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Quantum Focusing is a powerful conjecture, which plays a key role in the current proofs of many
well-known quantum gravity theorems, including various consistency conditions, and causality con-
straints in AdS/CFT. I conjecture a (weaker) restricted quantum focusing, which I argue is sufficient
to derive all known essential implications of quantum focusing. Subject to a technical assumption,
I prove this conjecture on brane-world semiclassical gravity theories which are holographically dual
to Einstein gravity in a higher dimensional anti-de Sitter spacetime.

I. INTRODUCTION

Spacetime is emergent in quantum gravity: at length
scales much larger than the Planck length, an approxi-
mate semiclassical description emerges where local quan-
tum fields propagate on a smooth spacetime manifold.

Despite its approximate nature, semiclassical gravity
quantifies and explains deep quantum gravity concepts in
simple geometric terms. The generalized entropy is cen-
tral to this story. Let B be a partial Cauchy slice, such
that ∂B is a smooth codimension-two spacelike subman-
ifold. The generalized entropy of B is defined as [1–3]

Sgen(B) =
A(∂B)

4Gd
+ S(B) + · · · (1)

where S(B) denotes the von Neumann entropy of the
bulk fields in B, and the ellipsis denote sub-leading con-
tributions to the generalized entropy from higher curva-
ture corrections to Einstein gravity [4].

The importance of the generalized entropy becomes
particularly evident in the context of AdS/CFT [5]. Any
CFT subsystem is dual to a quantum extremal region B,
i.e., a stationary point of the generalized entropy func-
tional [6, 7], with Sgen(B) equal to the boundary sub-
system’s von Neumann entropy.1 This has, for exam-
ple, led to a derivation of the Page curve [9–11], extend-
ing even beyond AdS/CFT [12, 13]. Furthermore, quan-
tum extremal regions dictate salient features of the holo-
graphic bulk-to-boundary map, resulting, for instance, in
concrete proposals for its computational complexity [14].
This has important consequences for the reconstruction
of the black hole interior [14, 15], and has further sharp-
ened some proposed resolutions to the firewall paradox
in evaporating black holes [16–18]. In addition, the gen-
eralized entropy outside black hole apparent horizons2

has been identified with a coarse-grained entropy, giving
the generalized second law of such horizons a statistical
explanation [19–21].

The quantum focusing conjecture (QFC) [22], the
quantum analogue of the classical focusing theorem, is

1 This is a special case of a more complicated story [8]. However,
these complications can be ignored in a very large class of states.

2 More accurately, quantum minimar surfaces [19–21].
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FIG. 1. Given a partial Cauchy slice B (shown in blue), we de-

fine the null hypersurface N+(B) = (J̇+(B)−B)∪∂B whose
generators are depicted with straight black lines with tangent
vectors ki. A future Cauchy slice ΣV intersects N+(B) at
v = V (y), depicted in red. On any surface v = V (y), we
can define a null vector field `i orthogonal to it, which is out-
ward and past-directed. The quantum expansions Θ(k) and
Θ(`) of BV are given by the rates of change of Sgen(BV ), per
unit transverse area, per unit affine length, as the region is
deformed locally at ∂BV along the ki and `i directions re-
spectively.

a powerful constraint in semiclassical gravity, whose im-
plications are at the heart of the above discoveries’ con-
sistency. For example, the QFC is a crucial assump-
tion in various existence proofs of quantum extremal re-
gions [14, 23, 24], and their compatibility with causality
on the boundary CFT [23, 25]. The QFC also implies
the quantum Bousso bound, quantum singularity theo-
rems [26, 27], the generalized second law of causal hori-
zons and holographic screens [28], and the quantum null
energy condition [22, 29–31].

Despite its prominent role in semiclassical gravity and
holography, quantum focusing remains without a general
proof. The goal of this paper is to (partly) fill this gap. In
Sec. II, we conjecture a condition weaker than the QFC,
which is sufficient to replace it in the aforementioned ap-
plications. Sec. III includes a proof of this and another
relevant constraint, on brane-world semiclassical gravity
theories that are holographically dual to Einstein gravity
in an asymptotically (locally) Anti-de Sitter spacetime
(henceforth, referred to as brane-world gravity). We con-
clude in Sec. IV with a discussion of some related ideas
and future directions.
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II. THE RESTRICTED QUANTUM FOCUSING
CONJECTURE

We begin by defining some relevant objects. Let J+(B)

be the causal future of B and N+(B) = (J̇+(B) − B) ∪
∂B a null hypersurface with affine generators ki (= ∂v).
Now, let ΣV be a Cauchy slice nowhere to the past of ∂B
which intersects N+(B) at v = V (y) ≥ 0 (v = 0 on ∂B,
and y denote transverse coordinates on ∂B which label
the generators) and let BV = ΣV ∩ J+(B) (See Fig. 1).

