if, after ordering them suitably, there is an
element γ of the complexified Lorentz group such that the imaginary part of γ(xi − xi+1)
belongs to the forward light-cone for each i.
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Suppose now that g is diagonalized with respect to a basis {ei} of V .
Then the form α 7→ α ∧ ∗α on ∧p(V ∗) is diagonal with respect to the basis
{e∗S = e∗i1∧ . . .∧e∗ip}, where {e∗i } is the dual basis to {ei}, and S runs through
p-tuples S = (i1, . . . , ip). The value of the form α ∧ ∗α on the basis element
e∗S is

(λ1 . . . λd)
1/2

∏

i∈S

λ−1i ,

which has positive real part if its argument

1

2

{

∑

i∈S

arg(λi)−
∑

i 6∈S

arg(λi)

}

lies in the open interval (−π/2, π/2). But to say that this is true for every
subset S of {1, . . . , d} is precisely condition (4). ♠

The proof of Theorem 2.2 shows that to give an element g of QC(V ) is the
same as to give a finite sequence θ1 ≥ θ2 ≥ . . . ≥ θm in the interval (−π, π)
together with a decomposition

V = V1 ⊕ . . .⊕ Vm

such that
∑

k

dimVk · |θk| < π.

Thus on Vk the bilinear form g is eiθk times a real positive-definite form. The
only ambiguity in this description is that if, say, θk = θk+1 we can replace
Vk by Vk ⊕ Vk+1 and omit θk+1 and Vk+1. This means that the subspace
P =

⊕

e−iθk/2Vk of the complexification VC of V is canonically associated to
the form g. On the real subspace P the complex bilinear form g is real and
positive-definite. Our argument gives us canonical isomorphisms

V = exp(iπΘ/2)(P ) ⊂ PC = VC,

where Θ : P → P is the self-adjoint operator which is multiplication by θk on
Pk = e−iθk/2Vk. Condition (4) becomes the assertion that Θ has trace-norm6

||Θ||1 < 1. This shows that the space QC(V ) is parametrized by the pairs
(g0,Θ), where g0 is a positive-definite inner-product on V and Θ belongs to

6The trace-norm is the sum of the absolute values of the eigenvalues.
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the convex open set Π(V, g0) of operators in V which are self-adjoint with
respect to g0 and satisfy ||Θ||1 < 1, i.e. the interior of the convex hull of the
rank 1 orthogonal projections in V . In fact we have proved

Proposition 2.4 QC(V ) is a fibre-bundle over the space of positive-definite
inner products on V whose fibre at a point g0 is Π(V, g0). Equivalently,
choosing a reference inner-product on V , we have

QC(V ) ∼= GL(V )×O(V ) Π(V ).

In particular, QC(V ) is contractible.

It is an important fact that an allowable complex metric on V remains
allowable when restricted to any subspace W of V . This follows from an
analogous property of the trace-norm, but we shall give a direct proof, as
its point of view on the angles θi as critical values helps give a feeling for
allowable complex metrics.

Proposition 2.5 If g ∈ QC(V ) and W is any vector subspace of V then
g|W belongs to QC(W ).

Proof For any g ∈ QC(V ) the function v 7→ arg(g(v)) is a smooth map
from the real projective space P(V ) to the open interval (−π, π) ⊂ R. By
rescaling the basis elements {ek} we can write g as

∑

eiθky2k. The numbers θk
are precisely the critical values of arg(g). We shall order the basis elements
so that

π > θ1 ≥ θ2 ≥ . . . ≥ θd > −π.
For each vector subspace A of V let us write θA and θA for the supremum

and infimum of arg(g) on P(A). Then we have

θk = sup{θA : dim(A) = k} = inf{θA : dim(A) = d− k + 1}.

It is enough to prove Proposition 2.5 when W is a subspace of V of codi-
mension 1. In that case the preceding characterization of the critical values
shows that if θ′1 ≥ . . . ≥ θ′d−1 are the critical values of arg(g|W ) we have
θk ≥ θ′k ≥ θk+1. The critical values for g|W therefore interleave those for g:

θ1 ≥ θ′1 ≥ θ2 ≥ θ′2 ≥ . . . ≥ θd−1 ≥ θ′d−1 ≥ θd.

This implies that
∑ |θ′k| ≤

∑ |θk| < π, as we want. ♠
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In Section 5 we shall need the following variant of the preceding formula-
tion. Suppose that Z is a d-dimensional complex vector space with a nonde-
generate quadratic form g. (Any such pair (Z, g) is isomorphic to Cd with the
standard form

∑

z2k.) Let R(Z) denote the space of all d-dimensional real
subspaces A of Z such that g|A belongs to QC(A). This is an open subset
of the Grassmannian of all real subspaces of Z. If ZR is any d-dimensional
real vector subspace of Z for which g|zR is real and positive-definite then the
projection A ⊂ Z → ZR is an isomorphism, for any non-zero element of its
kernel would have the form iv with v ∈ ZR, and so g(iv) would be real and
negative, which cannot happen if g|A is allowable.

Proposition 2.6 The space R(Z) is contractible, and is isomorphic to

OC(Z)×O(ZR) Π(ZR).

Proof This is essentially a reformulation of what has been said, but it may be
helpful to relate the spaces QC(V ) and R(Z) by considering, for a complex
quadratic vector space (Z, g) as above, the intermediate space R(V ;Z) of
R-linear embeddings f : V → Z of the real vector space V such that f ∗(g) is
allowable. This space has two connected components, corresponding to the
orientation of the projection V → ZR.

The groups GL(V ) and OC(Z) act by right- and left-composition on
R(V ;Z), and each action is free. Thus R(V ;Z) is at the same time a princi-
pal GL(V )-bundle with base R(Z) and a principal OC(Z)-bundle with base
QC(V ). But the Lie groups GL(V ) and OC(Z) are homotopy equivalent to
their maximal compact subgroups, i.e. in both cases to the compact orthog-
onal group Od. More precisely, the contractibility of QC(V ) implies that
R(V ;Z) is homotopy-equivalent to the fibre OC(Z)f for any f ∈ R(V ;Z).
If we choose f so that f ∗(g) is a positive-definite real form on V this gives
us a homotopy-equivalence O(V ) → OC(Z)f → R(V ;Z). But O(V ) is
also contained in and equivalent to the fibre fGL(V ) of the other fibration
R(V ;Z)→R(Z), which implies the contractibility of its base R(Z). ♠

The last property of QC(V ) which we shall record briefly, for the sake of
experts, is

Proposition 2.7 The domain QC(V ) is holomorphically convex, i.e. a
‘domain of holomorphy’.

14



Proof The Siegel domain U(V ) of complex-valued inner products with
positive-definite real part on a real vector space V is known to be a domain
of holomorphy in S2(V ∗

C
). So therefore is the product

∏

0≤p≤d/2

U(∧p(V ))

inside its ambient complex vector space. The space QC(V ) is the intersection
of this product domain with the affine variety which is the natural embed-
ding of S2(V ∗

C
) in this ambient vector space, and so it too is a domain of

holomorphy. ♠

The two-dimensional case

The case d = 2 is especially simple because then the matrix (det g)−1/2g
depends only on the conformal structure, and decouples from the volume
element.

A non-degenerate complex inner product g on a 2-dimensional real vec-
tor space V is determined up to a scalar multiple by its two distinct null-
directions in the complexified space VC. We can think of these as two points of
the Riemann sphere P(VC). Then (det g)−1/2g has positive real part precisely
when the two points lie one in each of the open hemispheres of the sphere
P(VC) separated by the real equatorial circle P(V ). When the two points
move to distinct points of the equator we get a Lorentzian inner product,
with its two light-directions in P(V ).

