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ABSTRACT: We study the relative entropy in QFT comparing the vacuum state to a
special family of purifications determined by an input state and constructed using relative
modular flow. We use this to prove a conjecture by Wall that relates the shape derivative
of relative entropy to a variational expression over the averaged null energy (ANE) of pos-
sible purifications. This variational expression can be used to easily prove the quantum
null energy condition (QNEC). We formulate Wall’s conjecture as a theorem pertaining
to operator algebras satisfying the properties of a half-sided modular inclusion, with the
additional assumption that the input state has finite averaged null energy. We also give
a new derivation of the strong superadditivity property of relative entropy in this con-
text. We speculate about possible connections to the recent methods used to strengthen
monotonicity of relative entropy with recovery maps.
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1 Introduction

The main goal of this paper is to present a mathematically rigorous proof of the quantum
null energy condition (QNEC) in the context of algebraic QFT. The QNEC is a local bound
on the expectation value of the null energy density [1]. In certain situations it can be related
to the positivity of the second derivative of relative entropy thought of as a function of
the shape of an entangling surface that cuts the generators of a killing horizon. This
convexity constraint is in turn related to the so called quantum focusing conjecture (QFC)
[2] who's subject is the generalized area Agen/(4G ) [3-5]. For the horizon cuts considered
here, and in a semi-classical limit, the generalized area reduces to —Sy¢1+ constant. Since
entanglement entropy is not well defined in the continuum limit where we work [6], the
bound in terms of relative entropy will be our goal. We specialize here to relativistic QF'T
in d-dimensional Minkowski space with d > 2 and with cuts along a Rindler horizon.
Previous proofs [1, 7] used ideas that are hard to make mathematically rigorous in
general, such as path integrals and the replica trick. These path integral/replica methods [8]
are one of the more powerful tools that we have for uncovering properties of entanglement in
QFT [9] and in AdS/CFT [10]. However it is worth spelling out more rigorous approaches,



if they are available, since they can lead to their own insights. See [11-16] for some recent
progress along these lines. In this paper we will take inspiration from the previous QNEC
proof for interacting theories [7] as well as some ideas laid out by Wall [17]. In this way we
unify these two seemingly disparate approaches and “explain” the somewhat mysterious
correlators in [7] that were used to extract the QNEC.

The main lesson can be summed up as follows. The QNEC reduces to the ANEC in a
new state constructed from the original state with relative modular flow. The ANEC has
been proven now in various ways [18-22]. We start, in Section 2, by describing the relative
entropies of these new states which can be almost completely understood. The missing
ingredient being the averaged null energy (ANE) which the bulk of this paper is dedicated
to finding; we do so with two lemmas: Lemma 2 is proven in Section 4 and Lemma 3 is
proven in 5. The relative entropies satisfy an important constraint, Lemma 1, that is well
known but non-trivial to derive in the algebraic context - we do this in Section 6. Our main
mathematical tool will be the algebraic structure of half-sided modular inclusions [23-26],
the relative modular operators which we summarize in Appendix A, and some elementary
theorems on holomorphic functions (including holomorphic functions of two variables.) For
example these later theorems allow us to give a rigorous example of the saturation of a
(modular) chaos bound [27], a delicate phenomenon that occurs for an analagous CFT
four point function [28] expanded using the light cone OPE and continued to a Lorentzian
regime.

One new result that we would like to advertise is an expression for the shape variation
of the relative entropy, comparing some vector state ¢ with the vacuum, and for null cuts
with some shape x(y):
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where in the first expression ¢ = u/1) for some unitary acting in the complement to the
entangling region. The second expression gives the explicit minimal value where 15 = u/1)
is simply constructed with relative modular flow (more precisely with the Connes cocycle.)
These formulas assume the averaged null energy (ANE) for the input ¢ is finite!. The
minimization is over the set of states that also have finite complementary relative entropy
and we will show that there is always at least one such state.

Our work was initiated as an attempt to apply some recent results in quantum in-
formation [29-32] that give useful strengthening of the monotonicity of relative entropy
inequalities. Since the ANEC is tightly linked to monotonicity and the QNEC seems like
a strengthening of the ANEC it is natural to guess that there is an interesting connection
here. More specifically the strengthened inequalities improve monotonicity using certain
recovered states that attempt to optimally invert a given quantum channel, which in the
case at hand is simply related to an inclusion of algebras. It is interesting to speculate

! Actually we only need that there is at least one state v/t with finite ANE.



that there might be a relation between the universal recovered state in [31] and the various
purifications that we discuss in this paper. In particular they are both constructed with
modular flow. This might of course just be a coincidence and we would like to know if
there is more to it than this. In the discussion section we give some ideas about how this
connection might work.

2 The Ant’s Best Guess

We start in d-dimensional Minkowski space with null coordinates associated to a Rinlder
horizon v = 0:
ds® = —dudv + dy3_, (2.1)

The Rindler wedge R is the right region {u > 0,v < 0} with the associated algebra of
operators Ar. We now define a generalization of the Rinder wedge and the associated
algebra that we will collectively refer to as null cuts. Consider a null cut No = {v =0,u >
C(y))} where C(y) is a continuous function of the coordinates y along the entangling
surface. Define N(, as the maximal open subset spacelike separated from N¢ and so forth
for N = (N{,)’. Then N/. is an open space-time region for which we can associate a von
Neumann algebra. As a short hand we will label this as Ac = AN'C',- This algebra can
heuristically be thought of as the double commutant of the local operators on N¢ [33]. In
this notation Ar = Aj.

The vacuum state € is cyclic and separating for all the algebra’s that we consider
here, a property which follows from the Reeh-Schlieder theorem [34]. Applying Tomita-
Takesaki theory we can define the associated modular operators in the usual way. For the
Rindler cut, the Bisognano-Wichmann theorem [35] shows that the modular operator Aﬁ"’; R
is simply the boost that fixes the entangling surface v = v = 0. For other null cuts the
vacuum modular Hamiltonian’s have been the subject of recent investigation [5, 20, 36, 37].
The modular Hamiltonian is defined as K4 = —In Aq. 4 and the results of [37] showed that:

Kyg= 27r/ (u—A(y))Tun (2.2)

v=0
If we consider two null cuts then the modular Hamiltonian’s satisfy the following algebra:
[Ka, K| =2mi(Ky — Kp) = (2r)2%iP (2.3)

where P is a modular translation operator who’s action on the null lines of the Rindler
horizon is a translation by B(y) — A(y). Furthermore these operators can be related to the
averaged null energy (ANE):

P= / (Bly) = AT (2.4)

If Ap C A4 then one has a situation that is referred to as a half sided modular inclusion
(HSMI) or translation [23-26, 38]. In this case P > 0, since such an inclusion implies
that the difference in modular Hamiltonians is a positive semi-definite operator [6, 39].
Considering the relationship to the null energy, (2.4), this then proves the ANEC [20].



We will mostly work in this context where we have algebras satisfying the properties
of a HSMI, and where we have in mind applications to QFT for null cuts. In particular a
HSMI is a well studied algebraic structure in which we need not make any mention of the
stress tensor Ty,,. Note that the stress tensor is a local operator that is often not included in
the basic axioms of algebraic QFT. For a recent application of HSMI to black hole physics
see [40].

Some of the properties of HSMI are given in the following definition:

Definition 1 (Half-sided modular inclusion). An inclusion of von Neumann algebra’s
Ap C Ap is called a half-sided modular inclusion if there is a common cyclic and sep-
arating vector ) € H such that:

A ABAG A C Ap s> 0 (2.5)

From this minimal starting assumption one can derive the following. Let P be the closure
of:

1
By (InAg.p —InAgq.4) (2.6)

Then P is a self-adjoint positive semi-definite operator. One can also derive the following
results [23-26, 38]:

a) The modular translations Uy = e~*F act as:
(a)

UbAaUy = Ag, (C Aa,, s b2 1b2) (2.7)

where .,4*41/27r = Ap and Uy leaves invariant the vacuum €. This new one parameter
“translated” family of algebra’s has €} as a common cyclic and separating vector. The
translations apply for all real b and for the commutant’s which satisfy:

Ay, C Ay, Db (2.8)

(b) We can also “boost” these translated algebras:

A AL A = A, (2.9)
and similarly for the commutant.
(¢) The modular operators satisfy:
AGAUNGE = Ue—2nsyy, Jo.aUpJa.a = Uy (2.10)

is —1is _
%A, Do, = Ubr—ba)(e2ms-1)

furthermore Uy varies continuously in the strong operator topology (sot) and can be
analytically continued into the complex b plane where it is bounded by 1 and (sot)
continuous for Imb < 0.



This definition applies abstractly to von Neumann algebra’s and as already mentioned
one can work entirely from this point of view. At the same time, however, our notation
is uniform with the application to null cuts of a Rindler horizon. For example in this
later notation A, = A + 27b(B — A) where B(y) > A(y). We will also sometimes use the

following notation:
C=A. Co=Aciq (2.11)

where the C' cut with b = ¢ plays a distinguished role.
We now consider an excited state ¢ which we take to be a vector in the QFT Hilbert
space. For now we will assume that this state has the following finite quantities:

Py=@|PlY) <oo,  Sw(¥|QAc) <oo,  Sa(¥]AL) < o0 (2.12)

for some ¢, and where Sy is the relative entropy discussed by Araki [41] and which is defined
for general states [42]. In particular we do not assume that v is cyclic and separating. This
definition uses the relative modular operator which is defined in general via the Tomita
operator S:

SWQ%Ab (O& WJ> -+ ‘X/>) = WAb(ib)OéT ‘Q> Vace AAb s X/ S (1 — 7TA;7<’¢)),H (213)

In the above definition 74, (1) is the support projector, which is the smallest projector in
Ay, satistying 74, (1) [¢) = |¢). For a cyclic and separating vector both T A, A, (¢) are the
unit operator. See Appendix A for further discussion of these. Note that (2.13) only really
defines Syq,4, for a dense set of states in H, however one can show that this operator is
closeable [43] and we will use the same symbol for its closure. The modular operator is
defined as:?

Ayjasa, = Shig.a, Seleza, (2.14)
with support 7/, (1). This then leads to Araki’s definition of relative entropy (where € is
cyclic and separating):

Sret (Y182 Ap) = — (] log Aya [v)) = —/O log Ad (¢ Ex(Aya) [¥) (2.15)

where F)(A) are the spectral projections of A. The relative entropy could be infinite if
this later integral diverges. Note that since |¢) is in the domain of Azl/‘é the following

integral always converges:

/O M (] Bx(Ayi) [9) < oo (2.16)

which implies that any divergence in (2.15) comes from the lower end as A — 0.
One expression for relative entropy that we will find useful is due to Uhlmann [44]

L (0] A% [4)

= lim
0—0t 0

Srel(w‘Q;Ab) (217)

20ur conventions are not standard. The state labels on the relative modular operators are switched.
We follow the conventions in [6] where the relative entropy and relative modular operators are labelled in
the same way. Our labelling on the Connes cocycle are standard.



and this definition is equivalent to (2.15) since (1 — A\?)/@ is a decreasing (increasinng)
function of 6 for all 0 < A < 1 (1 < A < 00), so we can use the monotone convergence
theorem for the integral in the spectral representation [45].

Now consider the following functions:

S(b) = Srel<w‘Q; Ab) g(b) = Srel(w|Q; A;)) (218)

Under the conditions specified in (2.12) for ¢ one can show that S(b) (S(b)) is a continuous
monotonically decreasing (increasing) function for all b € R. Monotonicity is a classic result
for relative entropy [42, 44, 46]. Continuity follows from the following relation:

Lemma 1. Under the assumptions of (2.12):
— (S(b2) = S(b1)) + (S(b2) — S(b1)) = (b2 — b1)27 Py (2.19)

and this, combined with monotonicity, implies that S(b), S(b) are everywhere finite and
Lipschitz continuous.

