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Abstract: The AdS/CFT understanding of CFT entanglement is based on HRT sur-

faces in the dual bulk spacetime. While such surfaces need not exist in sufficiently

general spacetimes, the maximin construction demonstrates that they can be found

in any smooth asymptotically locally AdS spacetime without horizons or with only

Kasner-like singularities. In this work, we introduce restricted maximin surfaces an-

chored to a particular boundary Cauchy slice C∂. We show that the result agrees with

the original unrestricted maximin prescription when the restricted maximin surface

lies in a smooth region of spacetime. We then use this construction to extend the

existence theorem for HRT surfaces to generic charged or spinning AdS black holes

whose mass-inflation singularities are not Kasner-like. We also discuss related issues in

time-independent charged wormholes.ar
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1 Introduction

As is by now well established [1, 2], in AdS/CFT the Ryu-Takayangi [3, 4] and Hubeny-

Rangamani-Takayanagi (HRT) [5] prescriptions generally describe the von Neumann

entropy of CFT regions A in terms of the area of an appropriate bulk surface. In

particular,

SA =
Area[ext(A)]

4G
, (1.1)

where ext(A) is the smallest extremal surface satisfying ∂(ext(A)) = ∂A and with

ext(A) homologous to A. When there is more than one such surface with minimal

area, the HRT surface is ambiguous. Such situations arise at HRT phase transitions,

when the HRT surface jumps discontinuously as one varies the region A.

Now, there are spacetimes in which HRT surfaces fail to exist or where those that

do exist do not correctly compute the von Neumann entropy [6]. However, known

spacetimes M0 with the latter issue are λ → 0 limits of spacetimes Mλ in which the

HRT prescription succeeds, but where the correct (smallest) extremal surface recedes

to the future or past singularity as λ → 0. Similarly, known spacetimes M ′
0 where

extremal surfaces fail to exist are again λ → 0 limits of spacetimes Mλ where HRT

succeeds but in which all extremal surfaces recede in this way.

One thus expects that HRT surfaces do in fact correctly compute the entropy in

contexts such recessions are forbidden; i.e., where extremal surfaces are guaranteed to

exist as surfaces in smooth regions of the bulk. The maximin construction of [7] shows

this to be the case in asymptotically locally-AdS (AlAdS) spacetimes without horizons
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Figure 1: The maximal analytic extension of the AdS-Reissner-Nordström black hole.

for our study in Section 2.2 we truncate it to the AdS-hyperbolic unshaded region

between the past and future (AdS-) Cauchy horizons (heavy dashed lines).

or where the future and past boundaries consist only of Kasner-like singularities1. Ref.

[7] also shows in this context that HRT surfaces satisfy strong subadditivity.

However, the full array of possible spacetimes have not yet been explored. Of

particular interest are charged or rotating black holes. As is well known, stationary

such black holes generally contain Cauchy horizons (see figure 1 for the AdS-Reissner-

Nordström [AdS-RN] case). But this structure is unstable, and perturbations transform

the Cauchy horizons into null mass-inflation singularities which are not Kasner-like [8–

14]; see figure 2. As discussed in the above references, generic black holes are believed

to contain singularities of this type. We show below that HRT surfaces exist in such

spacetimes as well.

Our method of proof extends the maximin arguments of [7]. As defined in [7], a

maximin surface is a codimension-2 surface anchored to ∂A and satisfying the homology

constraint, and minimizing area within some bulk Cauchy surface Σ ⊃ A, but which

1In contrast, the examples of [6] contain smooth de Sitter-like pieces of future or past infinity as

well as special non-Kasner-like singular points where the smooth parts of future/past infinity meet

otherwise-Kasner-like singularities.
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Figure 2: Perturbed one-sided (left) and two-sided (right) AdS-RN black holes. The

null parts are mass-inflation singularities. A spacelike piece of the singularity forms

whenever caustics arise on a null singularity. Such caustics always arise in the one-sided

case, and also occur for strong enough perturbations (as shown here) in the two-sided

case. The resulting spacelike singularities should be Kasner-like, as can be seen from

the fact that the region between the inner- and outer-horizons in figure 1 admits a

foliation by spatially homogenous slices that, when subjected to correspondingly ho-

mogeneous perturbations, becomes precisely an AdS-Kasner solution. Sufficiently close

to a curvature singularity, one should be able to treat any solution as approximately

homogeneous, so the spacelike part of the singularity should again be Kasner-like. In

the left panel, the black hole is formed by a collapsing shell (in blue).

is also maximal among such minimal surfaces with respect to variations of Σ. In

particular, the intersection of Σ with the AlAdS boundary is allowed to vary so long

as it still contains ∂A. Below, we consider restricted maximin surfaces – defined by

bulk Cauchy surfaces Σ that intersect the AlAdS boundary on a fixed boundary Cauchy

surface C∂ – and show that they must agree with with HRT surfaces (and thus with

unrestricted maximin surfaces) when they lie in a smooth region of the spacetime. In

particular, since any Cauchy surface Σ is achronal, restricted maximin surfaces must

be achronally related to some C∂. They are thus forbidden from reaching the null

singularities in figure 2 and must lie in the smooth interior of the bulk spacetime as

desired.