A point of the sphere P(VC) not on the equator can be regarded as a
complex structure on the real vector space V , and the two hemispheres cor-
respond to the two possibilities for the orientation which a complex structure
defines. On a smooth surface Σ any almost-complex structure is integrable,
so a point of MetC(Σ) is a pair of complex structures on Σ of opposite orien-
tations, together with a complex volume element. The Riemannian metrics
are those for which the two complex structures are complex-conjugate to each
other, and the volume element is real.

When d = 2 the domain QC(V ) is thus a 3-dimensional polydisc, one disc
for each of the complex structures, and the third for the volume-element.
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The one-dimensional case: electric circuits

Our concept of an allowable complex metric does not at first look inter-
esting in the one-dimensional case, but if we allow singular 1-manifolds —
identified with finite graphs M — we find that complex metrics arise natu-
rally in electrical circuit theory. A Riemannian metric on M is determined
(up to isometry) by the assignment of a positive real number to each edge of
the graph, and can be interpreted as its resistance when the edge is regarded
as a wire in an electrical circuit. A state of the system (perhaps with current
entering or leaving at each node) is determined by a continuous potential
function φ : M → R which is smooth on each closed edge, and whose gradi-
ent is the current flowing in the circuit. Because φ is determined only up to
adding a constant we shall normalize it by

∫

M
φ = 0. The energy of a state

is
1

2

∫

M

||∇φ||2ds,

and so the system can be regarded as a free massless field theory on the
graph: in particular the vacuum expectation value 〈φ(x)φ(y)〉, when x and y
are two nodes of the graph, is the ratio of the potential-difference φ(x)−φ(y)
to the current flowing in at x and out at y when no current is allowed to enter
or leave at other nodes.

We encounter complex metrics when we consider a circuit in which an
alternating current with frequency ω is flowing, and in which each branch
has not only a resistance R but also a positive inductance L and a positive
capacitance C. In that situation the volume element

√
g = R is replaced by

the impedance √
g = R + iωL+ 1/iωC,

a complex number which defines an allowable metric because Re
√
g > 0.

Quite apart from electric circuitry, however, singular one-dimensional
manifolds with allowable complex metrics can arise in quantum field the-
ory as the Gromov-Hausdorff limits of non-singular space-times of higher
dimension. For example, if we embed a smooth graph M in R3, then for
almost all sufficiently small ε > 0 the boundary of the ε-neighbourhood of
M is a smooth surface Mε whose limit is M as ε → 0: this is one way of
viewing the passage from closed string theory to quantum field theory.
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Appendix to Section 2: proof of 2.3

If V is a real vector space with an allowable complex metric then the
preceding discussion shows that it can be identified with the subspace

V = exp(iΘ/2)(E)

of MC. Here E = Rd is the standard Euclidean subspace of MC, and Θ
is a real diagonal matrix whose entries θ1, . . . , θd belong to the ‘generalized
octahedron’ Π0 ⊂ Rd consisting of those Θ whose diagonal entries θ1, . . . , θd
satisfy the inequality (4). We want to prove that exp(iΘ/2) maps each k-
tuple x = {x1, . . . , xk} of distinct points of E to a point of the holomorphic
envelope Ûk of the Wightman permuted extended tube Uk. In fact we shall
prove the stronger statement that exp(iΘ/2)(x) ∈ Ûk when Θ is a complex
diagonal matrix with Re(Θ) ∈ Π0.

The crucial fact is that Π0 is the convex hull of its intersection Π00 with
the coordinate axes in Rd, (i.e. Π00 consists of the diagonal matrices with
only one entry θr non-zero, and −π < θr < π). Our strategy is to show that
exp(iΘ/2)(x) ∈ Uk when Re(Θ) ∈ Π00, and to deduce that the same is true
when Re(Θ) belongs to the convex hull Π0. The essential tool is Bochner’s
‘tube theorem’ ([Hör] Thm 2.5.10), which asserts that if P is a connected
open subset of Rd then a holomorphic function defined in the tube domain
P × iRd extends holomorphically to the tube domain P ′ × iRd, where P ′ is
the convex hull of P .

Having fixed a k-tuple x in MC, let us first show that if Re(Θ) ∈ Π00 then
exp(iΘ/2)(x) is contained in Uk. Suppose that the non-zero diagonal element
of Θ is in the rth place. Because Uk in invariant under the orthogonal group
O(E) we can assume that the rth basis vector er of E is the Wick-rotated
time-axis of M, so that er belongs to iC, where C is the forward light-cone
in M. With respect to the real structure MC = M⊕ iM the imaginary part
of the k-tuple

y = exp(iΘ/2)(x)

lies on the line Rer, and so, after ordering the points appropriately, y will
belong to the forward tube in MC providing the points of x have distinct rth

coordinates. But if the rth coordinates of Im(y) are not distinct, we can make
them so by choosing a unit vector e ∈ E perpendicular to er such that the
coordinates 〈x, e〉 are distinct, and rotating the k-tuple y by a small amount
in the {e, er}-plane, again using the O(E)-invariance of Uk.

17



We now know that Uk contains an open neighbourhood of Π00×iRd in Cd.
To apply Bochner’s theorem we need to know that the envelope Ûk contains
a tube P × iRd, where P is an open neighbourhood of Π00 in Rd. In fact it
is enough, by induction, to treat the case d = 2, for that case, together with
Bochner’s theorem, implies that a function holomorphic in a neighbourhood
of (Π0(R

r)∪Π00(R
d−r)×iRd is holomorphic in a neighbourhood of (Π0(R

r+1)∪
Π00(R

d−r−1))× iRd.
To reduce the d = 2 case to the standard Bochner theorem it is enough

to prove the following

Lemma 2.8 Let L be the L-shaped subset ({0} × [0, 1)) ∪ ([0, 1) × {0}) of
the quadrant (R+)

2. Then any holomorphic function F defined in a neigh-
bourhood of L× iR2 ⊂ C2 can be extended holomorphically to P × iR2, where
P is the intersection of (R+)

2 with a neighbourhood of L in R2.

Proof For any t ∈ (0, 1/2) we define Dt as the intersection of the two unit
discs {z ∈ C : |z − (1 − t)| ≤ 1} and {z ∈ C : |z + (1 − t)| ≤ 1}. Then we
define f : Dt → C2 by

f(z) = (− log((1− t)− z),− log((1− t) + z).

The map f is a holomorphic embedding in a neighbourhood of Dt in C,
and Re f(∂Dt) is contained in the coordinate axes of R2. If we choose
T = (1− e−1)/2 then Re f(∂DT ) is precisely the closure of L.

For any η ∈ R2, define fη : DT → C2 by fη(z) = f(z) + iη. Then the
holomorphic map F is defined in a neighbourhood of the curve fη(∂DT ), and
if we can show that F ◦ fη extends holomorphically over DT then we shall

have continued F analytically to the tube domain f(D̊T )+iR2, and the proof
will be complete.

When a function F is holomorphic in an open domain containing the
boundary of a holomorphically-embedded disc — in this case fη(DT ) — then
to show that F can be extended over the whole disc the standard method is
to show that the disc can be moved holomorphically, keeping its boundary
within the domain of F , until the whole disc is contained in the domain
of F ; the Cauchy integral formula then defines the desired extension. In
our case we can deform fη(DT ) through the family fη(Dt) as t decreases
from T towards 0. As t ↓ 0 the domain Dt shrinks to the origin in C, and
fη(Dt)→ iη, which is contained in the domain of F . ♠
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3 Quantum field theories as functors

The traditional Wightman approach to quantum field theory is not well-
adapted to important examples such as gauge theories, especially when the
space-time is not flat. Another formulation — potentially more general —
views a d-dimensional field theory as something more like a group repre-
sentation, except that the group is replaced by a category CCd of space-time
manifolds. The guiding principle of this approach is to preserve as much as
possible of the path-integral intuition. We shall present it very briefly here,
with minimal motivation.