The proof of this Lemma 1 is the subject of Section 6. In previous works this rela-
tionship was essentially taken to be an obvious consequence of the form of relative entropy
written in terms of the (half) modular energy and entanglement entropy [20, 47, 48]. These
arguments are based on assuming a tensor factorization and working with density matrices
(or a regularization consistent with this). For example in [20] equation (2.19) was used to
motivate the ANEC.3 So it might come as a surprise that we have to devote a whole section
to proving this. It turns out that this relation is simple to derive if one assumes that all
relative entropies in (2.19) are finite to begin with. We would like to not assume this, and
in fact we would like to use this equation as a tool to derive when some relative entropies
are finite given some other ones are finite. This is a non-trivial task but we managed to
get it to work with the assumptions in (2.12) in which case we learn that S(bs) is finite for
bs > ¢ and this finitness does not follow from monotonicity. It then follows that all relative
entropies are finite. These considerations are fundamentally important for proceeding to
compute the relative entropies of the various purifications that we discuss next.

For some of this discussion we will be interested in v restricted to A4, = Ac and
purifications thereof. Since v is a vector in the Hilbert space, this represents one such
purification. Any other purification can be constructed from 1 with the action of a unitary
from the commutant algebra Ay..

In the following discussion we will often drop the C' label on the modular operators
for the A¢ algebra, since this is the most common algebra we write. Consider the Connes
cocycle, which is defined as:

us = (DD : D) = AGAG € Ac (2.20)

for real s, where Ag = Agq|q. The fact that this is an operator in the algebra Ac is a
non-trivial result of Tomita-Takesaki theory applied to an enlarged Hilbert space (by a few

3From the algebraic point of view P > 0 follows more directly from properties of modular Hamiltonians
under inclusion [6].



qudits) using the doubling trick that we review in Appendix A. We define powers of the
modular operator, for example Ag‘ p on the subspace of the Hilbert space with non-zero
support for the operator: m(1))H in this case. We also define such powers to annihilate the
kernel, (1 — 7(¢)))H. For example this means that lims_,o Aféi » = T(¥). An alternative

expression for the cocycle is:
H0lL" = ust (¢) (2.21)

which requires the additional support projector in A}, and is sometimes less convenient,
however for us this will often not matter since we will take the cocycle to act on |[¢)) where
we can drop the support projector.

Similarly we have a cocycle for the complement:

uy = (DQ: DY), = (Ag)™(Ag,) ™ € A (2.22)
Note that «/ is in general not unitary. Instead it is a partial isometry satisfying:
(lug =7'()  w(u))" = AP (¥)AF (2.23)
The following states are interesting purifications of v restricted to Ag:
[vs) = ul [¥) seR (2.24)
This state preserves all expectation values of operators in Ag:

(Wl (uy)Tyul [9) = Wyl [9) = @y’ (@) 1) = @Iy ) veAe  (2.25)

We would like to compute the relative entropy of this purification. This state also
preserves expectation values of operators in Ac, = A4, , C Ac for a > 0 so we conclude

that:

c+a

Srel(¢s|Q§ Ca) = Srel(w|Q§ Ca) a>0 (2'26)

since the relative entropy can be shown to be independent of the vector representation,
only depending on the linear functional that the state induces on operators [41]. Using the
relationship:

(Ayy) ™™ = Alfg (2.27)

discussed in Appendix A, this purification can be written as:

[¥s) = 10 [9) = Ag" us [4) (2.28)

Such that:
(s [s) = (W AGYAG® W) 4" € Ap (2.29)

Thus the complement relative entropy matches the complement relative entropy of the
state A;Zis |1)). We can compute the relative entropy by constructing the relative modular
operator for the cuts Ac: for a < 0. Using the algebra of half-sided modular inclusions
(2.7)-(2.9) we find:

SAS;jgwm;q; = Aﬁ;zgszﬁm;c;e,z” Ag.c (2.30)



and where the support projectors satisfy:
7o, (Bgict) = Agieme,, o (V)AGC (2.31)

and similarly for the complement support projector. We can then construct the relative
modular operator and use this to compute the relative entropy. The answer is simply:

Srel(¢8’ﬂ; Ccll) = Srel(AgiSw’Q; C;) = Srel(w‘g; C,/le*%é‘) a S 0 (232)

Thus it is easy to compute the relative entropy for Ac, C A or A, C Af in terms of the
input relative entropy for . This is because the state [i)5) is roughly a half sided boost

of |¢), leaving one side invariant as above.?

The other cases, such as A/Ca for a > 0 are
harder, since the cocycle acts simply as a half sided boost only on some of the operators
in this algebra but not all.

It turns out however that all we need to know to complete the full picture of relative
entropies is the averaged null energy of this purification. In fact all we need is the following

lemma:

Lemma 2. For a vector state v that has finite Py, < oo then:
Py = (5| Plips) = R+ e %™ (Py — R) (2.33)
with 0 < R < Py, independent of s, and where the state 15 was defined in (2.24).

We will delay the proof of this Lemma to Section 4, although we should stress that
we think that this is the most interesting part of this paper. The rough sketch of how this

—27$ satisfying a growth condition

goes is that we prove that P is an entire function of e
that fixes the answer as above. The growth in (2.33) as s — —oo can be interpreted as
resulting from similar mathematics to the chaos bound discussed in [27]. For example in

Section 4 we consider a function:

9= <ws| e F |ws> (2‘34)

which we will show has a magnitude bounded by 1 for —1/4 < Ims < 1/4 and is analytic
in that strip. These are the same properties as the out of time order (OTO) four point
functions used to study the chaos/scrambling phenomenon [51]. In particular we find:

g~ 1—ee ?™(Py—R)+... (2.35)

where we are imagining sending s large and negative (but not too large). Generally one

—)\LS

might have expected 1 —ee where then the same arguments as in [27] would have fixed

4This should not be confused with the boosted states discussed in [49, 50]. These states are more singular
since they involve modular flow with only half the 1)-modular Hamiltonian. The Connes cocycle is one way
to deal with issues related to divergences that arise in that case, and some of the resulting physics is related
to that discussed in [49, 50]. In particular we expect the bulk description of these states, in the context
of AdS/CFT, to be the same for the part of the bulk spacetime that is (bulk) causally separated from the
boundary entangling surface.



Ar < 27 the maximal Lyapunov exponent. Here we prove that this bound is actually always
saturated and this arrises from a shift in the “spectral weight” (the discontinuity across
a certain branch cut) of g towards large s as one sends € — 0. This same phenomenon
happens in the light-cone limit of the (Rindler) thermal OTO correlator [28] and also in
CFTs with a holographic gravitational dual as one sends € = Gy — 0 where in these cases
the “spectral weight” is governed by the double discontinuity defined in [52]. We think that
this is more than just a mathematical analogy since in holographic theories both effects
will be governed by some kind of gravitational time delay.
Now define the following function:

So(b) = Seet (85 By)  Su(b) = Seer (1] BL) (2.36)

Given Lemma 2 we can apply the results of Lemma 1 to the state |¢5) since we also know
that Ss(c) = S(c) < oo and Ss(c) = S(c) < oo which means that Ss(b), Ss(b) are finite and
continuous functions of b for all —co < b < cc.

For now let us simply use the fact that P; is finite and not the explicit form in (2.33).
Applying the equation in Lemma 1

— (Ss(b) — Ss(c)) + (Ss(b) — Ss(c)) = (b—c)2nPs (2.37)
we can use this to construct the relative entropies everywhere:
S(b b>
sy = 470 =° (2.38)
S(e7?™(b—c)+c) +2m(Ppe ™ = P)(b—c) b<c

and for the complement:

5.(5) = {S(b) +2m(Py— Py)(b—c) b>c (239)

S(e™*(b—c)+c) b<c
These functions are clearly still continuous. It is more convenient to track the derivative

of these functions. Since the input functions are monotonic their derivatives exists almost
everywhere. For now we will take ¢ to be a point where the derivative of the input relative

entropies S(b), S(b) exist. Depending on the value of P; the flowed state might then have
a discontinuity in the derivative at b = ¢, however we can still consider the half sided
derivatives 0T taking limits from ¢ 4 a as a — 0. For example:

™97 Ss(c) = 0S(c) + 2m(Py, — Pse*™) < 0 (2.40)

where the later inequality is simply monotonicity of the flowed relative entropy. For the
complement region we have:

07 Ss(c) = 85(c) + 2m(Ps — Py) = 0S(c) + 27 P > 0 (2.41)

where we used —95(c) + 0S(c) = 2w P, which follows from (2.19). We thus derive the

following bound by extremizing over s:

sup 27 (P, — ™ P5) < —0S(c) < inf 27 P; (2.42)
s S



This is an interesting formula in itself, only relying on the finiteness of Ps. If we plug in
the form of P, = R+ (P, — R)e™ ™ given in Lemma 2 we find:

2R < —0S(¢) <27rR = 27R = -905(c). (2.43)
We thus have the following corollary to Lemma 2:

Corollary 1 (to Lemma 2). For 1) satisfying the assumptions in (2.12) the averaged null
energy of the flowed state can be written as:

2P, = 2 (1| P hs) = —0S(c) + e 2™085(c) (2.44)

almost everywhere for ¢ € R. In particular the above equation holds when S(b) is differen-
tiable at b = c.

Proof. See above. O

We can now give a more complete description of the relative entropies. The derivatives
satisfy:

9.5 = 4 25V bze g
e 295 (e7*™(b—c)+c) + (1 — e 2™)95(c) b<c

almost everywhere in b and for S differentiable at ¢. And for the complement:

. {8§(b) —(1-e?)aS(c) bxc (2.46)

0S55(b -
( ) efgﬂ-sas (6727rs(b_c)_|_c) bSC

Note that the above resulting relative entropies are actually still differentiable at b = ¢ as
a result of the form in Corollary 1. We give an example plot of the derivative of relative
entropy under modular flow in Figure 1

We will give a slightly more refined discussion of these relative entropy functions after
we prove the QNEC. For a preview, we will actually find that S(b) is a convex functions
which means that the one sided derivatives of these functions exist everywhere and this
allows us to constrain P; for all ¢ without the restriction of “almost everywhere”.