Let Vλ(y) be a one-parameter family of non-negative
functions which satisfy ∂λVλ(y) ≥ 0. The QFC states
that [28]

∂λΘ(k)(Vλ; y) ≤ 0 for all y, (2)

where

Θ(k)(V ; y) =
4Gd√
hV

δSgen(BV )

δV (y)
, (3)

is called the quantum expansion [28] of BV at y ∈ ∂BV ,
and hV is the determinant of the induced metric on ∂BV .

It is easy to see that the QFC implies:

Θ(k)(0; y) ≤ 0, for y ∈ Γ ⊆ ∂B V |∂B−Γ=0
=⇒ Θ(k)(V ; y) ≤ 0,

(4)

where V |∂B−Γ = 0 means that V is zero on all generators
emanating from ∂B − Γ.

Interestingly, Eq. (4) is all that is required of the QFC
in the applications mentioned in the introduction. A
look-alike condition, unrelated to the QFC, which is also
crucial to the aforementioned applications, is3

Θ(`)(0; y) ≤ 0
V (y)=0
=⇒ Θ(`)(V ; y) ≤ 0, (5)

where for any region BV , we define `i as the past outward
directed vector field orthogonal to ∂BV . Then, Θ(`)(V ; y)
is defined in obvious analogy with Eq.(3) (See Fig. 1).

Throughout our discussion so far, we can interchange
J+(B) with D+(B) (future domain of dependence of B).
That is, we can consider inward deformations of B along
future-directed null geodesics orthogonal to ∂B. Then
ki would be future-inward directed and `i past-inward
directed. Together, conditions (4) and (5), along with
their inward, and also time-reversed versions, imply all
of the applications mentioned in (paragraph 4 of) the

3 This condition involves a variation of the von Neumann entropy
of B under null deformations of ∂B at different points. This
can be rewritten as an expression involving the von Neumann
entropy of three subsystems, which by the strong sub-additivity
of the von Neumann entropy acquires a sign [28, 32]. But Eq.5
also involves a contact term contribution from the Dong entropy
piece of the generalized entropy [4].

introduction.4 It is therefore highly desirable to prove
them.

Here, I conjecture a restricted quantum focusing con-
dition, which states that

Θ(k)(Vλ; y) = 0 =⇒ ∂λΘ(k)(Vλ; y) ≤ 0. (6)

Even though the restricted QFC is weaker than the QFC,
it is sufficient to derive (4). To see this, pick any Vλ
such that V0(y) = 0 and V1(y) = V (y), which further
satisfies the property that for each y, Θ(k)(Vλ; y) is a
differentiable function of λ. We expect that all physical
states allow such a choice.5 Then, a violation of (4) at
some transverse point y implies that there exists a λ such
that Θ(k)(Vλ, y) = 0, but ∂λΘ(k)(Vλ, y) > 0. Therefore,
(6) implies (4).

Similarly, the following inequality implies (5):

Θ(`)(Vλ; y) = 0
∂λVλ(y)=0

=⇒ ∂λΘ(`)(Vλ; y) ≤ 0 (7)

The rest of the paper is mainly devoted to proving
conditions (6) and (7) in brane-world gravity.

III. A PROOF OF RESTRICTED QUANTUM
FOCUSING ON BRANE-WORLD GRAVITY

We will introduce the brane-world setup briefly in sub-
section III A, reviewing the salient points of the construc-
tion for our purposes, before delving into the proofs of
conditions (6) and (7) in subsection III B. For much more
elaborate discussions of brane-world holography setups,
see [33–44].

A. The brane setup

In the standard AdS/CFT setup, to compute the CFTd
partition function holographically, one considers a cutoff
surface at z = ε, where z is Fefferman-Graham (FG)
radial coordinate of AdSd+1, computes the bulk action
including the Gibbons-Hawking-York terms. Then, as ε

4 To show this is a straightforward exercise in most cases which
we leave to the interested and/or skeptical reader. Technically,
an additional often-overlooked (and independent of the QFC)
assumption is involved: that the loss of generators along N+,
which happens generically due to caustics and self-intersections,
cannot increase the value of Sgen. Separately, To arrive at the
quantum null energy condition, one needs to approach a clas-
sically stationary point y on ∂B, through a family of surfaces
which satisfy Θ(k) = 0 at y in the G→ 0 limit.

5 The reader might object that, for example, in shockwave geome-
tries with a delta function energy sources, this is not the case.
However, such delta function divergences only make sense as a
distribution, and a physically reasonable state needs to involve a
proper smearing of such delta functions which would then allow
a differentiable choice.
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is sent to zero appropriate counter-terms are added to
cancel divergences.

One way to think about brane-world holography is to
instead consider a (physical) cutoff surface at a finite
distance, with a metric that is free to fluctuate. The
previously divergent contributions (no longer removed
by counter-terms), may now be interpreted as induced
gravity on the brane (e.g., as in the Randall–Sundrum
model [33]) which is coupled to a strongly-interacting
holographic CFT. This is a semiclassical gravity theory
on the brane which is holographically dual to a higher
dimensional classical (Einstein gravity) theory.