Roughly, the objects of the category CCd are compact smooth (d − 1)-
dimensional manifolds Σ equipped with complex metrics g ∈ MetC(Σ). A
morphism from Σ0 to Σ1 is a cobordism M from Σ0 to Σ1, also with a
complex metric. We shall write M : Σ0  Σ1 to indicate a cobordism.
Composition of morphisms is by concatenation of the cobordisms. The reason
for the word ‘roughly’ is that, because there is no canonical way to give a
smooth structure to the concatenation of two smooth cobordisms, we must
modify the definition slightly so that an object of CCd is not a (d−1)-manifold
but rather is a germ of a d-manifold along a given (d − 1)-manifold Σ —
i.e. Σ is given as a closed submanifold of a d-manifold U , but any two
open neighbourhoods of Σ in U define the same object of CCd . We require
Σ to be two-sided in U , and equipped with a co-orientation which tells us
which side is incoming and which is outgoing. (Nevertheless, we shall usually
suppress the thickening U , the co-orientation, and the complex metric g from
the notation.) Furthermore, two morphisms M and M ′ from Σ0 to Σ1 are
identified if there is an isometry M → M ′ which is the identity on the germs
Σ0 and Σ1. (We shall return below to the question of the existence of identity
morphisms in the cobordism category.)

In terms of the category CCd we make the

Definition A d-dimensional field theory is a holomorphic functor from CCd to
the category of Fréchet topological vector spaces and nuclear (i.e. trace-class)
linear maps which takes disjoint unions to tensor products.

Unfortunately, almost every word in this definition requires further expli-
cation.

We shall write EΣ for the vector space associated to an object Σ, and
ZM : EΣ0

→ EΣ1
for the linear map associated to a cobordism M : Σ0  Σ1.
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To say that the functor is ‘holomorphic’ means that, for a given smooth
manifold-germ Σ ⊂ U , the topological vector spaces EΣ form a locally trivial
holomorphic vector bundle on the complex manifold MetC(U) of complex
metrics on U , and that the maps ZM : EΣ0

→ EΣ1
define a morphism of

holomorphic vector bundles on the manifold MetC(M) (to which the bundles
{EΣ0

} and {EΣ1
} are pulled back).

In practice, theories are usually defined on cobordism categories where
the manifolds are required to have additional structure such as an orientation
or a spin-structure. These can easily be included, but are not relevant to our
account. For the same reason we do not mention that, for a theory including
fermions, the vector spaces EΣ will have a mod 2 grading, and the usual
sign-conventions must be applied when we speak of their tensor products.

Because our objects Σ ⊂ U are really germs of d-manifolds, we automati-
cally have a family of cobordisms Σ′  Σ embedded in U , each diffeomorphic
to the trivial cobordism Σ× [0, 1] with the outgoing boundary Σ× {1} cor-
responding to Σ ⊂ U . These cobordisms can be ordered by inclusion, giving
us a direct system of objects Σ′ with cobordisms to Σ. Similarly, looking
downstream rather than upstream, we have a family of cobordisms Σ Σ′′

contained in U , giving us an inverse system of objects Σ′′ to which Σ maps.
For any field theory, therefore, there are natural maps

lim
→
EΣ′ → EΣ → lim

←
EΣ′′ ,

which we shall write
ĚΣ → EΣ → ÊΣ,

introducing the notations ĚΣ = lim−→EΣ′ and ÊΣ = lim←−EΣ′′ for the upstream
and downstream limits.

We shall assume the functor has the continuity property that each of these
maps is injective with dense image. The space ÊΣ, being the inverse-limit of
a countable sequence of nuclear maps of Fréchet spaces, is a nuclear Fréchet
space7. The other space ĚΣ is also nuclear, but usually not metrizable: it is
the dual of the nuclear Fréchet space ÊΣ∗ , where Σ∗ denotes the germ Σ with
its co-orientation reversed. As this is such a basic point, we have included a
proof as an Appendix at the end of this section.

When we have a cobordism M : Σ0  Σ1 we automatically get maps
ĚΣ0
→ ĚΣ1

and ÊΣ0
→ ÊΣ1

. The space EΣ with which we began plays only

7A very useful concise account of nuclear spaces can be found in [C].
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a provisional role in the theory, serving to construct the fundamental nuclear
spaces between which it is sandwiched.

The essential requirement we place on the functor is that it takes disjoint
unions to tensor products, i.e., we are given an isomorphism of functors

ĚΣ ⊗ ĚΣ′ → ĚΣ⊔Σ′,

which is associative and commutative in terms of the usual isomorphisms for
the disjoint union and tensor product. There is a unique natural concept of
tensor product here, because all the vector spaces are nuclear, and ĚΣ⊗ĚΣ′

∼=
ĚΣ⊔Σ′ is equivalent to ÊΣ ⊗ ÊΣ′

∼= ÊΣ⊔Σ′ . The functoriality means that we
are assuming

ZM ⊗ ZM ′ = ZM⊔M ′

for two cobordisms M and M ′.

The tensoring assumption implies that E∅ = C, where ∅ denotes the
empty (d− 1)-manifold. Thus for a closed d-manifold M we have a partition
function ZM ∈ End(E∅) = C. The whole structure of the theory is a way of
expressing the sense in which the number ZM depends locally on M .

In this discussion we have still committed an abuse of language: the
“category” CCd is not really a category because it does not have identity
maps. We could deal with this by agreeing that an isomorphism Σ0 → Σ1

is a cobordism of zero length, but then these degenerate cobordisms are
represented by operators which are not nuclear. The true replacement for
the missing identity operators is our assumption that the maps ĚΣ → ÊΣ are
injective with dense image. To avoid the abuse of language we can say that
a field theory is a functor Σ 7→ EΣ from (d− 1)-manifolds and isomorphisms
to vector spaces, together with a transformation ZM : EΣ0

→ EΣ1
for each

cobordism. Whichever line we take, we must assume that an isomorphism
f : Σ0 → Σ1 of germs of d-manifolds induces an isomorphism f∗ : EΣ0

→ EΣ1

which depends smoothly on f , in the sense that for any family P ×Σ0 → Σ1

parametrized by a finite-dimensional manifold P the induced map P×EΣ0
→

EΣ1
is smooth.

Let us explain briefly how to get from this functorial picture to the tra-
ditional language of local observables and vacuum expectation values. For a
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point x of a d-manifold M we define the vector space Ox of observables at x
as follows. We consider the family of all closed discs D smoothly embedded
inM which contain x in the interior D̊. If D′ ⊂ D̊ then D\D̊′ is a cobordism
∂D′  ∂D and gives us a trace-class map E∂D′ → E∂D. We therefore have
an inverse system {E∂D} indexed by the discs D, and we define Ox as its
inverse-limit.

Now suppose that M is closed, and that x1, . . . xk are distinct points of
M . Let D1, . . . Dk be disjoint discs inM with xi ∈ D̊i. ThenM

′ =M \⋃ D̊i

is a cobordism from
⊔

∂Di to the empty (d − 1)-manifold ∅, and defines
ZM ′ : E⊔∂Di

→ E∅ = C. Using the tensoring property we can write this

ZM ′ :
⊗

E∂Di
−→ C,

and then we can pass to the inverse-limits to get the expectation-value map

⊗

Oxi
−→ C.