Another natural class of purifications that the ant might consider are associated to
states in the natural self-dual cone Vo, C H for Q[53]. In general this cone is defined via
the closure of:

AdcAL 1) (247)

where .Ag are the positive elements of that algebra. For a given 1 there is a unique
representative 1; € Vq.c that gives the same expectation values of operators in A¢c but
generally differs by the action of a unitary from Aj,. These states have the special property
that JQ;C‘?Z> = ‘7@ They can be constructed using the “conjugation cocycles”:

[9) = (@) ) () = (Oyn) = Jaty € Ax (2.48)

~10 -



Figure 1. Relative entropy of 1, for various s as a function of b. The input relative entropy
function, shown in black, is a cartoon. It has the additional property that 95 (b),0S(—b) — 0 as
b — oo which is the case if the state approaches vacuum in that limit (this may not actually be
the case in QFT since the wiggly cut functions, representing deformations from the Rindler cut R,
might have bounded support.) Positive s are the green curves and negative s is the red curve. The
relative modular flow is defined with respect to the cut at the point b = c.

that we review in Appendix A. See in particular (A.60). Following the same strategy as
above we can compute the relative entropy as follows. Define the following functions:

S{p\(b) = Srel(lz;’Q; Ab) ) S{Z}(b) = Srel({/;’Q; A?)) (249)

Expectation values of operators in A¢ are unaffected:

(W] ©'7(O") 1) = (|~ ) (2.50)

which implies that:
S=~(b) = S(b) b>c (2.51)

And for operators in A
W10y (@) ) = (| Ty Jo 19) = (W Jav Jar' () [4) = (@] Joy' Ja b)) (2.52)

So for cuts Acr for a > 0 the relative entropy is the same as that of the state Jo,c [¢)).
We can then use the following result for the modular operator of such a state:

Jalyjaic,Ja = Ajgyiaict, (2.53)
using similar arguments to those that arrived at (2.30). This implies that:

S5(b) = Srar(Jo[Q Ay) = Sre (V[ Agep) = S(2c=b)  b<ec (2.54)

For the other relative entropies we need the ANE of this new state. In fact it is not
obvious this is finite. However we have the following result:

Lemma 3. Given a state ¥ with finite averaged null energy, then the state in the natural
self-dual cone Vo.c associated to §) has finite averaged null energy:

P = (4|Pp) < 2R < 2Py (2.55)

- 11 -



where R is the same quantity appearing in Lemma 2 (not necessarily subject to Corollary 1).
Additionally assuming the state v has finite relative entropy for some cut Ac then the state
i the natural self-dual cone for ) has finite relative entropy and finite complementary

relative entropy:

Seet($]2C") = Seat($];C) < o0 (2.56)

Note the later fact about relative entropy follows from our discussion just before the
statement of Lemma 3. We will delay the rest of the proof of this to Section 5. This result
will be useful for us in the next section since we now need only assume that a particular
purification has finite null energy before we can then conclude that there is a state also with
finite complementary relative entropy, so we may relax one of the assumptions in (2.12).

We can now, using Lemma 1 for 121\, give a more complete discussion of the relative
entropy for @/D\ associated to a state ¢ with finite ANE:

o S(b) b>c
Sd}(b) { —b) — ZWﬁ(b —¢c) b<c (257)

S5(2¢
& iy (b)+2rP(b—c) b>c
5-(b) = { S0 ) ,e (2.58)

Notice that the relative entropy here only depends on S(b) for b > c. Indeed none of these
manipulations assumed that the complement relative entropy of ¢ is finite. See Figure 2
for an example of these functions.

~055(b),855(b) —~085(b), 055 (b)

Figure 2. Relative entropy of 1Z as a function of b, where the natural self-dual cone is with respect
to the algebra A4, (at the the origin of the b-axis). The dashed curves show the input relative
entropy and the complement relative entropy (only in the left figure). If the complementary relative
entropy for the input state 1 is not finite then we have not been able to discount the possibility of
a bounded jump discontinuity in the derivative of relative entropy at b = ¢ which is shown in the
right figure.

We turn now to our main results that can be derived from the behavior of the flowed
state and the state in the natural self-dual cone.

3 Main Results

Our main goal is to prove the following conjecture by Wall [17]:
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Theorem 1 (Wall’s conjecture). 5 In the context of algebras satisfying the property of a
half-sided modular inclusion Ag C Ax in Definition 1, consider the relative entropy S(b)
of some vector state ¢ € H compared to the vacuum state S, thought of as a function of
the null cuts labeled by b. Consider states such that:

(Y| Pl) < oo and S(b) = Spe1(¥|2; Ap) < 00, b > by (3.1)

for some by. The derivative of S(b) exists almost everywhere for ¢ > by and can be calculated
using the following variational expression:

—9S8(c) = M(e)

inf 21 (9| P |¢) . 3.2
B vaean, (0] P o) (3.2)

¢€”‘{ Sver (19AL) <00

Proof. From Lemma 3 we can pass to a state in the natural self-dual cone Vo4, at b= bo.
That is consider:

DE (9¢\Q;Ago>T 1) (3.3)

We know QZ has finite ANE, relative entropy and complementary relative entropy at b = bg.
We can then apply Lemma 1 such that the relative entropy functions S@(b) and S’a(b) for
this new state are finite for all b € R and Sq;(b) agrees with the relative entropy of 1 for
b > bg. We thus redefine 12 — 1 and work with this state.

For any ¢ > by we know there exists at least one state ¢ satisfying the assumptions
that go into the infimum in (3.2) (¢ itself). Such a state ¢ also satisfies the assumptions
(2.12) that go into Lemma 1. So we have the following estimate:

Sg(c+a) — Sy(c) = (Sp(c+ a) — Sy(c))

a

21 (¢ P |¢p) = lim > —05(c) (3.4)
a—0t

where Sy (b) = Sra(0|Q; 4;) and Sy(b) = Spa(B|€2; Ap), the later of which agrees with S(b)
for b > c. We have applied monotonicity to Sg(c+a) > Ss(c). Note that S(c) exists since
by assumption we are working around a point where the derivative exists, and although
the derivative of S,(b) might not exists at b = ¢ its half sided derivative 9T does exist and
equals 9S(c). We have:

M(c) > —05(c) (3.5)

We next aim to show that the bound in (3.5) is saturated. We use the flowed state discussed
in the previous section. We apply Lemma 2 and Corollary 1 to:

[¥s) = (DQ: D5 Ac)s ) (3.6)

where this state also satisfies the properties that go into the infimum of (3.2), since the
action of the co-cycle leaves invariant expectation values of operators in A4, (2.25). It also

SWall wrote down this conjecture in a different form involving entanglement entropy and the half inte-
grated ANE. It is essentially equivalent to what is stated here, although the original form involves quantities
that are not obviously well defined in algebraic quantum field theory. He also for the most part had in
mind 2d QFTs. The original conjecture came from arguing that there was no other quantity that he could
imagine except —0S that satisfies all the properties of the right hand side of (3.2).
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leaves the relative entropies A. and A/ invariant as can be seen from (2.38) and (2.39).
The null energy is of course finite and equal to:

27 (Y| P |1bs) = —0S(c) + e 2™ (2n Py + 9S(c)) (3.7)

thanks to Corollary 1. Thus we have the estimate:
M(e) < inf 2 (i3] P ) = ~05(0) (3.8)
which finishes the proof. O

Note that we can slightly loosen the assumptions of this theorem by demanding that
for a cut Ap, there is at least one purification with finite ANE. Then we can apply the
theorem to compute relative entropies for ¢ > by. If we were to also demand that the input
state ¢ has finite complementary relative entropy then considering Lemma 1 we can now
apply this theorem for all by — —oo since all relative entropies are then finite.

The assumption on the ANE is physically sensible for QFT yet it would still be nice
to relax this assumption, for example by showing that the infimum above always exists as
long as the relative entropy of one cut A Ay, 18 finite. It seems reasonable that we should
be able to show this by using the state 121\ in the natural self-dual cone associated to {2.
However we have so far been unsuccessful here since it is hard to make progress if we don’t
assume the initial ¢ has finite ANE to begin with.

Once we have this theorem it is easy to prove a limited version of the QNEC in the
following form:

Theorem 2 (The Quantum Null Energy Condition (lite) ). For all vector states |¢) € H
with finite averaged null energy and finite relative entropy for cuts ¢ > by, then:

dS(c+a)—95(c) >0 (3.9)
almost everywhere in (a,c) with a > 0 and ¢ > by.

Proof. This result follows simply because the minimization in (3.2) for M (c+a), compared
to that for M (c), is over a super set of states ¢ for the same averaged null energy quantity.
In particular any state that is included in the minimization for M (c), via Lemma 1, has
finite relative entropy and complement relative entropy for the algebra A4 ., as well as
finite null energy so it also goes into the minimization for M (c + a). O

Corollary 2. For all vector states 1)) € ‘H with finite null energy and relative entropy for
¢ > by the relative entropy S(b) is a convex function - for (bi,ba) > bg:

S(bit +ba(1 — 1)) <tS(by) + (1 —)S(hy) 0<t<1 (3.10)

This implies that the half sided derivatives of S(b) exists everywhere and we have a refined
estimate to Theorem 1:
—07S(c) < M(c) < -0~ S(e) (3.11)

where M (c) is defined in (3.2)
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Proof. We integrate (3.9), and since the original function was Lipschitz continuous the
fundamental theorem of calculus applies for the Lebesgue integral and we have:

S(c+a+d)—S(c+a)—Sc+ad)+S()>0 (3.12)

for all a,a’ > 0 and all ¢ > by. Setting a’ = a we have:

S(c+ 2a) + S(c)

S(c+a) < 5

(3.13)

which becomes (3.10) for t = 1/2, ¢ = by and c+2a = by. That is S(b) is mid-point convex.
Continuity plus mid point convexity for all points b1, by implies the more general convexity
statement (3.10) for all ¢.

To find the improved estimate for M (c) we reconsider our discussion of the ANE of
the flowed state - Lemma 2 and Corollary 1, with the new knowledge that the one sided
derivatives always exist. Note that the QNEC also applies to 1 (the assumptions are
satisfied for this state) so we also know the half sided derivatives of Sy exist. That is for
all ¢ we can replace (2.40) and (2.41) with:

0 < —e?™978,(c) = —0~S(c) + 2m(e*™ — 1R = —0"S(c) —27R (3.14)
0 <9%Ss(c) = 07 S(c) + 2m(R — Py)(1 — e 2™) = 0tS(c) +27R (3.15)

so we learn that the equality (2.43) is replaced by the inequalities:
—07S(c) <2rR < -9 S(c) (3.16)
We should replace the bound in (3.5) by:
M(c) > —97S(c) (3.17)

since we must approach from the side where the relative entropy is unchanged. The flowed
state still gives an estimate:

M(c) <27R = —075(c) < M(c) < -0~ S(c) (3.18)

which is the desired result. The QNEC that follows from this is:
M(c+a) < M(c) = 07S(c+a)—9d"S(c) >0 (3.19)
O]

3.1 The QNEC from the ANEC

There are several alternative routes to the QNEC. For example if we examine monotonicity
of relative entropy for b > ¢ in (2.46) and take the large s limit:

0 < 88,(b) — 8S(b) — 8S(c) = DS(b) — DS(c) (3.20)

S5—00
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where we are assuming all derivatives exists for simplicity. Alternatively we can apply
Lemma, 2 twice to two different flows. For example consider the state:

‘w30/§*5b> = (DQ: Dy ; Ap)—s(DQ = Dips AL)L o) (3.21)
for b > ¢. We can use our results there to compute the ANE of this state:
21 P, i s, = 2mPye”*™ 4 (1 — e 2™)(9S(b) — 9S(c)) (3.22)

which limits to the QNEC at large s.
Note that this later result connects with a previous proof of the QNEC. Consider the
state:

|¢Q> = AS;A(Z’+C)/2 ‘wscl;75b> (323)

where for symmetry we have added an extra boost around the mid point of the two cuts.
In this state, ¢g, consider a correlation function of two operators from Oy, € “4/AC and the
other from O € A4, for b > c. One finds:

(1q| OLOR [1hq) = (Y| OL(s) A4 AL, OR(s) [¥) (3.24)
where
OL(s) =VOLVT  Og(s) =VIOLV  V =Up_cye-2ms_1)2 (3.25)

and we have used the algebra of half sided modular inclusions. This correlator was the
starting point for the proof of the QNEC in [7]. We can easily compute the ANE in this
state now. The boost simply amplifies the ANE in (3.22)

21 (Y| P |vq) = 2m Py + (2™ — 1)(9S(b) — 9S(c)) (3.26)

which reproduces the large s results in [7]. In other words the results in [7] can simply
be interpreted as extracting the ANEC, using the methods of [21], but in the state |1)g).
Proving positivity seems to work slightly differently but we now know that it simply follows
from the ANEC.