We begin by introducing restricted maximin surfaces in section 2 and showing their

equivalence to HRT surfaces when they lie in a smooth region of spacetime. Existence

of HRT surfaces in (perturbed) AdS-RN-like spacetimes then follows immediately, and

more generally in spacetimes where boundary-anchored bulk Cauchy surfaces can reach
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a future boundary only at Kasner-like singularities. Section 3 concludes with a brief

discussion of possible extensions to spacetimes with more complicated null singularities.

2 Restricted maximin surfaces

This section will discuss restricted maximin surfaces. In a different context, a maximin

construction that fixes the entire boundary of a (in that case partial) Cauchy surface

was also used in [15]. Here and below we assume i) the null curvature condition (NCC):

Rabk
akb ≥ 0 at each point for every null vector ka, ii) the generic condition [16], which

requires at least some positive focusing along each segment of any null geodesic2, and

iii) AdS-hyperbolicity in the sense of [7]. We choose an achronal codimension-1 surface

A in the AlAdS boundary ∂M to define the boundary region whose entropy we wish

to study. The boundary of A is denoted ∂A. Our restricted maximin surfaces are then

defined via the following two-step procedure.

Definition 1: For a chosen Cauchy surface C∂ of ∂M with satisfies A ⊂ C∂, on

any complete bulk Cauchy surface Σ with Σ ∩ ∂M = C∂ let min(A,Σ, C∂) denote the

minimal-area codimension-2 surface anchored to ∂A and homologous to A within Σ

(i.e., such that there is a region R of Σ for which ∂R = A ∪min(A,Σ, C∂)).

If there are multiple minimal area surfaces on Σ, then min(A,Σ, C∂) can refer to

any of them.

Definition 2: The restricted maximin surfaceMR(A,C∂) is defined as the min(A,Σ, C∂)

whose area is maximal with respect to variations of Σ that preserve C∂. We use

ΣMR(A,C∂) to denote a Cauchy surface on which MR(A,C∂) is minimal.

In the case where there are multiple such surfaces, let MR(A,C∂) denote any such

surface that is stable in the following sense: When Σ is deformed infinitesimally to any

nearby slice Σ′ (still containing C∂), the new Σ′ still contains a locally-minimal surface

M ′
R(A,C∂) on Σ′ close to MR(A,C∂) which has no greater area, i.e. Area[M ′

R(A,C∂)] ≤
Area[MR(A,C∂)]

3.

Below, we follow [7] in assuming that the stability criterion can be satisfied. When

ΣMR(A,C∂) is both spacelike and smooth, this follows by the technical argument in

section 3.5 of [7]. But it remains an assumption more generally. Existence of MR(A,C∂)

then follows as in section 3.4 of [7] so long as boundary-anchored Cauchy surfaces can

future or past boundaries only at Kasner-like singularities. In particular, the space of

2In fact, for our purposes it suffices for the spacetime to be a limit of spacetimes in which the

generic condition holds, where the amount of focusing can vanish in the limit. This will be the case

in examples like exact AdS-RN discussed below in which the generic condition does not hold.
3This definition of stability fixes certain difficulties with the definition given in [7]. A similary

improved version of [7] will appear soon.
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boundary-anchored achronal slices is compact in the same sense as the space of achronal

slices anchored only to ∂A.

2.1 Equivalence of HRT surfaces and restricted maximin surfaces in smooth

regions of spacetime

We now show that the restricted maximin surface MR(A,C∂) is an HRT surface for

every choice of C∂ that contains A so long as MR(A,C∂) lies in a smooth region of the

bulk spacetime. The argument follows that given in [7] for the original unrestricted

maximin surfaces.

We first show that MR(A,C∂) extremizes the area with respect to all variations that

preserve ∂A. We begin with the case where ΣMR(A,C∂) has continuous first derivative.

For every point on a restricted maximin surface MR(A,C∂), there are two independent

directions that are normal to MR(A,C∂). The area is minimal with respect to variations

on ΣMR(A,C∂), and maximal with respect to variations normal to this surface. The

corresponding first order variations of the area vanish. Linearity of first order variations

then implies the area to be stationary under all deformations that preserve ∂A; i.e.,

the surface is extremal as desired.

If instead the first derivative of ΣMR(A,C∂) jumps discontinuously, the surfaceMR(A,C∂)

must still be extremal. The argument is identical to that of Theorem 15(b) in [7].