We might prefer the language of “field operators” to that of vacuum
expectation values. If the space-time M is a cobordism Σ0  Σ1, then for
any x in the interior of M — say x ∈ D̊ ⊂M — the cobordisms M \ D̊ from
∂D ⊔ Σ0 to Σ1 define maps

Ox → Homnucl(EΣ0
;EΣ1

),

while if x lies on a hypersurface Σ an observable at x defines a map ĚΣ → ÊΣ,
i.e. it acts on EΣ as an unbounded operator. But on a Lorentzian space-
time M we sometimes want to make the observables at all points x ∈M act
on a single vector space, and to ask whether they commute when space-like
separated. We shall postpone that discussion to Section 5.

One observable which we should mention is the energy-momentum tensor.
If we think of a field theory as analogous to a group representation then the
energy-momentum tensor is the analogue of the induced representation of
Lie algebras: for every cobordism M : Σ0  Σ1 it is the derivative of the
operator ZM with respect to the metric of M . This makes it a distributional
symmetric tensor-density T ij on M̊ with values in Homnucl(EΣ0

;EΣ1
). If we

cover M with small balls Di, then by using a partition of unity we can write
an infinitesimal change in the metric as the sum of contributions supported
in the interiors of the Di, and so the change in ZM is the sum of contributions
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coming from the spaces E∂Di
, and hence from a field operators placed at the

centres of the balls Di. But to develop this picture properly needs much
more discussion, which we shall not embark on here; it probably requires the
assumption that the theory is asymptotically conformal at short distances.
The case of a 2-dimensional conformal theory is treated fully in Section 9 of
[Se2].

Lorentzian manifolds

There is a category CLord which at first sight looks more relevant to quan-
tum field theory than CCd . Its objects are compact Riemannian manifolds of
dimension (d−1) and its morphisms are d-dimensional cobordisms equipped
with real Lorentzian metrics. Fredenhagen and his coworkers (cf. [BF]) have
developed the theory of quantum fields in curved space-time using a version
of this category. The category CLord lies “on the boundary” of the category
CCd . In section 5 we shall discuss the sense in which a representation of CCd
has a “boundary value” on CLord , at least if it is unitary.

Unitarity

So far we have not asked for an inner product on the topological vector
space EΣ associated to a (d−1)-manifold Σ. Our main concern in this work is
with unitary theories, even though not all interesting quantum field theories
are unitary.

To define unitarity in our context, recall that, if Σ∗ denotes the manifold
germ Σ with its co-orientation reversed, then ĚΣ∗ is the dual topological
vector space to ÊΣ. Furthermore, a cobordism M : Σ0  Σ1 can also be
regarded as a cobordism from Σ∗1 to Σ∗0, and the two maps EΣ0

→ EΣ1

and EΣ∗

1
→ EΣ∗

0
are automatically algebraic transposes of each other. Thus

Σ 7→ Σ∗ is a contravariant functor.
In a unitary theory we shall not expect the vector space EΣ to have an

inner product for every (d− 1)-manifold Σ. A complex metric g ∈ MetC(Σ)
has a complex conjugate ḡ. If we write Σ̄ for Σ with the metric ḡ but with its
co-orientation unchanged8 then Σ 7→ Σ̄ is a covariant functor. It is natural
to require that there is an antilinear involution

EΣ̄
∼= ĒΣ. (5)

8If our theory is defined on a category of oriented space-time manifolds, we must give
Σ̄ the opposite orientation to Σ, although the same co-orientation in U .
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For a theory satisfying condition (5) the conjugate dual of the vector
space ĚΣ is ÊΣ̄∗ . We expect ĚΣ to have an inner product only when Σ ∼= Σ̄∗,
i.e. when the d-manifold germ Σ ⊂ U admits a reflection with fixed-point set
Σ which reverses the co-orientation and changes the metric to its complex
conjugate. Such a hypersurface-germ Σ will be called time-symmetric. Its
metric is real and Riemannian when restricted to the (d − 1)-dimensional
hypersurface Σ itself.

We can now define a unitary theory as one which satisfies two conditions:

(i) the reality condition (5), and

(ii) reflection-positivity, in the sense that when we have a time-symmetric
hypersurface Σ ∼= Σ̄∗ the hermitian duality between ĚΣ and ĚΣ̄ is positive-
definite.

For a unitary theory, when we have a time-symmetric germ Σ we can
complete the pre-Hilbert space ĚΣ to obtain a Hilbert space EHilb

Σ with

ĚΣ → EHilb
Σ → ÊΣ.

The theory on flat tori

The partition function of a theory on oriented flat Riemannian tori al-
ready gives us a lot of information about the theory. The moduli space of
such tori is the double-coset space

Od\GLd(R)/SLd(Z) ∼= Q(Rd)/SLd(Z),

whereQ(Rd) = Od\GLd(R) is the space of positive-definite real d×dmatrices.
This space is an orbifold, so the partition function is best described as a
smooth function Z : Q(Rd) → C which is invariant under SLd(Z). Our
axioms imply that Z extends to a holomorphic function

QC(R
d) → C,

but they also imply very strong constraints beyond that. Notably, each choice
of a surjection Zd = π1(M)→ Z gives us a way of writing the torus M as a
cobordism M̃ : Σ Σ from a (d− 1)-dimensional torus Σ to itself, and then
we have Z(M) = trace(ZM̃), where ZM̃ : EΣ → EΣ is a nuclear operator in
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the vector space EΣ, which is graded by the characters χ of the translation-
group TΣ of Σ. More explicitly, M is constructed from the product manifold
M̃ × [0, t] by attaching the ends to each other after translating by a vector
ξ ∈ TΣ, and we have

Z(A, t, ξ) =
∑

i,χ

ni,χχ(ξ) e
−λit,

where {λi = λi(A)} is the sequence (tending to +∞) of eigenvalues of the
Hamiltonian operator on EΣ, and the ni,χ are positive integers which, for
each i, vanish for all but finitely many characters χ.

Appendix to Section 3: The duality (ĚΣ)
∗ ∼= ÊΣ∗

To keep things as general as possible, we suppose that Σ 7→ EΣ is a
functor from the d-dimensional cobordism category to a category of metriz-
able topological vector spaces and nuclear maps. We suppose also that the
category of vector spaces is equipped with a tensor product functor9 which
is coherently associative and commutative, and that we are given natural
isomorphisms EΣ1

⊗ EΣ2
→ EΣ1⊔Σ2

.

Composable cobordisms Σ1  Σ2  Σ3 give us maps

EΣ1
→ EΣ2

→ EΣ3
. (6)

By reinterpreting Σ1  Σ2 as a cobordism Σ1 ⊔ Σ∗2  ∅ we get a map
EΣ1
⊗ EΣ∗

2
→ C, and hence EΣ1

→ (EΣ∗

2
)∗. Similarly, we can reinterpret

Σ2  Σ3 as ∅  Σ∗2 ⊔ Σ3, which gives (EΣ∗

2
)∗ → EΣ3

. It is easy to see that
the composite EΣ1

→ (EΣ∗

2
)∗ → EΣ3

coincides with EΣ1
→ EΣ2

→ EΣ3
.

Yet again, performing the reinterpretations in the reverse order, we get
maps

(EΣ∗

1
)∗ → EΣ2

→ (EΣ∗

3
)∗

whose composite is the transpose of the map induced by the composite cobor-
dism Σ∗3  Σ∗1.