3.2 The QNEC and Strong Superadditivity of Relative Entropy

We now give a more complete discussion of the QNEC for Rindler cuts in Minkowski space.
We consider states 1 that have finite relative entropy for the undeformed cut R and finite
null energy for the generator of null translations:

Srel(V|Q; R) < 00, (Y| Py |9) < o0 (3.27)

where P, = fv:O Twy. We then only ever consider wiggly cuts defined by continuous
functions of the coordinates y along the entangling surface that do not diverge.® That is
A(y) is such that sup, A(y) < oo, infy A(y) > —oc and similarly for B(y) etc.

SFor a CFT a more general discussion is possible, but we do not consider this here.
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Since these functions never diverge any null energy that we define with respect to these
wiggly cuts must be finite because:

Py = / (B = AWTw. Bl > AG) (3.28)

= [Pp-a,P)=0, & Pp_a<P, Slylp(B(?/) - A(y)) (3.29)

which implies that:
(W] Pp—a l¥) < (0| Pu ) Sl;p(B(y) — A(y)) (3.30)

so all the null energies that we can define are finite. Similarly by monotonicity of relative
entropy, any cut that lies entirely inside the Rindler cut R: A(y) > 0, B(y) > 0 etc. implies
that the relative entropies of these wiggly cuts are also finite.

We can now state the following more general QNEC. For B(y) > A(y) and X(y) > 0

Of Sra(¥| B+ AB)|5 g — 9y Srel (V] A+ AD)[54 20 (331)

This follows because the A shape variations can be computed using Theorem 1 which then
involves the same positive null energy operator Ps in both cases. The minimization is then
over a superset for the B cut and the bound in (3.31) follows.

We can also prove the strong super-additivity of relative entropy that was first discussed
in [37]. The advantage gained here is that we can derive this result without ever mentioning
entanglement entropy which is UV divergent. Given two potentially intersecting cuts A, B
we can consider the following one parameter family of cuts 0 < A < 1:

ay=AUB+\B—-AUB) Br=A+ANANB-A) (3.32)
where AN B(y) = max{A(y), B(y)} and AU B(y) = min{A(y), B(y)}. Now we have:
ANB—-A=B—-AUB=%X>0 (3.33)
and ) > ay so we can apply the more general QNEC for 0 < A < 1:
O\Srel(¥[82; Br) — OnSrer (Y[ 0) = 0 (3.34)

almost everywhere as a function of A. Integrating this (which is allowed by Lipschitz
continuity of the underlying relative entropy) we have:

Srel(l/)|Q; AU B) + Srel(w‘Q; AN B) > Srel(¢|Q; B) + Srel(w’Q; A) (335)

which is the strong superadditivity statement for relative entropy.

4 Null Energy of the Flowed State

We aim to prove Lemma 2 in this section. That is we would like to find the form of the
null energy of the modular flowed state. This discussion takes inspiration from some of the
general theorems that go into the theory of half sided modular inclusions, see in particular
[38] and [26]. We split this discussion into two parts. Firstly we consider a special dense
set of states for which the translation operator acts analytically everywhere. We first prove
Lemma 2 for this set of states. We then use a continuity argument for a general state.
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4.1 Entire states

In this part we will work with the following nice set of vectors. This set of states will
be dense in the Hilbert space and a continuity argument will establish the more general
assertions. They are entire vectors for the modular translation group U,. Entirety is the
statement that:

Ua |"7Z)A> (41)

is a vector that varies analytically with a in the entire complex-a plane. It is clear that
such vectors are dense since we can construct them from some arbitrary vector 1 via:

[va) = A ) (4.2)

where Il is a projection operator onto a compact part 0 < A < A of the spectrum of P:

A
HA:/O dE\(P) (4.3)

where P = fooo AdE)(P) is the spectral resolution of the unbounded postive operator P.
Here A can be arbitrarily large, but compactness means that these states are entire vectors.
Indeed these vectors are of exponential type with:

1Ua |9ha) || < exp(2Alal) (4.4)

They provide good approximations to . Consider a sequence of increasing A,, which limits
to co. Let b, = Z,IIx, ¢ where Z,, = ((¢0| I, |1))~"/? . Then we have:

lim [[{5) = f¢bn) || = O (4.5)

Thus the set of states 5 with A < co is dense in H. Note that the null energy itself varies
continuously for these states:

An
ligln <wn| P ’wn> = 117?1 Zn, . A <d}| dE) |77Z}> = <77Z)| P W)) (4'6)

which converges assuming that the initial 1 has finite null energy. When we study prop-
erties of v, we will often drop the subscript on n and simply assume that 1 is entire. We
will return to labeling these states correctly when we make the continuity argument.

In this section, to lighten the notation we will often use the following shorthand for
the relative modular and associated operators:

Ayo=A Aipm = A’ Agpy = (A1 (4.7)
Jpe=Jd  Jogp=J"  On=0" BOyn=6 (4.8)
where the modular conjugation operators J and the corresponding “conjugation cocycles”
© are discussed and defined in Appendix A. As usual, we have dropped the region label

C = A, since in this section the algebra will either be A¢ or its complement and we denote
the later with a prime on the modular operator.
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Let us consider the following “structure function”:

9(s,m) = (ths| U—q [ths) = (| (A)T5U_a(A') i) = (| AT5U_q, A" 1p) (4.9)

where:

a=e? | a,=e g = e 1) (4.10)

and we will consider the analytic properties of g as a function of the two complex variables
n, s for fixed real positive e. The second expression in (4.9) used the algebra of half-sided
modular inclusions (2.10). The eventual goal will be to send € — 0. In particular if we can
show that P; < oo then we can extract the null energy via:

P20l g (4.11)
e—0 1€
and this is the reason we study this function. So far we have defined g(s,n) for real s, a but
we will now explore analytic continuations of this function. The utility of complexifying n
will become clear later.
To find the analytic continuation of g we define the following vector valued holomorphic/anti-
holomorphic functions via their inner product with a dense set of states in the Hilbert space:

Tr(s,m) = (19, ITi(s,m)) = (A% 1), U0, A1) (4.12)
Tar(s*) = (P(s™ ) 19) = (A [9) U, A% |)) (4.13)
Trrr(s™ ™)) (Pan(s™m7)) o 19)) = (A $0,,(¢ 19)), U-a(A)1))  (4.14)
Tr(s.m) = (¢19), 10 (s,m) = (A 19), U-a(&) Sy, (¢ 9)))  (415)

where recall that S§2| w = = (A"~ 1/2 7 These vectors have the following properties:

Lemma 4. The above vectors, can be extended to well defined vector valued holomorphic/anti-
holomorphic functions on the Hilbert space in their respective open convex tube region
(s,m) € Trrr1rr,1v defined via —oo < Re(n,s) < oo and the imaginary part living in
their respective triangles with corners at:

Tr : (Ims, Imn) = {(0,1/2),(0,0), (—1/2,0)} (4.16)
Ty + (Ims, Tmn) = {(0,1/2), (0,0), (1/2,1/2)} (4.17)
Trrr (Ims my) = {(1/2,1/2), (1/2,0), (0,0)} (4.18)
Try : (Ims, Imp) = {(—1/2,1/2), (~1/2,0), (0,1/2)} (4.19)

The vectors are weakly continuous on the closure of these triangles and holomorphic/anti-
holomorphic along the (one parameter) set of complex strip sub-regions based on each side
of the triangle. The vectors are thus strongly continuous on the domain of holomorphy.”
The norms of the vectors are bounded by 1 in the closure of their respective domains of
holomorphy. See Figure 3.
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Ims

1/2

Figure 3. Domains of holomorphy for the various vectors I'r ;1 77,7y discussed in Lemma 4.
Shown are the regions in the imaginary plane upon which the complex tube regions are based with
—o0o < Re(n, s) < co. We have also used different colors to show where the resulting function g.(s, n)
defined via Lemma 5 (see (4.48) and (4.60)) is bounded (blue) or not uniformly bounded (pink).
The function is still bounded on compact subsets. The star marks a particularly well behaved point
for g. since the function is real and monotonic as a function of e. If one identifies the top and
bottom via s = s+ then the green lines become branch cuts. The right figure is for ¢.(7, s) defined
in the proof of Lemma 7, see (4.81). As € — 0 the left and right functions are related in such away
that they must become a periodic function under s — s + 3.

Proof. Firstly it is useful to note that the triangular regions are distinguished by the
following condition:

T[,]] : Im(as) >0 TIII,IV : Im(as) <0 (4.20)

We now work out explicitly the I'; case and quickly sketch the other cases which follow
the same procedure. We follow the general strategy of Araki [43, 54|, see for example
Appendix A.2 of [55]. Consider (s,n) € T7 and define:

Gils.n) = (A% (), U0, " |1)) (4.21)

This function is holomorphic in 77 because U_,, is a holomorphic and bounded operator
there, ||U_,.|| <1, and also because the vectors A™"¢/Q2/ A1) vary anti-holomorphically/
holomorphically in the strip —1/2 < Im(s) < 0 which is a standard result of Tomita-

"Recall that strong continuity of a vector uses the Hilbert space norm and weak continuity demands
that the inner product with any fixed vector is continuous. A weakly continuous vector valued holomorphic
function can be shown to be strongly continuous via the Cauchy integral formula.
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Takesaki theory applied to the relative modular operators.® Note that G is continuous on
the closure of 77 due to standard results in Tomita-Takesaki theory and the fact that U_,,
is continuous in the strong operator topology there. We also have the bound

Gt +i0,n) < (A A )] —1/2<6<0 (4.22)

which is uniform as a function of (s,n) € I'; (the closure of the trangle) but may not
be uniform as a function of the state ¢ |Q2) (after dividing by ||c’ |Q2)||.) We will give an
improved bound next where this is the case.

Note that G is uniformly bounded at the following edge of the triangle:

Gt )l < [I7 (D)1 <[] teR, neS(0,1/2) (4.23)

since ||U_q,|| < 1. We have used the fact that A% = 7/()) and 7'()) < 1. We have
defined the complex strip:

z€S8(a,b): a<Imz<b, —oo<Rez<oo (4.24)

and where S includes the boundaries: a < Imz < b.
Along s =t — /2, for real t, we can compute:

Grlt —i/2,m) = (A2 |0), Uy, A ggym(6) )
AT Q) U, AO [0))
A#t— 1/2 /’Q UatA'Lt@/A—ztU_at |Q>)

(4.25)

~( (4.26)

—( (4.27)

= (A" 19) o' |)) (4.28)

= (A" [9) . (Ag,) 2 [9) (4.29)

= (A 19), (@) ) = (@) ), JA" |0))  (4.30)

= (| Ua, A"O'U_o(A0)" (A) I () (4.31)

where in the first line we used the fact that the support of Jg, is 7(3) so we can just

drop the projector. In the third line we inserted a translation and a boost which leave the
vacuum invariant. In the fourth line we defined:

o = Uy A"O'AGMU_o, € A, C Al (4.32)

and we used the fact that o’ € A so we could pass the A~1/2 to the right as we did in line
5 above. In line 6 we used J' = J T (see (A.30)) along with the definition of the hermitian
conjugate of an anti-linear operator and in the last line we used (A.29).