Explicitly, consider the bulk action,

Itotal =
1

16πGd+1

∫
dd+1x

√
−ḡ

(
R̄+

d(d− 1)

L2

)
+

1

8πGd+1

∫
brane

ddx
√
−g (K − T ) ,

(8)

where Gd+1 and L denote the bulk Newton’s constant
and the AdS radius respectively, R̄ denotes the bulk Ricci
scalar, K = gijKij is the trace of the brane extrinsic
curvature tensor Kij . There also exists a brane tension
term (proportional to T ) which can fine-tune the brane
location. The intrinsic metric on the brane is free to
fluctuate, resulting in the equations of motion

Kij = (K − T )gij . (9)

A practical way to find explicit brane solutions like this
is to start with an asymptotically locally AdSd+1 solution
in FG coordinates,

ds2 =
L2

z2
(dz2 + g̃ij(x̃, z)dx̃

idx̃j), (10)

with the condition (always achievable by an appropriate
rescaling of z) that the smallest lengthscale on g̃ij(x̃, z =
0), denoted by L0, satisfies L0 � L. Then the FG ex-
pansion remains valid at z ∼ L, and furthermore, it is
easy to check that, with T = (d−1)/L, the brane will be
located at:

z = L+O(L/L0) (11)

where the subleading correction are x̃ dependent in gen-
eral. Importantly, using the FG expansion one can check
that the induced action on the brane is that of Einstein
gravity plus higher curvature corrections that are sup-
pressed by powers of L [38]:

Ibrane =
1

16πGd

∫
ddx
√
−g
(
R+O(L2R2)

)
(12)

where x denotes brane coordinates and O(L2R2)
schematically denotes higher derivative corrections.
Here,

Gd ∼
Gd+1

L
. (13)

Combined with Ld−1/Gd+1 ∼ c, where c denotes the
CFT’s effective number of degrees of freedom, this gives

cGd ∼ Ld−2. (14)

Therefore, L is the scale of the breakdown of the semi-
classical expansion on the brane.

For a general discussion, it will be more convenient to
consider Riemann normal coordinates in a neighborhood
of the brane:

ds2 = dn2 + gij(n, x)dxidxj , (15)

where the brane is located at n = 0. In these coordinates,
the brane equation of motion (9) at n = 0 give

∂ngij = − 2

L
gij (16)

Now, consider a partial Cauchy slice B of the brane
spacetime. We have

Sgen(B) =
A(X̄(B))

4Gd+1
, (17)

where A(X̄(B)) denotes the area of the minimal area
bulk extremal surface X̄(B) homologous to B [34, 35, 38–
41, 45]. We may view Eq. (17) as a definition of Sgen(B)
for our purposes, though it must be possible to derive
it from an independent definition of Sgen(B). Note that
the homology condition here does not necessarily mean
∂X̄ = ∂B. In general ∂B ⊂ ∂X̄, where some connected
components of ∂X̄ may end with Neumann boundary
conditions on a brane (See Fig. 2).

A powerful feature of the brane-world scenario is that
bulk Einstein gravity induces on the brane, Einstein grav-
ity plus higher derivative corrections to all orders. This is
a very convenient setup to study quantities like the gen-
eralized entropy and conditions like the restricted QFC
which make sense to all orders in the semiclassical ex-
pansion (controlled by L). Of course, the bulk theory
receives both quantum and stringy correction (discussed
in subsection IV A), which on the brane are interpreted
as 1/c and inverse coupling corrections respectively.

Before going on, we will comment on connections to
previous works. In [38], Eq. (17) was expanded in
small L where it was shown to reproduce the Bekenstein-
Hawking entropy for the region B plus quantum correc-
tions and local extrinsic curvature terms on ∂B [4]. Fur-
thermore, our setup is close in spirit to the work of [46]
which in the standard AdS/CFT setup, used the HRT
formula [47, 48] to prove the quantum null energy condi-
tion in holographic CFTs (see also later work [49, 50]).
The brane setup here is of course different in that it is
a gravitational theory. But, in addition, there are two
major technical differences with [46]. First, contrary
to [46], we do not analyze the extremal surface X̄ in
a “near boundary/brane” expansion. The treatment is
fully non-perturbative in that regard, enabling us to draw
conclusions which hold to all orders in the brane semi-
classical expansion parameter L. Furthermore, in [46], a
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FIG. 2. An arbitrary region B on the (grey) brane is shown
with a minimal area extremal surface X̄ homologous to it.
While some connected components of X̄ end on ∂B, in general
there may be others which end on another brane (satisfying
a Neumann boundary condition). In such cases, we can glue
the solution to itself across the lower brane, reducing to a
scenario with only Dirichlet boundary condition.

crucial inequality was derived from “entanglement wedge
nesting”, proven earlier only in the context of standard
AdS/CFT [51]. We therefore use another, more direct,
technique here.