Now suppose that we have an infinite sequence of cobordisms

. . . Σi+1  Σi  Σi−1  . . . , (7)

9For example, we could work with the category of Hilbert spaces with the natural
Hilbert space tensor product.
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indexed by i ≥ 0, which form the downstream tail of a manifold-germ Σ, i.e.
the sequence which we used above to define the space ÊΣ = lim←EΣi

. Let us
perform the two manipulations that we performed on (6) alternately on the
sequence (7), thereby obtaining a sequence whose even terms are EΣ2i

and
whose odd terms are (EΣ∗

2i+1
)∗. The inverse-limit of the whole sequence is the

same as that of any cofinal subsequence. Considering the cofinal subsequence
of even terms shows that the inverse-limit is ÊΣ. But the inverse-limit of the
cofinal sequence of odd terms is

lim
←

(EΣ∗

21+1
)∗ = (lim

→
EΣ∗

21+1
)∗.

This shows that ÊΣ
∼= (ĚΣ∗)∗. But, because ÊΣ is automatically a nuclear

Fréchet space, we can dualize again and conclude that (ÊΣ)
∗ ∼= ĚΣ∗ also.

4 Some analogies from representation theory

The relation between representations of the category CCd and of the Lorentzian
category CLord which lies “on its boundary” follows a pattern familiar in the
representation theory of many Lie groups which have a special class of unitary
representations characterized as the boundary values of holomorphic repre-
sentations of a complex semigroup by contraction operators. The essential
features can all be seen in the simplest example.

The group G = PSL2(R) is the group of Möbius transformations of the
Riemann sphere Σ = C∪∞ which map the open upper half-plane U to itself.
It lies on the boundary of the complex sub-semigroup of GC = PSL2(C)
consisting of Möbius transformations which map the closure of U into its own
interior. It is natural, however, to consider a slightly larger semigroup G<

C
by

including the degenerate Möbius transformations which collapse U to a single
point in U — these correspond to complex 2 × 2 matrices of rank one. The
resulting semigroup is then a contractible open subset of the 3-dimensional
complex projective space formed from the 2 × 2 matrices. The topological
boundary of G<

C
consists of the Möbius transformations which take U to a disc

or point in the upper half-plane which touches the real axis, and the Shilov
boundary consists of the group G of real Möbius transformations — an open
solid torus — compactified by its 2-torus boundary, which is the hyperboloid

26



det(A) = 0 in P3
R
consisting of the degenerate real Möbius transformations.

(Thus the complete Shilov boundary is the part of P3
R
where det(A) ≥ 0.)

The irreducible unitary representations of the group G = PSL2(R) are
essentially10 of two kinds, the principal series and the discrete series. The
best-known principal series representation is the action of G on the Hilbert
space of 1/2-densities on the circle P1

R
which is the boundary of U — the

general member of the series is the action on densities of complex degree s
with Re(s) = 1/2. The best-known discrete series representation is the action
of G on the square-summable holomorphic 1-forms on U, with the natural
norm

‖ α ‖2= i

∫

U

α ∧ ᾱ

— more generally, for each positive integer p we have the action on holomor-
phic p-forms α = f(z)(dz)⊗p, when one must divide α ∧ ᾱ by the (p − 1)st

power of the G-invariant area form on the Poincaré plane U to define the
norm.

The discrete series representations obviously extend to bounded holomor-
phic representations of the semigroup G<

C
by contraction operators. They are

singled out by this ‘positive energy’ property: the principal series represen-
tations cannot extend to G<

C
, because when |a| < 1 the element w 7→ aw

(here w = (z − i)/(z + i) is the coordinate in the unit-disc model |w| < 1 of
U) of the semigroup G<

C
would be represented by an operator whose eigen-

values are an for all n ∈ Z. But let us notice that, though the discrete series
representations are unitary on the boundary group G = PSL2(R), the degen-
erate elements of G<

C
, which collapse U to a point p ∈ U, are represented by

bounded operators of rank 1. So these unitary representations of PSL2(R) do
not extend unitarily to the whole Shilov boundary: the degenerate elements
correspond to unbounded rank 1 operators ξ 7→ 〈ζ, ξ〉η, where η and ζ are
“non-normalizable elements” of the Hilbert space — i.e. they belong to an
appropriate completion of it.

The groupG is a subgroup of the group Diff+(S1) of orientation-preserving
diffeomorphisms of the circle. This infinite-dimensional Lie group does not
possess a complexification, though its Lie algebra, the space of smooth vec-
tor fields on the circle, can of course be complexified. The beginning of the

10We shall ignore the “supplementary” series, which is of measure zero in the space of
representations.
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present work was the observation, made in the 1980s quite independently
by the two authors and also by Yu. Neretin ([N], [Se1]), that there is an
infinite-dimensional complex semigroup A which has exactly the same rela-
tion to Diff+(S1) as G<

C
has to G = PSL2(R). Its elements are complex annuli

with parametrized boundary circles: one can think of them as “ exponentia-
tions” of outward-pointing complex vector fields defined on a circle in the the
complex plane. The annuli form a complex semigroup when concatenated
as cobordisms, and the lowest-weight or “positive-energy” representations of
Diff+(S1) — and of loop groups — which arise in 2-dimensional conformal
field theory are precisely those which are boundary values of holomorphic
representations of the semigroup A by trace-class operators.

The discussion of PSL2(R) generalizes to the symplectic group G =
Sp(V ) ∼= Sp2n(R) of a real symplectic vector space V of dimension 2n. The
role of the upper half-plane U is played by the Siegel ‘generalized upper
half-plane’ — the domain U(V ) of positive Lagrangian subspaces of the com-
plexification VC described in Section 1. The group G lies on the boundary of
a semigroup G<

C
which is the Siegel domain U(Ṽ ⊕ V ), where Ṽ denotes V

with sign of its symplectic form reversed. A generic element of this domain
is the graph of a complex symplectic transformation of VC which maps the
closure of U(V ) into its own interior, but, just as was the case with PSL2(C),
there are degenerate elements which map U(V ) non-injectively into itself.
The complex semigroup G<

C
has been carefully studied by Roger Howe [H],

who called it the oscillator semigroup.
The Shilov boundary of G<

C
is the Grassmannian of real Lagrangian sub-

spaces of Ṽ ⊕V : generically, these are the graphs of elements of the real group
G = Sp(V ), but this group is compactified by the addition of Lagrangian sub-
spaces which intersect the axes of Ṽ ⊕V nontrivially, and thus correspond to
Lagrangian correspondences from V to V which are not actual maps V → V .
Once again, whereas Sp<(VC) is a genuine semigroup, the composition-law
of the real group Sp(V ) does not extend to the compactification.

The group G = Sp(V ) has a discrete series of unitary representations
generalizing those of PSL2(R). The most important is the metaplectic rep-
resentation — actually a representation of a double covering G̃ of Sp(V ) —
which is the action on the quantization HV of the symplectic space V . The
Hilbert space HV is characterized by the property that it contains a copy of

28



the ray (
∧n(W ))⊗(1/2) for each point W of the domain U(V ) — the square-

root of the natural hermitian holomorphic line bundle {∧n(W )} on U(V ) is
canonical up to multiplication by ±1, and is holomorphically embedded in
HV . It is acted on by G̃ rather than G.

The action of G̃ on HV is the boundary-value of a holomorphic projective
representation of the oscillator semigroup G<

C
. For G<

C
is just the domain

U(Ṽ ⊕ V ), each point of which defines a ray in

HṼ⊕V
∼= H∗V ⊗HV

∼= EndHS(HV ),

where EndHS denotes the Hilbert-Schmidt endomorphisms. (A more careful
discussion shows that G<

C
is represented by operators of trace class.)