The result is again bounded since these operators are partial isometries or anti-linear
equivalents giving;:

|Gt —i/2,n)| < || |)]] teR,a>0 (4.33)

8This works for a domain twice the size of Tr, however the necessary bound below, as far as we are
aware, does not extend beyond T7.
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where we have droped various occurrences of support projectors using (), m(¢') < 1.
The bound in (4.33) applies to one of the corners of the triangle, and (4.23) applies along
the opposite edge of the triangle. We can thus consider the following two real parameter
set of complex strips which sit between one corner of the triangle and the opposite edge:

Fhe)(s) = Gr(s,h+ k(s +1i/2))  seS5(—=1/2,0), h,x e R (4.34)

where the resulting function of s is holomorphic. We consider 0 < k < 1 and in particular
k labels the point of intersection with the top edge of the triangle: at Ims = 0 we have
Im#n = /2. The function F("*)(s), for fixed (h, %), is bounded by < ||/ |Q2) || at the edges
of the strip. Then, via the Phragmén-Lindel6f principle, this later bound applies inside the
s-strip. This applies for all values of h € R, 0 < k < 1 and so it applies everywhere in the
tube region I'; including at the boundaries. See Figure 4.

Ims

Imn

Figure 4. Substrips of T parameterized by « and h and defined via n = h + k(s + i/2) with
s € S(—1/2,0). The function F*)(s) on this strip is uniformly bounded by ||’ |©2) || on the edges
so it is uniformly bounded in the bulk.

Thus we may interpret G(s,n) as a bounded anti-linear functional on a dense set of
states in the Hilbert space. Such a functional can be extended to the full Hilbert space
as follows. Consider a sequence of states that converges ¢, |Q2) — |¢) in the Hilbert space
norm. Then we have a convergent Cauchy sequence of functions: G&C%Q)(s, )

xe) /! Q
(G (5,m) = G D (s,m)] < 1€, 192) =, 1) || = 0 (4.35)

that then must converge to a unique G§¢)(s, n) which is now an anti-linear functional on

the entire Hilbert space. This then defines a vector |I'z(s,n)) in the Hilbert space with the
properties that it is norm bounded by 1 and

G (s,m) = (¢19), [T1(s,m))) (4.36)

for all ¢ € Af.. This vector is (weakly) continuous and holomorphic in the same regions as
the bounded functions that define it - since the sequence in (4.35) is uniformly convergent
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in s,n. Explicitly this means that |I';(s,n)) is holomorphic (and thus strongly continuous)
inside the two complex dimensional domain 77, holomorphic inside the appropriate set
of one complex dimensional strips that lie along the edges of 77 and weakly continuous
everywhere in the closure of the tube region T7.

A similar analysis works for I's; 177, 1v, and we simply summarize some of the interme-
diate steps. We define:

Gri(s,n) = <NS* W), U_q, AlS¢ ym) (4.37)

which is bounded and holomorphic in T7;. The uniform bound by ||’ |2) || can be found
by examining one of the corners of the triangle as well as the opposite side of the triangle:

Gt +i/2,n) = (J(c' 1)), (AYEALU_, (6" AU, y¢>) . a<0 (4.38)
Gri(t,n) = (| ATU_,, A Q) , n e S5(0,1/2) (4.39)

which we use to prove uniform bounds in 77; which allows us to extend Gy to the full
Hilbert space.
Continuing we have:

Girrr(s,m) = (&) Spyy (¢ 10), U—a(A)* 1) (4.40)

which is bounded and holomorphic in 77;;. The uniform bound in the state again comes
from examining one of the corners of the triangle, and the opposite edge:

Grur(t+if2.m) = (T ), (A)*U_ (&Y' (@) 1)) . ne80.1/2)  (441)
Grrr(t,n) = (@] (A) U o(A) U 1), a>0 (4.42)

Since this works a bit differently to G; we give the details of the last equality above:
Grrr(t,n) = (W] ¢ (A) T U_a(A)" |9) (4.43)
= (Y] [(A)U_a(A)H(AG) "Ua(AG)"] 19) (4.44)

where it is not hard to see that the object in square brackets is an operator in Aqc, C Ac
for a > 0. Thus we can commute ¢ through to act on |2) and reproduce (4.42).
And finally for:

Grv(s,1) = (A [00) ,U_o(A)*S0y,(¢'19)) (4.45)

we need to examine:
Grv(t —i/2.n) = (J|0), (A) U oA I(19) , neS0,1/2)  (4.46)
Grv(t,n) = (O] (¢) Ua, (A) U o(A) [}, 0 <0 (4.47)

Following the same procedure as for I'; we find the desired holomorphy, bound and conti-
nuity properties for all four cases. O
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We now use these vectors to give an analytic continuation of the structure function
g(s,m). That is:

Lemma 5. The following function of two complex variables:

<¢| FI(SW» (8777) ETI
(Lrr(s*,m%)| ¥) (s,m) €Trr
s,1m) = _ 4.48
T =N Caar(s o) U 1) (som) € T (449
(Y| U—q, [T1v(s,m)) (s,m) € Trv

is holomorphic in the interior of B =T UTUT UTry = S(-1/2,1/2) x 5§(0,1/2)
and continuous everywhere in B. We can give the following explicit form along complex
sub-strips:

(V| Uy APO'U_o (VAT |¢)) s =1t —1i/2
g(s,m) = (Y| ATHU_,, A% [2)) s=t (4.49)
(Y| A*O'U_o (AU, |¢) s=1t+i/2

where n € S(0,1/2) and t € R for all of these cases. This then represents the desired
analytic continuation of the original function (4.9).

Proof. In the respective triangular open tube regions we have holomorpy as well as con-
tinuity in the closure. This later fact follows since U_,, [¢)) (being entire) is a strongly
continuous vector and it is easy to show that the inner product of a bounded weakly
continuous vector with a strongly continuous vector results in a continuous function.

So to show that g(s,n) is holomorphic inside B we need to compare, for consistency,
the function on the overlapping regions where it has multiple definitions. Then we can
apply the edge of the wedge theorem which then tells us that we can extend the region of
holomorphy across these overlaps.’

The strip n € S(0,1/2) with s = ¢ real is obvious. For the complex strips defined by the
lines at 45 in Figure 3 we just need to compare the different definitions at the boundaries
of this diagonal strip. This is because we know both definitions are holomorphic along this
diagonal strip, continuous and bounded in the closure implying both definitions in the bulk
of the strip are determined by the boundary values. To see this, an explicit formula can
be worked out by considering:

) (627rs —f—’L)
g(s,h+s) = —i /C e O UL (4.50)

where C' circles the pole at t = s € S(0,1/2) in the clockwise direction and for the
complex strip under consideration h is fixed and real. We can deform the contour C

9The multi-dimensional edge of the wedge theorem is overkill here, we can apply the one dimensional
edge of the wedge theorem along 7n-strips at fixed s or equivalently s-strips at fixed 7. The result is a
function g¢(s,n) that is holomorphic in one of the variables when the other one is held fixed, which by
Hartog’s theorem is holomorphic in both variables.
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to the boundaries of the strip at Im¢ = 0,1/2 because the kernel decays exponentially at
large t — 400 and |g(s,n)| < 1 along this strip, so we can drop the “vertical” segments of C'
at +00. We have also used the fact that we can take the limit of the “horizontal” segment
to the boundary of the strips thanks to continuity of ¢ and the dominated convergence
theorem where the dominating integrable function is obtained by replacing |g(¢,n)| — 1
and taking the magnitude of the kernel in (4.50). Note that this kernel in (4.50) was

—27Tt)

constructed by mapping the strip in the ¢ plane to the unit disk via z = 1/(1 +ie and

applying the Cauchy integral formula there.

So to reiterate we just need compare definitions on the edges of the diagonal strips.
For example, for the lower diagonal line in Fig 3, starting with the definition in terms of
Iy at s=—i/2+t and a > 0O:

(IV) 5 gt = i/2,m) = () U QAT U, [6)), 1)) (4.51)
where we used (4.46). Now using,
JHANTHU_ (AT = A*Q'U,(6')T A~ (4.52)
which follows from (A.29), (A.60) and (2.10), we find:
(IV) 1 g(t—i/2,m) = (| Ua, A"O'U_o(0) AT [1)) (4.53)

This reproduces the definition with I'; along this line, using (4.31):

(1) : g(t —i/2,m) = (| Ua, A"O'U_o(Ag) " (A) (O [9)) (4.54)
= (V| Ua, A"O'U_o ()1 (AQ) (A [¢) (4.55)
= (V| Ua A"O'U_o (@) TATP AT () [00) = (4.53) (4.56)

where in the second line we used the fact that (Af)*(A")™ € Ac so it commutes with
(01 and in the last line we used the co-cycle relation (A.51).

Agreement for s = ¢ real and a < 0 is clear from (4.47). Thus we must have agree-
ment along the strip based on the diagonal line from (Ims,Imn) = {(0,1/2),(—1/2,0)}.
Agreement along the upper diagonal line in Figure 3 follows similar reasoning.

U

Notice that the function g(s,7) is not uniformly bounded over the full domain where
it is defined. Instead we have:

‘9(3777)‘ <1 (8,7]) S T[ UT]] (4.57)
l9(s, | < [|U—a, [0} || = (] exp(—2PTm(ay)) [¥)"?  (s,m) € Trir UTry  (4.58)

where we have used the fact that these states are entire states in order to compute the
norm in the second equation above. If the entire state ¢ has bounded spectral support for
P up to A then this later estimate becomes:

lg(s,m)| < e tmash (s,m) € Trrr U Ty (4.59)
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Let us define the following function:

1—g(s,m)
€

Ge(s,m) , €>0,(s,m) €8(-1/2,1/2) x 5(0,1/2) (4.60)

where we will still use a = ee?™. We are now in a position to show:

Lemma 6. The following limit exists:
y(s,m) = lim ge(s,n) < oo (4.61)
uniformly (and holomorphically) for compact subsets of
S(—1/2,1/2) x S(0,1/2) > (s,n) (4.62)
where (s,m) is a holomorphic function on this same region.

Proof. We start by examining the complex strip defined by n = i/4 + h for fixed real h
and s € S(—1/2,1/2). We consider a bounded open subregion C' C S(—1/2,1/2) that
intersects the real axis and s = 0. Then, in light of the bound (4.57)-(4.59), we can show
that:

1 — ||U_a, %) |170} 5 L= V{dlexp2Pemc) ) (4.63)

Rege(s,n) > min{
€ €

> 1 — exp(Aemc) > 1 — exp(Aegme)

€ €0

€ <€ (4.64)

where m¢ = max{0, sup{—Reexp(27(h — s));s € C}}. It follows from the bound on the
real part that

ye(s) = eXp(_ge(S7 Z‘/4 + h)) (465)

are all uniformly bounded holomorphic function of s in C' and 0 < € < €.
Along the real s axis with s =t for ¢ € R we can evaluate the function explicility:

€

Gt ifdt h) = (b A <1 — exp(—ee27r(ht)p)> Al ) (466)

from which we have the following monotonicity result:
Ge(t,i/4+h) > Go(t,i/4+h), e<¢ (4.67)

implying that ye(t) < y.(t) for € < €. Thus for fixed real s the set of functions y. labelled
by € are real and positive, monotonically decreasing as a function of ¢ — 0, and bounded.
This guarantees pointwise convergence along the real s-axis (possibly to zero - which would
mean that g. diverges, a possibility we will shortly rule out.)

We now consider a sequence of the functions y., labelled by an arbitrary sequence of
real numbers €, > 0 that converges to zero. If we can show that any such sequence of
functions converges uniformly in s to the same function then this function is the uniform
limit of y(s) for lim._,.
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Bounded sequences of holomorphic functions behave well under limits due to Montel’s
theorem [56] which guarantees the existence of a sub-sequence €, that converges uniformly
on compact subsets of C' to some holomorphic function. This in turn can be used to prove
the Vitali-Porter theorem [56], which we will apply repeatedly: Sequences of holomorphic
functions, uniformly bounded in some region C, that converge pointwise on a non-discrete
subset of C' necessarily converge uniformly on compact subset of C to a fizred holomorphic
function. This later holomorphic function is the one appearing in Montel’s theorem.