B. The Proof

Let X̄µ(n, ya) specify embedding coordinates for X̄
where µ denotes bulk coordinates and ya is an exten-
sion of the coordinates on ∂B to the bulk. We work in
a gauge where X̄n = n. Therefore, X̄µ = (n, X̄i(n, ya))
such that X̄i(n = 0, ya) is the embedding coordinates of
the ∂B on the brane. For simplicity we can pick coordi-
nates on the brane such that X̄i(n = 0, ya) = yaδia (no
summation). Let H̄αβ(n, ya) denote the induced metric
on X̄µ. 6 Here α and β are either n or ya, coordinates
on X̄. Then,

A[X̄] =

∫
dndya

√
H̄, (18)

where H̄ = det(H̄αβ). By taking a functional deriva-
tive of this area subject to null deformation of the brane
region in the ki or `i directions, we can compute the cor-
responding quantum expansions,

Θ(k)(B; y) = −kµt
µ

`P

∣∣∣∣
∂B

, (19)

Θ(`)(B; y) = −`µt
µ

`P

∣∣∣∣
∂B

, (20)

where B in the argument of Θ means evaluating it at
V = 0. Further, kµ and `µ are the push-forwards of ki

6 To sum up the notation, µ and ν are bulk indices, i and j are
brane indices, α and β denote indices along X̄, while a denotes
indices on ∂B. So, e.g. µ = {n, i} and α = {n, a}.

and `i, tµ is the unique unit-normalized tangent vector of

X̄ orthogonal to ∂B, and `P = Gd+1

Gd
which is defined for

convenience. Then, `P ∼ L, the effective short-distance
cutoff of the gravitational theory on the brane. There-
fore, we take appropriate gauge-invariant lengthscales as-
sociated to the background spacetime, state, and region
B to be much larger than `P to respect the semiclassical
regime. Note that since X̄ is extremal, the only contri-
bution to Eqs. (19) and (20) come from the subset of ∂X̄
with Dirichlet boundary condition, i.e. ∂B.

In our gauge, we have H̄na|∂B = 0, a condition which
we can preserve in a neighborhood of ∂B on X̄ by defining
the extension of the ya coordinates into the bulk appro-
priately. We also have

H̄nn(n, y) = 1 + gij∂nX̄
i∂nX̄

j . (21)

To make sure that X̄ is a spacelike surface, we need
H̄nn > 0. Using Eq. (19), one can write ∂nX̄

i in terms
of the quantum expansions of B,

∂nX̄
i
∣∣
n=0

= −
`PΘ(`)√

1− 2`2PΘ(k)Θ(`)

ki −
`PΘ(k)√

1− 2`2PΘ(k)Θ(`)

`i,

(22)

where Θ(`) is defined in the obvious analogous way for
the null vector field orthogonal to ∂B and normalized by
ki`i = 1. Then,

Hnn|n=0 > 0 =⇒ 2`2PΘ(k)Θ(`) < 1. (23)

In fact, we expect (and henceforth assume) from the va-
lidity of the semiclassical expansion that

|Θ(k)Θ(`)| � `−2
P . (24)

This makes sense because Θ(k)Θ(`) is a coordinate in-
variant quantity related to the brane region and state.
For example, if we take B to be the ball of radius R in
Minkowski space, this condition is equivalent to R� `P
which is clearly required for the validity of the semiclas-
sical analysis. From now on, we add condition (24) to
the list of other curvature invariants which satisfy the
semiclassical condition.

Let Vλ=0(y) = 0. Without loss of generality, we focus
on conditions (6) and (7) when evaluated at λ = 0. In
order to compute ∂λΘ(k)(Vλ)|λ=0 and ∂λΘ(`)(Vλ)|λ=0, we
need to calculate the response of the extremal surface
X̄(B) to an infinitesimal deformation of B at ∂B in the
ki direction. A deformation of X̄ can be specified by a
deformation vector field αk̄µ + β ¯̀µ in the normal bundle
of X̄ where k̄µ and ¯̀µ are null vector fields orthogonal
to X̄ (which we normalize with k̄µ ¯̀

µ = 1), and α and
β are scalar functions on X̄. To deform X̄, we can then
follow (by a fixed affine parameter λ) geodesics fired from
X̄ along αk̄µ + β ¯̀µ. After some computation from Eq.
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(19), we get

∂λΘ(k)(Vλ; y) =
1

`P (H̄nn)
1
2

(
−ki∂n(αk̄i + β ¯̀i)|n=0

+ `3P (H̄nn)
3
2 Θ(k)∂λ(Θ(k)Θ(`))

)
. (25)

At ∂B, the deformation of X̄ projected onto the brane
needs to satisfy the following condition:

(αk̄i + β ¯̀i)|∂B = (∂λVλ)ki, (26)

where k̄i and ¯̀i are the projections of k̄µ and ¯̀µ onto the
brane. In general, k̄i (¯̀i) is different from ki (`i). See
Fig. 3.