We now show that MR(A,C∂) is the (properly anchored) extremal surface with

least area, and thus an HRT surface. The argument uses the notion introduced in

[7] of the ‘representative’ of any extremal surface x(A) on a Cauchy surface Σ. The

representative x̃Σ(A) is defined by observing that x(A) splits some Cauchy surface into

two pieces, which we arbitrarily label as Σ1 and Σ2. When the new Cauchy surface

Σ lies to the future of Σ1, this representative may be taken to be the intersection of

Σ with the boundary of the future of Σ1 (one may alternatively use Σ2). As noted in

[7] (theorem 3), since the bulk satisfies NCC and the boundary of the future contains

only null geodesics without conjugate points, the focusing theorem [17] guarantees the

representative to have no more area than x(A). And since ∂Σ is fixed to be C∂, the

representative must have the same anchor set as x(A). If Σ is not entirely to the

future of Σ1, one may similarly use e.g. the union of the boundary of the future of

Σ1 and the boundary of the past of Σ2 (or alternatively other combinations of the

futures and pasts of Σ1,2). And the representative on ΣMR(A,C∂) must have area at

least as great as MR(A,C∂) since the latter surface is minimal on ΣMR(A,C∂). Thus

Area[MR(A,C∂)] ≤ Area[x̃Σ(A)] ≤ Area[x(A)], and MR(A,C∂) is a least-area extremal

surface.
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2.2 Existence of HRT surfaces in standard charged and rotating black holes

The above result will show that HRT surfaces exist in charged or rotating black hole

spacetimes. Let us begin with the AdS-Reissner-Nordstrom (AdS-RN) solution. The

maximal analytic extension is shown in figure 1. However, since the Cauchy horizons are

unstable to forming mass-inflation singularities, it is natural to truncate the solution

to the unshaded region between the past and future Cauchy horizons4. Given any

boundary region A ⊂ ∂M , we may then choose a boundary Cauchy surface C∂ ⊂
∂M with C∂ ⊃ A and construct the restricted maximin surface MR(A,C∂) and the

associated bulk Cauchy surface ΣMR(A,C∂). For C∂ to be a full Cauchy surface it must

include pieces on both boundaries even if A is contained in a single boundary.

Now, by definition, M includes only finite boundary times. Since ΣMR(A,C∂) is

achronal (i.e., no two of its points can be connected by a timelike curve) and ends on

C∂, it cannot reach the Cauchy horizon. Thus MR(A,C∂) lies in the (smooth) interior

of the spacetime and the argument of section 2.1 shows that MR(A,C∂) is also an HRT

surface for AdS-RN (truncated at the Cauchy horizons).

Furthermore, it is clear that the same conclusion holds for any AdS-hyperbolic

spacetime satisfying i) NCC, ii) the generic condition, and for which iii) all bulk Cauchy

surfaces Σ anchored on boundary Cauchy surfaces C∂ meet future or past boundaries

only at Kasner-like singularities. We may then use the analysis of Kasner-like singu-

larities in [7] to argue as above. In particular, this is true of the perturbed AdS-RN

spacetimes with mass-inflation singularities shown in figure 2. And it continues to hold

when rotation is added to the black holes, again truncating the spacetime at Cauchy

horizons and/or mass-inflation singularities. Furthermore, strong subadditivity follows

precisely as in [7].

3 Discussion

We have used restricted maximin surfaces to show the existence of HRT surfaces in a

broad class of spacetimes including standard black holes with mass-inflation singular-

ities. In such cases, it also follows that HRT areas satisfy strong subadditivity. The

above class of solutions is believed to be generic in the class of charged and rotating

black holes [8–14].

As explained in the introduction, our result forbids such spacetimes from displaying

the HRT-pathologies found in the examples of [6]. Taken together with the Lewkowycz-

4If one insists on including regions beyond the Cauchy horizons then, as argued in section 6 of [18],

it appears natural to require the homology surface (used in the homology constraint) to be achronal.

This then requires any entangling surface to again lie in our truncated spacetime between the Cauchy

horizons. So for the purposes of entanglement computations there is no harm in our truncation.

– 6 –



Figure 3: Time-independent charged wormhole which is constructed by sewing two

AdS-RN spacetimes together along a domain wall (thick line). Due to the internal

infinities (small circles), the Cauchy horizons are union of the Cauchy horizons of the

two AdS-RN spacetimes. Limits of Cauchy surfaces like the one shown (red) can reach

such horizons.

Maldacena [1] and Dong-Lewkowycz-Rangamani [2] derivations, this strongly suggests

that these HRT surfaces correctly compute the associated entropies of the dual CFT

state.5

While our requirements are expected to be satisfied generically, one can never-

theless imagine spacetimes where they fail. Indeed, generalizing the time-independent

wormholes of [26] to include electric charge immediately yields solutions of the sort

shown in figure 3 in which (limits of) boundary-anchored bulk Cauchy surfaces can

reach the bulk Cauchy horizons. For this particular spacetime one may nevertheless

use the fact that the right-most and left-most wedges are identical to those of AdS-RN

to show that, for any A, there is a (perhaps disconnected) extremal surface anchored

to ∂A that is entirely contained in the union of these wedges. Thus HRT surfaces again

exist for this spacetime, but it remains to argue that smaller such surfaces have not

been lost to the future and past boundaries. Other interesting spacetimes may remain

to be investigated as well.

5These arguments presuppose that the bulk geometry gives the dominant bulk saddle to an ap-

propriate path integral defining a dual CFT state. Although the the class of Lorentzian black hole

spacetimes satisfying this criterion have not been fully characterized, it is clear from e.g. [19–25] that

it includes many familiar open sets in the space of solutions.
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