We know from the discussion around (4.67) that any such sequence ¥, converges along
s = t real and this is a non-discrete subset of C', which then guarantees uniform convergence
for compact subsets of C via Vitali’s theorem. We can then extend this in the obvious way
by again applying Vitali’s theorem, to compact subsets of the strip s € S(—1/2,1/2) all at
fixed n =i/4 + h.

We must show that the limit function is the same for any two sequences €, and €},
positive and converging to 0. We can combine these two sequences to €] = ¢ /2 for k even
and €] = e’(k )2 for k odd. The combined sequence of functions y., must converge to
some holomorphic function on compacts and any subsequence must converge to the same
holomorphic function. We thus have:

lim ye(s) = yo(s)( = exp(—7(s,i/4 + h))) se€S(—1/2,1/2) (4.68)

e—0t

uniformly on compacts.

We also need that the limiting function yo(s) is nowhere vanishing in S(—1/2,1/2)
(otherwise v would be infinite at that point). Indeed this follows since for a sequence of
holomorphic functions y., (s) that are nowhere vanishing and that converge uniformly to a
holomorphic function, the limit yo(s) either vanishes everywhere or nowhere.! The former
possibility is discounted since we know for a state 1 with finite null energy then the limit
at s = 0 exists:

_ _ . ,27h
lim g.(0,i/4+ h) = <¢|(1 e"p(je r )>|w>=Pwe2”h<oo (4.69)

lim
e—0t
It is now easy to extend the existence of this limit to compact subsets of the two
complex dimensional tube region. Consider a bounded open subregion D C S(—1/2,1/2) x
S5(0,1/2) then we have the same estimate as in (4.63) and (4.64) with m¢ — mp and

mp = max{0,sup{—Imexp(27(n — s)); (s,n) € D}} (4.70)

So we can continue to apply Vitali’s theorem.

Consider the n-strips with s fixed and n € S(0,1/2). Above we have shown point-
wise convergence of g.(s,n) along the line n = i/4 + h in this new complex strip. Again
by Vitali’s theorem, since e~9% is uniformly bounded on D (for ¢ < €;) we must have

10The proof of this follows by considering the topological invariant that counts the zeros enclosed in some
subset I' C C: 2miN. = [, ds (yc(s)/yc(s)) of a holomorphic function. If the limiting function vanishes
at some discrete point inside I" then for small enough I" we have, by uniform convergence applied to the
integral, lime_,0 Ne = 1. This contradicts the original assumption which gives N. = 0 for all e.
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uniform convergence on compact subsets of D intersected with the n-strip. '' This ex-
tends to the full n strip at fixed s. Criss crossing the two dimensional complex domain
S(—1/2,1/2) x 5(0,1/2) in this way and by using either complex strips in the s plane or
the 7 plane we arrive at uniform convergence on compacts to a limit function e=7(*" that
is nowhere vanishing and holomorphic in each variable s, i separately. Hartog’s Theorem
then guarantees this is a holomorphic function of both variables. This proves the assertion.

O

Corollary 3. The ANE of the flowed state, Ps, is finite and can be extracted from the
limit function which has the following properties:

Y(s,m) = €*p(s), (4.71)

where p(s) is analytic in the strip s € S(—1/2,1/2) and where:

Ps=ip(s), seR (4.72)
It also satisfies the bound:
0, ,8)eTrUT
Revy(s,n) > (.5) e (4.73)
Im(€2ﬂ-(n78))P¢ , (?7, S) eTrrUTy

Proof. Since we know from Lemma 6 that the limit e — 0 is finite at n = i/4 + h for real ¢
this already tells us that the ANE of the flowed state is finite:

_ . p27h
0 1 _ g—€e A

lim g(t,i/4 4+ h) = i ——d (| Ex(P 4.74
Hm. §e(t, i/4 + h) = lim ; . (e EX(P) [hr) (4.74)
=e¥'P < 0 (4.75)

by the monotone convergence theorem for the Lebesgue integral. Knowing this is finite we
can then show that the limit exists for all complex 0 < Imn < 1/2 (inclusive!) and real ¢t by

1—654*‘ < X for 0 < arg ¢ < 7'? in conjunction with the dominated

[

applying the estimate ‘
convergence theorem:

;27T
00 1 _ gl€e A

lim ge(t,n) = lim ————d (| EX(P) [¢1) (4.76)
e—0 e—0t Jo €
= —ie*™P,  necS(-1/2,0) (4.77)

1YWe should again take an arbitrary sequence €, converging to zero and show that for any such sequence
we have convergence to the same limit function. This follows the same logic as above so we do not repeat
it.

12To show this set A = t and consider ’(1 — eio‘)/(z‘g‘)\)’ = {(1 — e“)/t| which we have to show is
bounded by 1. Now for real ¢ we have: |(1 —e'")/t| = 2|sin(¢/2)/t| < 1. This later inequality extends, via
the PhragmnLindelf principle, into the t-upper half plane since (1 — eit)/it is holomorphic and bounded in
the upper half plane (UHP). There is probably a much easier way to show this.
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Now we move to the full two dimensional complex plane. Define p(s) = v(s,0) then by
Lemma 6 we know that p(s) is holomorphic in the strip s € §(—1/2,1/2). For real s =t
we have p(t) = —iP; from the above considerations. So the following function

v(s,m) — €™ p(s) (4.78)

is holomorphic in the two dimensional complex tube region S(—1/2,1/2) x S(—1/2,0)
vanishing along the three dimensional plane Ims = 0. One can then show that this function
must vanish in S(—1/2,1/2) x S(—1/2,0) - by considering complex sub-strips at fixed 7 in
the s-plane where we have a holomorphic function in s vanishing along the real axis, which
by the identity theorem must then vanish in the entire strip. Thus:

v(s,m) = €™ p(s) (s,m) € S(—=1/2,1/2) x S(—1/2,0) (4.79)

For the bound in (4.73) we can simply take the limit € — 0 on the bound in (4.57) and
(4.58).
O

Our next task is to show that v and hence p are entire functions of z = e=2™. We
do this by showing that this function is periodic in s — s 4 27 and also by checking its
behavior as s — oc.

Lemma 7. The limit function v(s,n) is a periodic function in the s-strip s € S(—1/2,1/2)
for fized 1. Together with the bound (4.73) it follows that p is an entire function of e~ 2™
and that:

p(s) = —i(R + Qe ™) (4.80)

where R, Q are real constants satisfying R+ Q = Py and 0 < R, Q < Py,.

Proof. To show periodicity we define a new function:

) 1 {(1 — (Drrr(s*, )| ) (s,m) € Trrr (4.81)

s.m) = =
M= Wl o) (o) € Ty
This function is continuous under the identification of the top and bottom lines in Figure 3
- see the right figure. That is if we identify s = i/2 + ¢ with s = —i/2 + t for fixed
—00 <t < ooand 0 <Imny < 1/2. This can be easily seen from (4.41) and (4.46) after
replacing ¢’ |2) — |¢). By the edge of the wedge theorem ¢, is holomorphic across this
identified line. We can also extend the definition of ¢, into 17 and T7; but we do not need
this here.
Now counsider, for (s,n) € Tqyr:

= et ULl )~ ) o) = U, 100) (4.52)

H¥) = U—a, rw>||)

€

<|I1¥) = [Trrr) | <
o <|\ ) — U—_q, 1) H> (4.84)

(4.83)

€
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where in the last inequality we used the fact that || |Tzrr) || < 1 for (s,n) € Trrr. We can
compute:

1) = Uy [} 1% _ 1+ (a6 €27 |g) — 2Re (] €7 [o)

€2 €2
— (| P2|) |2 (=52 (4.86)

(4.85)

where in the last equation we have taken the limit ¢ — 0 which is indeed finite because
1 is entire and so has finite fluctuations for P. We conclude from the bound in (4.84)
that the only possible behavior for lim, ,o+ Rege < oo (if it diverged then the left hand
side would diverge quicker and violate the bound.) We have used the fact that all other
quantities except /€ in (4.84) are finite in the limit € — 0F.

So the right hand side of (4.84) vanishes and we can thus compute the limit of this
new function:

lim g.(s,7) = 2™ (p(s) ti (P)¢e_2”5) (4.87)

e—0t

uniformly for compact sub-regions of T77; and where a similar analysis in 77 yields the
same limit. Since we know that g, is holomorphic across the identification ¢t +i/2 =t —i/2,
it must be true that the limit is also holomorphic across this line (we have not shown
uniform convergence of the limit everywhere across this line, but one can consider e %
which is bounded on compacts and apply Vitali’s theorem to guarantee the existence of
this limit for compact sets crossing this line.) Our conclusion from (4.87) is that p(s)
can be extended to a function that shares this same holomorphy across the identification
t+1i/2=t—1i/2. Since p(s) is also holomorphic in the original s-strip —1/2 < Ims < 1/2
we get the desired periodicity.
In light of the bound on « in (4.73) we write:

W(z) =(s,m) = ™p(s), 2= (4.88)

The bound translates to:

1, Imz >0
[P (=)l < exp(—Im(z) <P>w> < exp(]z| <P>¢) Imz <0 (4.89)
< exp (21 (P),) (4.90)

Periodicity under s — s + 4 tells us that this is an analytic function everywhere in the
complex z plane except maybe at z = 0. However the above bound in a neighborhood of
z = 0 means that this is at worst a “removable singularity”, so we can extend 7,(z) to an
analytic function there. We don’t actually need v,(0) in the sequel and here it is sufficient
to know that v, can be extended to an analytic function.

Furthermore the bound (4.90) tells us that e~ is an entire function of finite order!?

at most 1 and which has no zeros. By the Weierstrass/Hadamard Factorization theorem'4

"3The order of an entire function f(2) is limsup,_, . (loglog max,,—, | f(2)|)/logr.
1This is the well known fact that an entire function can be determined by its zeros up to an overall
exponential of a polynomial who’s degree is the same as the order of the entire function.
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applied to e™7 we see that 7,(2) is a degree 1 polynomial in z at fixed 1. The n dependence
is also fixed by the form:

Yn(2) = 2™p(s) = —i(Qz + Re*™) = —ie*™(R + Qe *™) (4.91)

for unknown R,(Q. At s = 0 we have R + Q = P;. The bound in (4.73) applied in the
upper and lower z planes then gives 0 < Q < P, 0

In terms of the ANE of the flowed state we have:
Py =R+ (Py — R)e ™ (4.92)
which proves Lemma 2 for entire states.

4.2 General states

We now aim to finish the proof of Lemma 2 which pertains to general states (with finite
ANE) in the Hilbert space.

Proof of Lemma 2. For a general state 1) we can approximate it by a sequence of entire

states:
[Un) = Zalla, [) . Zn = (T4, |) "'/ (4.93)
Consider the flowed null energy:
P = (pMIPlp™), oy = ullM [gn) , s €R (4.94)
W) = (D : D), = (M) (A, )™ € A (4.95)

we know, that for these states the ANE is finite and takes the form:
P\ = Ry + Que ™ 0< Ry, Qn < P (4.96)
where Pd()n) is the ANE of the projected state. It satisfies:
P < Z,P, (4.97)

and as discussed in (4.6) limits to Py as n — oo. This means that R,, @, are bounded
sequences of positive numbers. (Note that Z,, converges to 1.)