Using the definitions of k̄µ and ¯̀µ, it is possible to
derive

k̄i|∂B = ki +
−1 + `2PΘ(k)Θ(`) +

√
1− 2`2PΘ(k)Θ(`)

`2PΘ2
(`)

`i,

(27)

¯̀i|∂B =
1− `2PΘ(k)Θ(`) +

√
1− 2`2PΘ(k)Θ(`)

2
`i

−
`2PΘ2

(`)

2
ki. (28)

From this, we can derive

α|∂B =
1− `2PΘ(k)Θ(`) +

√
1− 2`2PΘ(k)Θ(`)

2
√

1− 2`2PΘ(k)Θ(`)

∂λVλ, (29)

β|∂B =
1− `2PΘ(k)Θ(`) −

√
1− 2`2PΘ(k)Θ(`)

`2PΘ2
(`)

√
1− 2`2PΘ(k)Θ(`)

∂λVλ. (30)

We can simplify the above expressions using only
`2PΘ(k)Θ(`) � 1:

k̄i|∂B = ki −
`2PΘ2

(k)

2
`i + · · · , (31)

¯̀i|∂B = `i −
`2PΘ2

(`)

2
ki + · · · , (32)

And

α|∂B = ∂λVλ + · · · , (33)

β|∂B =
`2PΘ2

(k)

2
∂λVλ + · · · . (34)

As an important side note, it does not make sense to
demand that the absolute values of `PΘ(k) and `PΘ(`)

are small because their values can change under a si-
multaneous rescaling of ki and `i. In other words, these
dimensionless quantities are coordinate dependent.7

7 For example, for an evaporating black hole in infalling
Eddington-Finkelstein coordinates, it is possible to make them
arbitrarily large [10, 11].

As functions on X̄, α and β are constrained by the fact
that the deformation of X̄ needs to take it to a nearby
extremal surface. Deriving this constraint is a straight-
forward exercise (see e.g. [52]). The result is(

D̂+ −ς̄2
(¯̀)
− 8πGT̄µν ¯̀µ ¯̀ν

−ς̄2
(k̄)
− 8πGT̄µν k̄

µk̄ν D̂−

)(
α
β

)
= 0,

(35)

where ς̄2(k) and ς̄2(`) denote shear-squared terms on X̄, and

D̂± = −∇̄2 ∓ 2χα∇̄α −
(
χ̄αχ̄α ± ∇̄αχ̄α + Ḡµν k̄

µ ¯̀ν − r̄

2

)
,

(36)

where ∇̄α is the covariant derivative on X̄µ, χ̄α =
¯̀µ∇̄αk̄µ, Ḡµν is the bulk Einstein tensor, and r̄ is the
intrinsic Ricci scalar on X̄.

The matrix in Eq. (35) is a particular linear operator
acting on pairs of scalar functions on X̄. The result is
a “cooperative elliptic system” which has in particular
been studied in [53] and was first discussed in the context
of standard AdS/CFT correspondence in [52]. We will
use an important theorem in these works, a special case
of which (adapted to our needs) we state here:

Theorem 1. Consider a fully coupled cooperative elliptic
system, i.e., a system of linear differential equations(

L̂1 f

g L̂2

)(
A
B

)
= 0, (37)

where A and B are functions on an open domain U of
Rn, f and g are non-positive functions, and Li (for i = 1
or 2) are elliptic operators

L̂i = (Hi)
αβ∂α∂β + (bi)

α∂α + ci, (38)

with (Hi)
αβ positive-definite matrices for each i.

Now, suppose Eq. (37) has a supersolution (A+, B+),
i.e.,

A+|U ≥ 0 (39)

B+|U ≥ 0 (40)

(L̂1A
+ + fB+)|U ≥ 0 (41)

(L̂2B
+ + gA+)|U ≥ 0 (42)

and either A+ or B+ is non-zero somewhere on ∂U , or
either (41) or (42) is not saturated somewhere in U .

Then, for any (sufficiently smooth) solution (A,B) to
Eq. (37), either{

A|∂U ≥ 0

B|∂U ≥ 0
=⇒

{
A|U > 0

B|U > 0
(43)

or {
A|U = 0

B|U = 0



6

In [52], Theorem 1 was applied to the extremal surface
deviation Eq. (35) in the standard AdS/CFT context.
We assume that the extension of this theorem from do-
mains of Rn to a manifold like X̄ is trivial. The bulk null
energy condition implies8

(−ς̄2(k̄) − 8πGT̄µν k̄
µk̄ν)

∣∣∣
X̄
≤ 0, (44)

(−ς̄2(¯̀) − 8πGT̄µν ¯̀µ ¯̀ν)
∣∣∣
X̄
≤ 0. (45)

In the highly non-generic case where one of the above
inequalities in saturated everywhere on X̄, the analysis
becomes trivial. Therefore, without losing anything, we
restrict to the case where they are both non-saturated
somewhere on X̄. Then, the only remaining step to make
Theorem 1 non-trivially applicable is to demonstrate the
existence of a supersolution. In the standard AdS/CFT
context, this follows from the (classical) maximin pre-
scription [51].