When n = 1 the group Sp(V ) is SL2(R), a double covering of the group
PSL2(R) of Möbius transformations we considered before. To relate the
cases of PSL2(R) and Sp(V ), recall that PSL2(C) is an open subspace of the
complex projective space P3

C
formed from the vector space of 2× 2 matrices:

in fact it is the complement of the quadric Q2
C
∼= P1

C
× P1

C
defined by the

vanishing of the determinant, i.e. by the matrices of rank 1. The double
covering group SL2(C) sits inside the Grassmannian of complex Lagrangian
subspaces of C4, which is a quadric 3-fold Q3

C
in P4

C
: it is a non-singular

hyperplane section (corresponding to the Lagrangian condition) of the Klein
quadric formed by all the lines in P3(C). The quadric Q3

C
is the branched

double-covering of the projective space P3
C
of 2× 2 matrices, branched along

the quadric Q2
C
of rank 1 matrices. The contractible semigroup SL<

2 (C) is the
open subset of the Lagrangian Grassmannian of C4 consisting of the positive
Lagrangian subspaces, and it is a double covering of PSL<

2 (C).

5 Unitarity and global hyperbolicity

In the previous section we saw how a holomorphic representation of a com-
plex semigroup by contraction operators on a Hilbert space can give rise —
on passing to the boundary — to a unitary representation of a group which
is a dense open subset of the Shilov boundary of the semigroup. The remain-
ing points of the Shilov boundary are not represented by unitary operators;
the representation extends to them only in some “weak” sense. We now
come to the analogue of this phenomenon in quantum field theory, where
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the Lorentzian cobordism category CLord lies on the boundary of CCd , and the
role of the open dense subgroup of the Shilov boundary is played by the
subcategory of globally hyperbolic cobordisms which we shall define below.
We should mention, however, that although the category of globally hyper-
bolic cobordisms is very natural, the category CLord may be smaller than the
optimal category we could put on the boundary of CCd . For example, the
Lorentzian cobordisms could possibly be allowed to contain ‘black holes’ sur-
rounded by horizons, rather analogous to the ‘cobordisms-with-boundaries’
used to describe two-dimensional theories with both open and closed strings.
We shall not pursue such speculations here.

When we have a theory defined on CCd let us first consider how to extend
the assignment Σ 7→ EΣ to a Lorentzian germ Σ ⊂ U , with Σ co-oriented
in U . We can identify U with Σ × (−ε, ε) by exponentiating the geodesic
curves emanating perpendicularly from Σ. The metric then takes the form
ht − dt2, where t 7→ ht is a smooth map from (−ε, ε) to the manifold of
Riemannian metrics on Σ. If the germ is time-symmetric then we can define
EΣ by replacing the Lorentzian metric by the ‘Wick rotated’ Riemannian
metric hit + dt2, which makes sense because if ht = h−t then ht is a function
of t2, so that hit is defined and real. But this does not help for a general
hypersurface, and in any case seems rather arbitrary: we shall return to this
point in Remark 5.3 below.

It is less easy to assign an operator ZM : EΣ0
→ EΣ1

to a Lorentzian
cobordism M : Σ0  Σ1. Even if M is a cylinder topologically, it can be
complicated in its “causal” structure. Consider, for example, a 2-dimensional
cylindrical space-time. We saw in Section 2 that, up to a conformal mul-
tiplier, a complex metric on a surface is a pair of complex structures with
opposite orientations. At the Shilov boundary the complex structures degen-
erate to the foliations by the left- and right-moving light-lines of a Lorentzian
surface. If each light-line which sets out from the incoming boundary circle
of the cylinder eventually reaches the outgoing boundary circle then each
family of light-lines gives us a diffeomorphism from the incoming to the out-
going boundary. In fact (cf. [Se2] p.8 and p.16) the isomorphism classes of
Lorentzian cylinders of this kind are determined up to conformal equivalence
by the pair of diffeomorphisms together with a positive integer which counts
the number of times that the left- and right-moving lines emanating from
a given point of the incoming circle cross before hitting the outgoing circle.
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This agrees with the well-known fact that the Hilbert space associated to a
circle in 2-dimensional conformal field theory comes with a projective unitary
representation of the group Diff+(S1)× Diff+(S1).

But the light-lines from the incoming circle can behave in a more com-
plicated way. For example, one set of light-lines may spiral closer and closer
to a closed limit-cycle of the foliation, a light-line which is a circle parallel
to the incoming boundary circle of the annulus. That set of lines will then
never reach the outgoing circle. One might think of this phenomenon as akin
to a black hole in the space-time, though, unlike a black hole, the Lorentzian
metric here has no singularity. The “blocked” foliation is conformally the
same as the “degenerate annulus” obtained by collapsing the closed light-
line to a point, i.e. a pair of discs with their centre-points identified. This
is usually regarded as an “annulus of infinite length”, and it acts on an irre-
ducible positive-energy representation of Diff+(S1) by a projection operator
of rank one, like the action of a degenerate complex Möbius transformation
in a discrete-series representation of PSL2(R).

In works on general relativity a Lorentzian cobordism M : Σ0  Σ1 be-
tween Riemannian manifolds is called globally hyperbolic if every maximally-
extended time-like geodesic in M travels from Σ0 to Σ1. Such an M must be
diffeomorphic to Σ0× [0, 1]. It is only for globally hyperbolic manifolds that,
for example, the Cauchy problem for the wave-equation on M is soluble.

Of course here we are only considering compact cobordisms, which are
not the usual focus in relativity theory. In the compact situation we can
take the definition of global hyperbolicity to be the existence of a smooth
time-function t : M → [0, 1] whose gradient is everywhere in the positive
light-cone, and which is therefore a fibration with Riemannian fibres. From
t we obtain a diffeomorphism M → Σ0 × [0, 1] by following the orthogonal
trajectories to the time-slices.

The existence of a time-function on a compact Lorentzian cobordism is
clearly an open condition, and so the globally hyperbolic cobordisms form an
open subcategory Cghd of CLord which should play the role of the real Lie group
to which the holomorphic contraction representations of Section 4 can be
extended (though the result (5.2) we prove below is unfortunately weaker).

For a globally hyperbolic cobordism equipped with a time-function, the
metric, in terms of the diffeomorphism M → Σ0 × [0, 1], takes the form
ht + c2dt2 for some function c : Σ0 × [0, 1] → iR. A small deformation δc of
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c into the right half-plane changes the Lorentzian metric into an allowable
complex metric, and we could hope to define ZM in the Lorentzian case as
the limit of the operators associated to such deformations. That, however,
encounters the problem that the deformed metric depends not only on the
choice of the deformation δc, but, more importantly, on the choice of the time-
function, which should be irrelevant to the operator UM . Happily, there is a
better point of view, which also shows why the boundary-value of a semigroup
of contraction operators is a unitary representation. There is, after all, no
obvious reason why the concatenation of a Lorentzian cobordism with its
reverse should be represented by the identity operator — quite unlike what
happens with Riemannian cobordisms. (A possible analogy is the process
of making a based loop-space into a topological group by collapsing paths
which retrace their steps.)

The passage from CCd to CLord is already interesting when d = 1, i.e. for
quantum mechanics rather than quantum field theory — the case when the
Euclidean path-integral can be treated by traditional measure-theory. It is
worthwhile to spell out the argument in this case, before passing to higher
dimensions.

We began this work with the relation of positive energy to 1-parameter
contraction semigroups. Our first task now is to understand why a holo-
morphic representation of the category CC1 is just such a 1-parameter semi-
group, where the parameter runs through the open half-plane C+ = {z ∈
C : Re(z) > 0}. Whereas a Riemannian structure on a closed interval is
completely determined by its length, the allowable complex metrics on the
interval have an infinite-dimensional moduli-space.