This brings us to our main technical assumption: in
our setup, where the bulk is cut off by a brane, we will
henceforth assume that such a supersolution exists. We
leave a proof of this assumption to future work, but we
comment here on why we believe this is a mild assump-
tion. It is possible to prove that the matrix operator in
Eq. (35) has a real eigenvalue (called the principal eigen-
value) which is equal to or smaller than the real part
of all of its other eigenvalues, and whose corresponding
eigenvector is a pair of positive functions on X̄ [54]. The
central assumption here would then follow if this eigen-
value is positive. In the standard AdS/CFT setup, the
positivity of this eigenvalue is a simple consequence of the
(classical) maximin prescription. Now, from Eq. (11), we
expect that for an X̄ anchored to the brane, this eigen-
value is only perturbatively (in L/L0) different from that
of standard AdS/CFT, therefore maintaining its positive
sign.

Lastly, if there exists connected components of ∂X̄ sat-
isfying Neumann boundary conditions on some brane, we
can “double-up” the solution by gluing across the brane,
which would then reduce the boundary conditions of X̄
to purely Dirichlet ones (See Fig. 2).

Assuming the existence of a supersolution, it follows
that: {

α|∂B ≥ 0

β|∂B ≥ 0
=⇒

{
α|X̄ ≥ 0

β|X̄ ≥ 0
(46)

Armed with (46), we can now prove our main results,
conditions (6) and (7). First, since ∂λVλ ≥ 0, Eqs. (33)
and (34) imply the LHS of (46). Furthermore, Θ(k) = 0
simplifies Eq. (25) in the following way:

8 Alternatively, we can simply assume the (classical) restricted fo-
cusing in the bulk.
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FIG. 3. B is a subregion on the brane (located at n = 0).
The generalized entropy of B is computed by the Bekenstein-
Hawking entropy of the minimal area bulk extremal surface
X̄ homologous to B. The null vector fields ki and `i orthog-
onal to ∂B and the null vector fields k̄µ and ¯̀µ orthogonal to
∂X̄ are depicted. ki and k̄µ align at a point y ∈ ∂B where
Θ(k)(B; y) = 0.

Θ(k)(B; y) = 0

=⇒ ∂λΘ(k)(Vλ; y)|λ=0 = − αki∂nk̄
i + ∂nβ

`P

∣∣∣∣
n=0

. (47)

By Eq. (30), β(n = 0, y) = 0. Then, Eq. (46) implies
that:

∂nβ(n, y)|n=0 ≥ 0. (48)

To make contact with ki ¯̀
i, we first use k̄µk̄µ = 0:

(k̄n)2 + gij k̄
ik̄j = 0 (49)

where k̄n is the component of k̄µ orthogonal to the brane.
Note that Θ(k)(B; y) = 0 implies k̄i(n = 0, y) = ki which

in turn implies k̄n(n = 0, y) = 0. Taking an n derivative
results in:

gijk
i∂nk̄

j(n, y)|n=0 = 0 (50)

where we made use of the brane equations of mo-
tion ∂ngij |n=0 ∝ gij , k̄i(n = 0, y) = ki, and
k̄n∂nk̄

n(n, y)|n=0 = 0. The last condition requires show-
ing that ∂nk̄

n is convergent enough as n → 0 which we
have relegated to Appendix A. Putting everything to-
gether,

Θ(k)(B; y) = 0

=⇒ ∂λΘ(k)(Vλ; y)|λ=0 = −∂nβ(n, y)|n=0

`P
≤ 0 (51)

This concludes the proof of (6). Let us emphasize the
role played by the condition Θ(k) = 0 in the restricted
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QFC. It implies β(n = 0, y) = 0, which by Eq. (46) leads
to ∂nβ(n, y)|n=0 ≥ 0, something crucial in deriving the
bound in Eq. (51). Without it, we were unable to prove
a bound on ∂λΘ(k)(Vλ). However, in subsection IV B, we
discuss a concrete sense in which β(n, y) ≥ 0 “approxi-
mately” bounds how positive ∂λΘ(k)(Vλ; y) can get when
Θ(k)(Vλ; y) 6= 0.

For condition (7), we have:

Θ(`)(B; y) = 0

∂λVλ(y)=0
=⇒ ∂λΘ(`)(Vλ; y)|λ=0 = −∂nα(n, y)|n=0

`P
≤ 0.

(52)

The inequality in (52) follows from

∂λVλ(y) = 0 =⇒ α(n = 0, y) = 0 =⇒ ∂nα(n, y)|n=0 ≥ 0,
(53)

where the second implication follows from condition (46).
In the remainder of this section, we discuss two addi-

tional inequalities which follow from strong-subadditivity
of the von Neumann entropy (See footnote 3 and [28, 32]).
These are

δΘ(k)(V ; y)

δV (y′)

∣∣∣∣
y 6=y′

≤ 0, (54)

δΘ(`)(V ; y)

δV (y′)

∣∣∣∣
y 6=y′

≤ 0. (55)

Deriving these conditions is a nice consistency check.
This can be done by choosing Vλ = λδd−2(y− y′). Then,
for y 6= y′:

δΘ(k)(V ; y)

δV (y′)

∣∣∣∣
V=0

=
−1

`P

(
∂nβ(n, y)|n=0

+
`2PΘ(k)(B; y)2

2
∂nα(n, y)|n=0

)
, (56)

δΘ(`)(V ; y)

δV (y′)

∣∣∣∣
V=0

=
−1

`P

(
∂nα(n, y)|n=0

+
`2PΘ(`)(B; y)2

2
∂nβ(n, y)|n=0

)
. (57)

where we have dropped terms suppressed by `2PΘkΘ`,
which are not relevant since they multiply either ∂nβ
or ∂nα in the expressions above. Now, condition (46)
implies that for y 6= y′,

∂nα(n, y)|n=0 ≥ 0, (58)

∂nβ(n, y)|n=0 ≥ 0, (59)

resulting in the desired signs (54) and (55).

IV. DISCUSSION

The following ideas will be explored and expanded on
in forthcoming work.

A. Bulk quantum and higher curvature corrections

Even though Eq. (17) already includes all perturba-
tive in Gd corrections, it receives additional bulk quan-
tum, i.e., O(Gd+1), and higher curvature corrections, i.e.,
O(δ), where δ is the small scale suppressing the higher
curvature terms in the bulk gravity action. Studying
these corrections (which are 1/c and inverse coupling cor-
rections from the brane perspective) is very important
since it will elucidate whether restricted QFC (or at least
its proof here) is an accident of a leading order analysis
of the brane-world or something which holds more gen-
erally. We comment on how one could extend the proof
of restricted QFC to include these corrections, leaving a
thorough analysis to future work. Following the quan-
tum extremal surface prescription [55], we assume that
the exact formula, i.e., to all orders in bulk perturbation
theory, for the brane generalized entropy is given by:

Sgen(B) = Sgen(H̄(B)) (60)

where H̄(B) is the homology slice of the quantum ex-
tremal surface X̄(B) homologous to B with the smallest
bulk generalized entropy. Here the bulk generalized en-
tropy is given by:

Sbulk
gen (H̄(B)) = Q(X̄(B)) + Sbulk(H̄(B)) + · · · (61)

where Q(X̄) is the Dong entropy functional [4]:

Q(X̄) =
A(X̄)

4Gd+1
+O(λ) (62)

and Sbulk(H̄(B)) denotes the bulk von Neumann entropy
in H(B).

For proving (6) and (7), these perturbative corrections
only matter if Eq. (48) is saturated at leading order. For
condition (6) saturation implies:

∂nβ(n, y)|n=0 = 0, (63)

a generalization of Hopf Lemma [56] then implies the very
stringent condition that

β|X̄ = 0, (64)

That is, at leading order a small null deformation of ∂B
in the null direction generates a null deformation every-
where on X̄. Inspecting the extremal surface deviation
Eq. (35), this also implies that to leading order (in δ
or Gd+1), X̄ lies on a locally stationary horizon. This
simplifies the analysis greatly. The next-to-leading or-
der corrections can be solved for explicitly by Eq. (35).
A possibility is that ∂λΘ(k)(Vλ; y) reduces at next-to-
leading order to integrated bulk restricted QFC. Higher
order corrections will not be important if the saturation
of the integrated bulk restricted QFC is only possible it
is so to all orders in the bulk δ or Gd+1 expansions. A
similar argument can be made for condition (7).
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One could also consider a generalization of our setup
where additional intrinsic brane curvature terms (beyond
the pure tension term) are added directly to the brane ac-
tion [57]. If such terms are perturbatively small, i.e., they
only cause small changes to the coefficients of the brane
gravity derivative expansion, Eq. (12), then it is possi-
ble that the treatment discussed earlier in this subsection
would suffice to generalize the proofs of restricted QFC.
If such corrections are large though, we do not how to use
our method to derive the restricted QFC. One possibility
is that such theories are pathological. This possibility
was discussed in [58], where the authors emphasized that
non-tension terms added to the brane lead to a brane
null geodesic not being a bulk null geodesic (since Kij

will no longer be proportional to gij), therefore violating
the “brane causality condition”, i.e., there will be bulk
causal curves connecting points on the brane which are
spacelike separated on the brane’s causal structure.

B. Approximate QFC

By Taylor expanding β near n = 0, we get (modulo
O(1) factors in the coefficients)

β(n, y) ∼ `2PΘ2
(k) − n`P (∂λΘ(k) + Θ2

(k))

+ n2∂2
nβ(n, y)|n=0 +O(n3). (65)

From Eq. (35), we have that ∂2
nβ(n, y)|n=0 ∼ `−2

P . There-
fore, if at some value of n, the first two terms become
equal while their absolute values are much larger than
the third and higher order terms, then β(n, y) ≥ 0 would
be violated. It is easy to check that this leads to an
“approximate quantum focusing” condition9

∂λΘ(k) . (∂λVλ)Θ2
(k). (66)

This bound becomes a sharp statement when there exists
a perturbative parameter ε in the problem and ∂λΘ(k)

and Θ(k) acquire ε expansions. Then, in the ε→ 0 limit,
(66) states that the leading LHS term, if it is of lower
order in ε than the leading RHS term, is non-positive.