Any complex metric on I = [0, 1] can be pulled back from the holomorphic
quadratic differential dz2 on C by means of a smooth embedding f : I → C

such that f(0) = 0 and Re f ′(t) > 0 for all t ∈ I. In fact the space Emb(I;C)
of such embeddings is isomorphic to MetC(I) as a complex manifold. If
f ′(t) = 1 when t is sufficiently close to the ends of the interval I then the
pulled-back metric defines a morphism If : P → P in the category CC1 , where
P denotes the object defined by the germ of the standard metric on the line
R at the origin.

The crucial observation is that the operator Zf : EP → EP defined by
If depends only on the point f(1) ∈ C+. It is as if Zf were the ‘contour
integral’ of a holomorphic differential on C along the path f . The argument
is as follows. First, Zf does not change if f is replaced by f̃ = f ◦ φ where
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φ is any diffeomorphism I → I which is the identity near the ends of the
interval. This means that Zf does not change if f moves along a curve in
Emb(I;C) whose tangent vector at each point is the action of an element of
the Lie algebra Vect(I̊) of compactly supported vector fields on the interior
of I. But then — because Zf depends holomorphically on f — it does not
change if each tangent vector is the action of an element of the complexified
Lie algebra VectC(I̊). Finally, if f, f̃ ∈ Emb(I;C) define two morphisms
P → P and have f(1) = f̃(1), the tangent vectors to the obvious linear path
from f to f̃ are given by the action of elements of VectC(I̊).

We can therefore write Zf = u(z), where z = f(1). Obviously we have
u(z1)u(z2) = u(z1+ z2) for any z1, z2 ∈ C+. Furthermore, because the object
P of Cgh1 is time-symmetric, the vector space ĚP is a pre-Hilbert space, and
the unitarity condition tells us that u(z̄) is the hermitian transpose of u(z).

The desired unitary semigroup {u(iT )}T∈R, which will act on the triple
ĚP → EHilb

P → ÊP , can now be defined as follows. As explained in Section
3, any vector ξ ∈ ĚP can be written ξ = u(ε)η for some ε > 0 and some
η ∈ EP . We define u(iT )ξ = u(ε + iT )η, which is plainly independent of ε.
Finally, u(iT ) is unitary because

u(−iT )u(iT )ξ = u(−iT )u(ε+ iT )η

= u(−iT )u(ε/2)u(ε/2 + iT )η

= u(ε/2− iT )u(ε/2 + iT )η

= u(ε)η = ξ.

To pass from d = 1 to higher-dimensional cobordisms we observe that the
essential step in our argument was the first case of the following

Principle 5.1 If a d-dimensional cobordism M is a real submanifold of
a complex d-manifold MC, and M has an allowable complex metric induced
from a holomorphic symmetric form g on the tangent bundle TMC, then the
linear map ZM does not change when M is moved around smoothly inside
MC (leaving its ends fixed), providing the restriction of g to M remains an
allowable complex metric.

As in the d = 1 case, this principle holds because any infinitesimal move-
ment of M inside MC is given by a complex vector field on M , while ZM

depends holomorphically on M and, being invariant under the action of
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Diff(M rel ∂M), does not change when M moves in a direction given by
the action of a complexified tangent vector to this group.

Unfortunately, to use the principle we need the cobordism M to be em-
bedded in a complexification MC, and the only natural way to ensure this
is to pass from the smooth Lorentzian category CLord to the corresponding
real-analytic cobordism category CLor,ωd , where both the manifolds and their
metrics are assumed real-analytic. Inside this category there is the subcate-
gory Cgh,ωd of globally hyperbolic cobordisms: we shall also assume that the
time-function τ : M → i[0, 1] is real-analytic, though that could be avoided,
because any smooth function can be approximated real-analytically.

There are two ways of thinking about restricting to real-analytic cobor-
disms. One might think that the smooth cobordism category is the natu-
ral object, and try to eliminate the analyticity hypothesis. But one could
also think that that the natural allowable space-times really do come sur-
rounded by a thin holomorphic thickening, within which the choice of a
smooth totally-real representative is essentially arbitrary. In any case, we
can prove the following theorem.

Theorem 5.2 A unitary quantum field theory as defined in Section 3 on
the category CCd induces a functor from Cgh,ωd to topological vector spaces. The
functor takes time-symmetric objects to Hilbert spaces, and takes cobordisms
between them to unitary operators.

To be quite precise: the theorem asserts that if Σ is a time-symmetric
(d− 1)-manifold germ then there is a Hilbert space EHilb

Σ with

ĚΣ ⊂ EHilb
Σ ⊂ ÊΣ,

and a real-analytic globally hyperbolic cobordism Σ0  Σ1 between time-
symmetric hypersurfaces induces a unitary isomorphism EHilb

Σ0
→ EHilb

Σ1
which

also maps ĚΣ0
to ĚΣ1

and ÊΣ0
to ÊΣ1

.

Proof of 5.2 Given a real-analytic globally hyperbolic cobordismM : Σ0  Σ1

we choose a time function t : M → [0, 1] whose level surfaces foliate M by
Riemannian manifolds, and, following the orthogonal trajectories to the fo-
liation, we identify M with Σ0 × [0, 1] as before.
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Using the real-analyticity assumptions, we can find a complexification
MC of M to which both t and g can be extended holomorphically, and we
can assume that τ = it : MC → U ⊂ C is a holomorphic fibre bundle over
a neighbourhood U of the interval i[0, 1]. Furthermore, the isomorphism
Σ0× [0, 1]→ M extends to a holomorphic trivialization of the bundle MC →
U . For any smooth curve f : [0, 1]→ U such that f(0) = 0 and Re f ′(s) > 0
for s ∈ [0, 1] this gives us a totally real submanifold Mf of MC sitting over
the curve. We can use the morphism associated to the cobordism Mf in
exactly the way we used Zf in discussing the 1-dimensional case, to obtain
a unitary operator ZM associated to the Lorentzian cobordism.

It is important that ZM does not depend on the choice of the time-
function t defining the foliation. For two choices of t are linearly homotopic,
and changing from one to the other amounts to deforming the totally-real
embedding Σ0× [0, 1]→ MC by a real-analytic diffeomorphism of Σ0× [0, 1].

Remark 5.3 We can apply the principle 5.1 to understand better how a
theory defined on CCd assigns a vector space EΣ to a Lorentzian germ Σ ⊂ U .

If the Lorentzian metric on U is real-analytic then the complex theory
gives us a holomorphic bundle {Êf} on the space J of germs of embeddings
f : (−ε, ε)→ C such that f(0) = 0 and Re f ′(t) > 0 for all t. In particular,
for λ ∈ C+ we have the radial paths fλ ∈ J for which fλ(t) = λt. But recall
that Êf is the inverse-limit of a sequence of spaces associated to the germs
of f at the points f(tk), for any sequence {tk ↓ 0}.

Now consider two neighbouring rays fλ, fλ′ with |λ| = |λ′|, and choose a
sequence {t′k ↓ 0} which interleaves {tk}, i.e. tk > t′k > tk+1. We can choose
a path f ∈ J which lies in the sector bounded by the rays fλ and fλ′ and
coincides with them alternately in the neighbourhoods of the points λtk and
λ′t′k. This f gives us a family of cobordisms from the germ at λ′t′k to the
germ at λtk, and from the germ at λtk+1 to the germ at λ′t′k. Putting these
together, we obtain inverse canonical isomorphisms between Êfλ and Êfλ′

.
The coherence of these isomorphisms when we consider three nearby rays
also follows from the principle 5.1.

By this means we see that we could have chosen any smooth path f to
define ÊΣ. However the family Êf has the property that Êf̄ is the complex-

conjugate space to Êf , so that reversing the complex time-direction conju-

gates the identification of ÊΣ with the Euclidean choice Êf1. If the Lorentzian
germ Σ ⊂ U is time-symmetric — but not otherwise — the arguments we
have already used will give us a hermitian inner product on ĚΣ.
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Field operators

Finally, we come to the Wick rotation of field operators, though our
account will be sketchy. The first step is to understand how the vector space
Ox of observables at a point x of a space-time M behaves as the metric of
M passes from complex to Lorentzian. We shall continue to assume that M
and its Lorentzian metric are real-analytic.

In Section 3 we associated a space Ox to a germ at x of a complex metric
on a manifold containing x: it is the fibre of a bundle on the space MetC(x̂)
of such germs. If we embed a Lorentzian M in a complexification MC there
will be a holomorphic exponential map from a neighbourhood of 0 in the
complexified tangent space TC

x = TxM⊗C toMC. Inside T
C

x we can consider
the d-dimensional real vector subspaces V on which the metric induced from
the complex bilinear form of TC

x is allowable. We saw in (2.6) that these
V form a contractible open subset U of the real Grassmannian Grd(T

C

x ).
Exponentiating V will give us a germ of a d-manifold with a complex metric,
and hence a map U → MetC(x̂). Pulling back the bundle of observables by
this map gives us a bundle on U , which, using the principle (5.1) as we did
in (5.3), we see to be trivial. Identifying its fibres gives us our definition of
Ox for Lorentzian M .

We need no new ideas to see that for any Lorentzian cobordism M :
Σ0  Σ1 and any x ∈ M̊ an element ψ ∈ Ox acts as an operator EΣ0

→ EΣ1
.

Furthermore, if x lies on a time-slice Σ we get an operator ψ ∈ Hom(ĚΣ; ÊΣ),
i.e. an unbounded operator in EΣ, simply by considering the cobordisms
corresponding to a sequence of successively thinner collars of Σ. Indeed the
same argument shows that if x1, . . . , xk are distinct points on Σ, we have a
map

Ox1
⊗ . . .⊗Oxk

→ Hom(ĚΣ; ÊΣ)

which does not depend on choosing an ordering of the points.

In the introduction we mentioned the Wightman axiom that field opera-
tors at space-like separated points must commute. We can now see how this
follows from our framework, at least in a globally hyperbolic space-time. For
the spaces ĚΣt

⊂ EHilb
Σt
⊂ EΣt

for all times t0 ≤ t ≤ t1 can be identified with
those at time t0 by the unitary propagation Zt,t′ from time t to a later time

t′ to get a single rigged Hilbert space Ě ⊂ EHilb ⊂ Ê, and we can define an
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unbounded operator

ψ̃ = Z−1t0,t
◦ ψ ◦ Zt0,t : Ě → Ê

for any ψ ∈ Ox with x ∈ Σt. Furthermore, if we change the choice of time-
function on the cobordism, so that x lies on a different time-slice, then ψ̃ will
not change.

The fact that two observables ψ, ψ′ situated at space-like separated points
x, x′ give rise to operators ψ̃, ψ̃′ which are composable, and commute, is now
clear. For if x and x′ are space-like separated we can choose a single time-
slice Σt which contains them both, and we see that the composed operator,
in either order, is Z−1t0,t ◦ (ψ ⊗ ψ′) ◦ Zt0,t.

The domain of holomorphicity of the vacuum expectation values

We end with a conjecture about a question arising in the traditional
treatment of field theories defined in the standard Minkowski space M =
Rd−1,1. There, the Wightman axioms imply that the vacuum expectation
values, initially defined as distributions or other generalized functions on the
k-fold products M× . . .×M, are boundary values of holomorphic functions
defined in an open domain Uk in the complexified space MC × . . . × MC.
The definition of Uk, known as the ‘permuted extended tube’, was given in
Section 2. Recall that U2 consits of all pairs of points x, y such that ||x−y||2
is not real and ≤ 0.

If k > 2, however, Uk is known not to be holomorphically convex, so
it cannot be the largest complex manifold to which the expectation values
can be analytically continued. It is an old problem to describe this largest
manifold Vk, or even the holomorphic envelope of Uk.

The ideas of this paper suggest a candidate for Vk. It sits over the open
subset V̌k of all k-tuples x = {x1, . . . , xk} of distinct points in MC which lie
on some totally-real submanifold M with two properties:

(i) the metric on M induced from MC is allowable, and
(ii) M projects surjectively onto the usual real Euclidean subspace E =

Rd of MC = E⊕ iE.
Notice that, by the remark before Prop. 2.6, the projection M → E is a

local diffeomorphism if the metric of M is allowable, so (ii) implies that M
is the graph of a smooth map E→ iE.

Let Fk denote the space of all pairs (M,x) satisfying the above conditions.
It is an infinite-dimensional complex manifold projecting to the open subset
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V̌k of Confk(MC), and it is easy to see that the map π : Fk → V̌k is open. We
define Vk as the largest Hausdorff quotient manifold of Fk through which π
factorizes and which maps to V̌k by a local diffeomorphism. Thus two points
(M,x), (M ′,x) of the fibre Fk,x of π at x have the same image in Vk if they
are in the same connected component of the fibre, but — as that equivalence
relation need not give a Hausdorff quotient — also if there are paths γ, γ′

from (M,x) and (M ′,x) to a third point (M ′′,x′′) of Fk which cover the same
path from x to x′′ in V̌k.

To motivate the definition of Vk we must enlarge our framework to allow
Lorentzian space-times whose time-slices are not compact. The simplest way
to do this is to introduce the cobordism category in which a morphism is the
part of a d-dimensional allowable submanifold M of MC cut off between two
time-symmetric hypersurfaces.

A field theory defined and holomorphic on this category, if it has a
Lorentz-invariant vacuum state in a natural sense, will have vacuum expec-
tation values which are holomorphic functions Ek on the spaces Fk of pairs
(M,x). Strictly speaking, Ek is a holomorphic section of a bundle on Fk, but
we can use the local diffeomorphism M → E to trivialize the bundle, giving
us a holomorphic function

Ek : Fk → Hom(O⊗k;C),

where O is the space of observables at a point of E.
Our much-used Principle 5.1 tells us that the value of the function Ek does

not change if, while holding the marked points x fixed in MC, we move M
smoothly in the allowable class. So in fact we have a holomorphic function
on Fk which is constant on the connected components of the fibres of Fk,x

of the map π, i.e. to the isotopy classes of allowable manifolds conatining x.

Unfortunately we have no proof that Vk is a domain of holomorphy, but
at least we can assert

Proposition 5.4 Vk contains the Wightman domain Uk.

Furthermore, we saw in Proposition 2.3 that the holomorphic envelope
of Uk contains Vflat

k , the part of Vk represented by flat affine submanifolds
M ⊂MC.
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Proof of 5.4 First, Vk is invariant under the complex orthogonal group of
MC, and under reorderings of the points x = {x1, . . . , xk}. So it is enough to
consider x such that the imaginary part of xi+1 − xi belongs to the forward
light-cone C ⊂M for each i.

Smoothing the obvious polygonal path joing the points, we can thus as-
sume that the xi lie on a curve x : R → MC whose derivative Im(x′(t))
belongs to C for all t. But then we can choose, smoothly in t, a set of d− 1
orthonormal vectors ej(t) in MC which are all orthogonal to x′(t). Let Mt

be the real vector subspace of MC spanned by the vectors ej(t). The points
x lie on the d-dimensional real ruled manifold M swept out by the affine
d− 1-planes x(t) +Mt, and the metric of M is clearly allowable. ♠
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