It would be interesting to explore non-trivial applica-
tions of (66). Here we provide one. In [59], it was found
that in Einstein gravity plus higher curvature corrections,
classical focusing (of the Dong entropy functional [4]) is
upheld on cross-sections of a causal horizon which is a
slight perturbation of a Killing horizon. This was shown
by observing that ∂λΘ(k) = −Gd(∂λVλ)Tijk

ikj +O(G2
d),

which is then non-positive at O(Gd) by the null energy
condition.

While this does not follow from the restricted QFC
(since Θ(k) is generally non-zero on such perturbed hori-
zons), it does follow from (66): on the perturbed horizon,
Θ(k) = O(Gd), forcing any leading term in ∂λΘ(k) lower

than O(G2
d) to be non-positive.

9 Douglas Stanford had speculated about a similar bound in a
discussion we had about this work.

C. Does a QFC counter-example exist?

As discussed earlier, while restricted quantum focusing
(6) has a natural proof in the brane-world scenario, it is
not clear to us how to leverage the same technique to
prove the original QFC (2). This begs the question of
whether the QFC is true.

Here we discuss a setup where a QFC counter-example
may be plausible. By Raychaudhuri’s equation in Ein-
stein gravity, we have

Θ′(k) = −
θ2

(k)

d− 2
− ς2(k) − 4Gd(2π〈T̂ij〉kikj − Ŝ′′(k)), (67)

where θ(k) and ς2(k) are the classical expansion and the

shear-squared of ∂B respectively, 〈T̂ij〉 is the expectation
value of the renormalized stress-energy tensor, and

Θ′(k)δ
d−2(y − y′) = lim

V→λδd−2(y−y′)
∂λΘ(k)(Vλ; y),

(68)

Ŝ′′(k)δ
d−2(y − y′) = lim

V→λδd−2(y−y′)
∂λ

(
1√
hV

δŜ

δV

∣∣∣∣∣
Vλ

)
,

(69)

where Ŝ denotes the renormalized von Neumann entropy
of bulk fields. In [60, 61], substantial evidence was pro-
vided that for interacting CFTs, at least when the do-
main of dependence of B is a Rindler wedge, we have

2π〈T̂ij〉kikj = Ŝ′′(k). (70)

Now, let B be a ball in flat space. We then ex-
pect new terms in Eq. (70). In particular, by dimen-

sional analysis we expect a term proportional to θ(k)Ŝ
′
(k).

Such a term does not have a definite sign and, when
θ(k)/S

′
(k) = O(Gd), its sign may affect the sign of Θ′(k).

Interestingly, when we instead consider the restricted
QFC, where we have the additional constraint Θ(k) = 0,
i.e.,

Θ(k) = θ(k) + 4GdŜ
′
(k) = 0, (71)

then θ(k)Ŝ
′
(k) does acquire a definite sign,10 giving the

restricted QFC a fighting chance. Examples like this will
be explored in forthcoming work.
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Appendix A: Justifying Eq. (50)

The bulk metric in a neighborhood of the brane is given
by

ds2 = dn2 + gij(n, x)dxidxj . (A1)

The vector fields k̄µ is orthogonal to X̄ and null, so in
particular

k̄n + gij k̄
i∂nX̄

j = 0, (A2)

(k̄n)2 + gij k̄
ik̄j = 0. (A3)

Taking n derivatives of the above equations, we get

lim
n→0

(∂nk̄
n + gij∂nk̄

i∂nX̄
j + gij k̄

i∂2
nX̄

j) = 0, (A4)

lim
n→0

(k̄n∂nk̄
n + gij∂nk̄

ik̄j) = 0, (A5)

where we used Θ(k)(B; y) = 0 and the brane equations
of motion to simplify the first expression. By Eq. (22),
a combination of the above equations give

lim
n→0

∂nk̄n
1 +

`PΘ` k̄
n√

1− 2`2PΘ(k)Θ(`)

+ gij k̄
i∂2
nX̄

j

 = 0

(A6)

Since Θ(k)(B; y) and Θ(`)(B; y) are finite, this implies

via Eq. (22) that ∂nX̄
i|n=0 is finite. We now take ad-

vantage of the extremal surface equation:

1√
H̄
∂α(
√
H̄H̄αβ∂βX̄

i) + H̄αβΓ̄ikl∂αX̄
k∂βX̄

l = 0 (A7)

This equation relates gij k̄
i∂2
nX̄

j |n=0 to terms involving
∂nX̄

i. By the smoothness of ∂B, we expect Θ(k)(B; y)
and Θ(`)(B; y) to be well-behaved (e.g., finite and differ-

entiable at y), which then enforces gij k̄
i∂2
nX̄

j |n=0 to be
finite. Since k̄n(n = 0, y) = 0, Eq. (A6) now implies the
desired result that limn→0 k̄

n(n, y)∂nk̄
n(n, y) = 0.
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