We need continuity of the modular operators and in particular the co-cycle. It was
shown by Araki (actually combining two of his results; Lemma 4.1 in [42] and Theorem 10
in [53]) that:

lim (Afy,, )™ = (D) (4.98)

n—oo
in the strong operator topology and uniformly on compact subsets of R 3 5.1 We thus
have the following continuity properties of the cocycle:

(4.99)

") =l () () =

15 Actually Araki showed this for states ﬁ, {b\, @n that are representatives of €2, ¥, 9, in a natural positive
cone associated to Ay and some cyclic separating vector. Taking this vector to be Q and using the fact
that Alﬂl@ = Ag)lwm where 1), is related to 1, by some unitary in A¢c, we have the desired continuity.
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strongly and uniformly on compacts.
We now show that Ps(n) is lower semi-continuous. Consider the spectral representation:

00 A
P = [Coau ) 2 [ m ey o)
0 0

for all A > 0. Since the projected operator PlI, is bounded we can now take the following
limit on n knowing the right hand side converges:

A
limianS(”)Z/ Ad(Ys|EX(P)[Ys) VA (4.101)
n 0
A
= liminf P > lim / Ad{(Ys| Ex(P)|ts) = P (4.102)
n —00 0

Since we know the left hand side divided by Z,, is bounded for all n, and lim,, Z,, = 1, then
lim inf must be finite. This implies that P; is finite.

We will show that it saturates this bound. We return to our trusty structure function
g(s,m) from the previous sub-section. This function can still be studied for non entire
states, although we have less control over its analytic properties. However here we only
need study it for real s,n or real s,n —i/2.

By using the algebra of modular inclusions one can derive the following identity for
a>0:

g(s,m) = (W[ (A)TBU_o(A") i) = (| (D : DQ).U_o(Dtp : DQ)_sAG" |9b)  (4.103)
= (Y| U_o(DY : DQ)_Ua(Dy : DQ)LU_aAG™ [1)) (4.104)
= (Y| U_o X U_q, |¥b) X, = (Dy : DQ)_ U, A~ (4.105)

where in (4.104) we used the fact that U_,(Dvy : DQ)_;U, € Ac, and so it commutes with
(D1 : DQ).. We can thus approximate this in the limit € — 0 (equivilently a — 0) using:

(1 =g(s,m) = (1= Y| U-aly)) = (1= (@[ Usa, [¢)) = (1 = (] Xa [¢)))]
< | <¢‘ (1 - Ufa)Xa(l - Ufas) W)) |

+ (@[ (1=U_a)(1 = Xo) [9) |+ [ (¥ (1 = Xo)(1 = U_y,) [9) | (4.106)
and:
(1= U_a) [¥)|I/a=2(1 = Re (| U_q |¢)))/a =0 (4.107)
(1= U_a,) [9) | /a = 2(1 = Re ()| U_q, [¢))) /a — 0O (4.108)
(1= Xa) [) [I?/a < 2(1 — Re (4] Xo |¥0))/a = Re(1 — g(—s,n — s +1/2)) /a — 0
(4.109)

where in the later equation we have used X}:Xa < 1 by dropping various support projectors.
Using || X,|| <1 we arrive at the limit:

v(s,m) = —ie*™ (1 + e >™) Py +v(—s,n — s+ 1/2) (4.110)
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where finiteness of P, for v implies that we still have the following limit'¢:

1 _
lim g(s,n)

e—0 €

=7(s,m) = —ie*™ P, (4.111)
and similarly for v(s,n +i/2). This gives the important constraint:

Pi+e P = (1+e?™)P, (4.112)
Note that this equation is satisfied by the known form of P; for entire states (4.80). Since the
left hand side of (4.112) is a sum of two positive quantities that are lower semi-continuous
(with respect to the limit on n) and the right hand side is just continuous this implies that

Ps(") actually varies continuously with n — oco.

Let us spell this out explicitly. Defining;:
Ay =(PM —P) B, =(e?p" _¢2mp ) (4.113)
By lower semi-continuity we have:
limninf A,>0 limninf B, >0 (4.114)

But from the constraint (4.112) applied to ¢ and 1, we have:

0 =lim(A4, + B,) > liminf A,, + liminf B,, > 0 (4.115)

using continuity of Pqin) and super-additivity of liminf. This implies that separately:

liminf A, =0 = liminf P(") = P, (4.116)
Using the known form of Ps(n) we find:
Py =(1—e ™) liminf(R,) + Py, s>0 (4.117)

Now we know this equation is also true for any sub-sequence and since R,, are a bounded
sequence of numbers we can pick a subsequence for which limy R, = limsup,, R, which
then implies that liminf, R, = limsup,, R, = lim, R, which we now know must exist. So
we have:

Pi=R+(Py,—R)e®™ R=1limR, (4.118)

which completes the proof. O

168ee Corollary 3, where we don’t actually need entire states to prove the existence of the following limit
at real s,n given P; is finite
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5 Null Energy in the Natural Self-Dual Cone

We aim to prove Lemma 3 in this section. We will firstly establish the statements about
the ANE using entire states. Lower semicontinuity of the expectation values of P is then
sufficient to prove the claim.

Proof. Consider states 1, defined in (4.93) that limit to lim ¢,, — 1. Consider the structure
function qén) (s,m) defined in (4.81). Now with these entire states we know that the following
limit exists on compact subsets in Trir UTry

lim ¢ (s,n) = —ie*™ R, (1 — e~ ™) (5.1)

e—0

We can write out this structure function explicitly at s = /2 for 0 < Imn < 1/2:

™ 0/2,m) = {9l €0, = (O ) = (Pl 2| (52)

where we have used the relation between conjugation cocycles © and the states in the
natural self-dual cone (2.48).

That is we can extract the null energy of the state in the natural self-dual cone using
the ¢, structure function. Again using monotone convergence for n = i/4 we can establish
that indeed the ANE is finite here:

P, = (| P|thn) = 2R, < 2P, (5.3)

Now since P is an unbounded positive operator we know that it varies lower semi-continuously
if 1y, varies continuously. This can be established more explicitly as we did in the subsection
above. We have the result due to Araki [53]:

1[ton) = [9)112 < llpg, — pull < 211 [n) — [4) ] (5.4)

where py () = (1| v [¢) is the linear functional on operators in Ac. The norm of the linear
functional is:

oy, —pull = sup  |py, (7) — pu(7)] (5.5)
veAq;||v|IL1

and we have applied the following inequality to get the last inequality in (5.4)
| (@nl ¥ [¥n) = 1y [0) | < [(1e0n) = [0) s v [0+ ([0 v([0n) = [0 < 2[IV[] (] |eom) = [} ]

(5.6)
for normalized vectors. So we have:

(b | PILA [1h) — (| PTIA[ )] < 2Call|60n) — |)]] < 2V2Cav/|[[tbn) — ) ]| =0 (5.7)

where Cy = ||PII|| < co. So at any fixed A we know the projected null energy PIIj of
the states in the natural self-dual cone vary continuously.

This implies that the ANE is lower semi-continuous. And since the numbers ﬁn are
bounded the limit state must have finite ANE:

2P, > lim2R,, > P (5.8)
n

where we have used the fact that the limit on R, exists which is something we showed
around (4.118). We are done. O
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6 From Null Energy to Relative Entropy

In this section we aim to prove Lemma 1. We tried many different approaches to this. The
main difficulty relates to questions of the finiteness of relative entropy. If we were to assume
all the relative entropies are finite in (2.19) then the simplest way to proceed is to use the
so called differentiate formula for relative entropy that involves the Connes cocycle, see for
example Eq. 2 of [13], in combination with the hsmi-algebra. This differentiate formula
is only correct if one knows a priori that the relative entropy is finite [45]. We however
only want to make the assumptions in (2.12) so we need a slightly different approach - in
particular we will rely on (2.17) to define the relative entropy. This later formula gives co
iff the relative entropy is infinite and so does not need any further assumptions.

Proof. Firstly we note that by monotonicity S(bs) is finite for all by > ¢ and S(by) is finite
for all by < ¢. Consider the following function:

F(s) = (W AZ®(AL,) 7 W) (6.1)

where by > ¢ and where we use the shorthand A, = Ay q.4, and A = AWQ;AL etc. We aim
to use properties of this function to show that S(b2) is finite which we have not assumed.
Writing:

Fls) = (A" ), (85,)7 1)) (6.2)

By Tomita-Takesaki theory these vectors vary holomorphicaly in the strip s € S(0,1/2)
and are strongly continuous on the closure of the strip such that f(s) is holomorphic in
the strip and continuous on the closure. It also satisfies the bound:

[t +i0) < IAZ ) [ 11(AG,)° ) | < 1 (6.3)

for 0 < 6 < 1/2. For real s we can derive the following relationship:
F(s) = (W1 (A PUgoe2r) A" ), s €R (6.4)

using (A.51), (A.30) and the algebra of half sided modular inclusions (2.10). We have set
a = by — ¢ > 0 and in this section we will not analytically continue a. Note that this
later expression for f(s) also has a continuation to the strip S(0,1/2) which can be seen
by writing:

Fr(s) = (A0 1), Uaga—earny A5, [1)) (6.5)

and the fact that Im(1 — €2™) < 0 for s € S(0,1/2) so that the translation operator is a
bounded operator there. In fact these two analytic continuations must be the same. One
way to see this is to show that they have the same values on the top edge of the strip also.
Then via an equivalent integral equation to that discussed in (4.50) these must be the same
analytic functions.

The first expression in (6.1) evaluates at s =t + /2 to:

F(t+i/2) = (Q (0. A" (A,)" O, |2) (6.6)
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and the second expression (6.5) gives:
Fri(t +1i/2) = (Q OL(AL) " Uy(r42m) A}, 0}, 1) (6.7)
Using Up(14e2nty = AéjﬁJQ;CJQ;bZAg;bQ which can be derived from (2.10) we can write
frr(t +i/2) = (] Ja,w OL(—1) 104, () o, 19) , Oy (1) = Jany AG 4, AL Ty, (6.8)

and the equivalent expression for O.(t). The two operators commute: [Oy, (), OL(—t)] since
ba > ¢ which gives:

Srr(t+1i/2) = (U Joppp, (A4,) AL Jyj0.0 1) (6.9)

which is equivalent to f(t +i/2). We conclude that f(s) = f;(s) for s € S(0,1/2). There
is probably a much simpler way to show this.
Now consider the estimate applied to the second continuation of f ((6.5))

(1= 70)) = (1 (1= (AD°) [9) — (61 (L= Vo) |) — (wl (1= ALY )| (6.10)
= |l (1 = (ADVa(1 = ALY [9) + (6] (1 = (A1~ Vo) [8)

(Wl (1= Va)(1 - AL) v)] (6.11)
< |l (1= QD°)WVa(1 = ALY [6)] + (] (1 = (A" = Vo) [4)]
+ |1 (1= Vo) (1 = A%,) )| (6.12)
where
Vo = Uy(1—e2miny = exp(—asin 0P) exp(ia(1 — cos ) P) (6.13)

Now we can use the following limits:
Jim (11— A1) P60 = (1= 201 A%, [0) + (6| AF [9)) /6 >0 (614)
Jim (10— (A0 [0 [12/6 = (1= 2 (] (AD [9) + (W (AD* [8)) /0 >0 (6.15)
Jim {11 = Vi) [0} /0 = (1~ 2Re (4] Vp [0) + (@I V[ Vo ) /0 =0 (6.16)

where we have used the assumed finiteness of S(by) and S(c) and the resulting existence of
the limit in (2.17) to give the cancelation in (6.14)-(6.15). We have also used the assumed
finiteness of the null energy to compute the limit:

W=Vl [ (1= emieAdmeT)
Jim ST = [ AW EP) ) (6.17)
) © (1 — 1aA(
= & [T gm0 —2ar, 1)

where we used the estimate ’T)‘ < A for 0 < arg ¢ < =, which is true for ¢ = 2™ —1,
and this then allows us to use the dominated convergence theorem in order to pass the
limit inside the integral. A similar analysis yields:

Jim, (1 — WV, |q,z)>) /6 = 4raP, (6.19)
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which then gives the cancelation in (6.16).
We also need the bound on the norm of this operator:

IVell <1 (6.20)

which is true for 0 < # < 1/2. We can now show that each term in the right hand side
(6.12) divided by 6 vanishes in the limit. For example:

(1] (1= (AL Vp(1 — AY ) [9)]

0
11— AZ) 1) 1111(1 = (AD%) [#) ]
< ||V 2 - —0 6.21
< [[Val| 7 7 (6.21)
and similarly for the other terms. We conclude that:
1— f(i0 ~

lim = /(#) = S(c) + S(b2) + 2maPy (6.22)
6—0 0

Now we analyze f(s) from the original definition in (6.1). We have the bound:

1= £i0) = (1= @I AZ) = (L= @1 (3,7 [0)] = | (10) = A1) [ = (A7,)° )|
< (1-201 A% ) + Wl A2 1) 7 (1 - 206 (85,7 1) + (1 (A% ) (6:23)
1/2

< (2-2wla09) " (2- 2000 (44,7 ) (6.2)

where we used the bound (1| A2% [1) < 1 valid for 0 < # < 1/2. Let us define:

_1-@lAl) 5 1— (] (A3,)7 |¢) o _ L= Ref(if)

A 0 0 0

(6.25)

we need to show show that the limit # — 0 is finite for B knowing that the same limit for
A, C are finite. Note that all A, B,C are non negative. The bound in (6.24) translates to:

IC— A—- B|<2VAB (6.26)

where it is already clear that the limit on B has to be finite. Slightly more explicitly we
can translate this bound into:

VC - VA < VB <VC+VA (6.27)

We know that B behaves well under limits (the limit always exists but could be o0), due
to the monotonicity property as a function of 6 of the spectral integral that defines B.
This was discussed around (2.17). So the bound above and finiteness of the limits for C, A
imply that the limit on B exists and is equal to:

lim B = S(by) < o0 (6.28)

6—0+
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Knowing this we can improve the bound using (6.23) instead, where we now find that the
right hand side of (6.23) vanishes in the limit and thus limy_,o+ (C — A— B) = 0 such that:

S(bg) + S(c) = 011r(1)1+ C = S(c) + S(b2) + 2maPy (6.29)

_>
This is the relation we wanted to establish, at least for by = ¢. We have also established
that S(b) < oo for all by. We can repeat the above analysis for (c, by) — (b1, c) with by < ¢
to conclude that S(b1) < oo for all b; (switching the roles of A <+ B above.) Finally we
can extend the relation (2.19) to any b1, ba by using our newfound knowledge that all the
relative entropies are finite which allows us to apply the above discussion more generally.
The continuity property of S(b) follows since S(b) is monotonic so:

|S(b1) — S(b2)| < 2w Py|by — bo (6.30)

which is the definition of Lipschitz continuous. ]

7 Discussion

We end with a discussion of some loose ends and also some possible directions for future
work.

While our discussion of relative entropy in the flowed and natural cone states is very
general there was still one main assumption which was the requirement of finite P, for the
input state (or for some possible purification.) Technically this assumption was necessary
since it allowed us to extrapolating our results (Lemma 2-3) for entire states to more
general states. It is natural to ask if we can relax this condition. Since we are discussing
bounds on relative entropy (for the outer/unprimed region) in the first place the relative
entropy must always be finite - does this imply that the state in the natural cone has finite
null energy? This is not obvious to us either way. The finiteness of relative entropy for
the “outer region” might remove possible IR issues and it seems we have dealt with any
possible UV issues at the entangling cut in this paper. It is possible that a more thorough
study of the structure function g. could answer this question either way. It is also possible
that the results in [57] can be used for similar purposes - it would be interesting to explore
this moving forwards.

7.1 Possible Relations to Recovery Maps

A starting point for this work was an attempt to apply recent results in quantum infor-
mation theory [30, 31] which, from a very simple minded perspective, give strengthening’s
of the monotonicity property of relative entropy or as it is known in this work - the data
processing inequality. This body of work aims to find a best guess for the inverse of the
action of a noisy quantum channel N (completely positive trace preserving map) on some
density matrices p,w. This best guess, or recovered state, is an important ingredient in
the strengthened version of monotoncity. In terms of density matrices p and w the data
processing inequality is:

S(pllw) = SN pl|INw]) = 0 (7.1)
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We consider the special case in which the completely positive map is associated to an inclu-
sion of algebras. We will model this for now with Hilbert spaces that are finite dimensional
with the factorization H4 = Hp ® Hc and where the quantum channel is simply a partial
trace over C'. This is not actually appropriate in QFT, since the algebra’s have type-I11
factors, however the results in [31] were not worked out in this more general setting. In-
stead we will simply try to use these formulas to guess how it might translate into the
QFT case. We consider the density matrices ps and w4 that come from global pure states
1) , |§2) respectively.

Consider the improved monotonicity inequality proven in [31] which will be the main
ingredient of our discussion:

S(pallwa) = S(ppllws) = =27 /Oo ds(cosh(2ms) +1)7" log {F(pa, R, v o Nlpal)} (72)

—00

The noisy channel denoted by N (partial trace over C), the approximate recovery map R,
and the fidelity between the original and the recovered state F have the following form:

N(pa) =Trcpa = pp

Rew o N(pa) = pr = w2 <W§_1/2/)Bw]§i8_1/2 ® 10) Wist/2 73

2
F(pa,pr) = [Tr PZ/ZPRPZ/Q]

The s = 0 case above is known as the Petz map [45, 58, 59]. Consider the expectation
values of operators in this recovered state:

Tra R*(Trc(pa)Oa) = Trg pp(R*) (0a) = (] (R*)1(O4) [) (7.4)

where the adjoint of the recovery map is defined with respect to the matrix inner product:
Tr ]\41T Ms. To translate these results into QFT we firstly write them in terms of modular
operators. We can represent these here as operators on matrices. One can write the adjoint
recovery map at s = 0 in the form:

Ligoyi(0,) = I8V JaL0, JaV I8 (7.5)
where we have defined the following operators on matrices:

Lx(M)=XM  Rx(M)=MX  Ja(Ma)=M}  Jp(Mp)= M} (7.6)
VI=R _12NR
B A

For non-zero s we simply include modular flow:
(R*)1(04) = o2, (R%) (04 (04))) (7.8)
where 0/(04) = w50 4w ," etc. Note that:

V(LOBwlB/Q) = LoB®1cwi1/2 (7.9)
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and in this form represents an isometric embedding of the Hilbert spaces of matrices
V : End(Hp) — End(Ha) commuting with the action of the algebra Lo,. Note that
w}g/ 2, w114/ % should be interpreted as vectors in the Hilbert space of matrices represent certain
purifications of the “vacuum” state. When we pass to QFT we should replace wjlg/ R |2)
and ‘*%14/ 25 |©2) both on the same Hilbert space and the isometric embedding V becomes
trivial. The resulting recovery map at s = 0 is well known [58-60] and in fact von Neumann
algebras was the original setting where Petz studied this.

Putting this together we get the following adjoint recovery map appropriate for QFT:
(R*)1(04) = 02, (JpTac i (04)JaT5) (7.10)

We can now apply the theory of half-sided modular inclusions (2.10):
(R®*)T(04) = Uy(re2nyOaU_g(14e2ms) (7.11)

where a is the null translation between null cuts A and B. Passing back to the Schrodinger
picture the appropriate recovered state on the full QFT Hilbert space is simply:

U_a(1+e27rs) |¢> (712)

Now the improved bound in (7.2) tells us to find the fidelity of this state with |¢)) when
restricted to the algebra A. The fidelity in the general von Neumann setting was defined
by Uhlmann [61] as:

Fa(¥, U_a(rye2ny¥p) = sup (14U _g14e2m) [9)] (7.13)
Ua

We would like to be able to compute this in the limit ¢ — 0. This is a hard task that we
do not solve generally.

However in the limit of large subsystem size for both A and B we can make progress.
In this case the difference of relative entropies approaches the ANE. This can be seen from
the sum rule (2.19) since we should take the complement relative entropies to vanish when
the complement regions are pushed far away.

We want to get a simplified expression for the recovery bound. In this approximation,
the expression for fidelity in (7.13) becomes the square of the transition amplitude between
the two pure states:

Fallo) RA(6)) — (@] emio+eP || (7.14)

The bound on monotonicity can be further simplified with the coordinate transformation
y = a(l + €2™) and the identity —2m(cosh(27s) +1)~! = 2&(%). This gives rise to
the following inequality:

2 [ 1 ,i
WP = == [ dylog| (vl e )] (7.15)
We can do this later integral:
0o 1 ) oo 1 .
—nZ= [ dyglog (] )+ [ dy=slog (vl Iv) (7.16)
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by sending y — —y in the second integral after which we can combine the integrals and
deform the contour to give:

a
1 .
1= [y log e 0) (7.17)
o w(y 4+ ie)?
and we have dropped a contribution from large y in the UHP which is justified since the
wavefunction overlap is bounded (by 1) there.
The argument of the logarithm can be expanded. Up to first order in a, this integral
is
a
T= | P ) — —((0| P* ) — (4] P[1))*) + O(a?) (7.18)
We see that ANE is saturated by the bound from recovery map if we take A to be the
whole region. The improved bound on monotonicity becomes the (trivial) statement that
the variance of the ANE is positive:
a 2 2
2 (@l P ) = @l Pl)?) >0 (7.19)
We can compare this to other recovery maps, for example [30] where we do not find satu-
ration:

S(pallwn) - S(psllws) > —log {su]g Floa Roym, o Trc[pAD}
se

Vv

2
—log {Su]g ‘<'¢’ U—a(1+62"5) WM } = —log {K"M U_a WHZ}
sE
(7.20)
and in the later step we have assumed the largest overlap comes from the smallest trans-
lation. Expanding this fidelity, we see that the lowest order term is quadratic:

S(pallwa) = S(pallws) = (| P? [v) - (¥] P[4)?) (7.21)

which is not as tight as the bound in (7.2).

This result has led us to conjecture that this saturation of the bound (7.2) in the limit
a — 0 continues to hold if we do not make the large subsystem size approximation. For
example it might be that the purifications that we worked with for the most of this paper,
which involve the more complicated state dependent relative modular flows, might play
a role in estimating the fidelity in (7.13). Perhaps the methods of non-commutative L,
spaces [57, 62, 63] will be important for this. We suspect this could be the case since the
original proofs of the strengthened inequalities relied on the finite quantum system version
of these L, spaces.

If this conjecture is true then it would be fascinating to compute the leading quadratic
correction as a — 0 and see what replaces (7.19).

7.2 Other future directions

We suspect that these methods might lead to new and improved bounds compare to the
QNEC. For example if the recovery map story above works out then moving to second
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order in the limit @ — 0 could result in new bounds. It would also be nice to try to
work out a story away from the robust confines of Rindler cuts. In more general curved
spacetimes there may be no natural vacuum state to work with in order compute relative
entropies. However an approximate vacuum near the cut might do the job and this is
especially interesting if we only go after the QNEC which is a somewhat local constraint.
Perhaps it is local enough to not care about the details of the state one should compare to.

Potential other targets for these results include a possible algebraic approach to the
statement of QNEC saturation [64]. This is a statement about the second functional
variation of relative entropy and its vanishing for the diagonal/contact piece that appears in
this variation. This was shown originally in holographic theories [64] and then for theories
with a twist gap in [65]. The distinctive behavior of free theories, where saturation is
absent, might make one suspect the algebraic approach is not suitable for this question.
However we are still optimistic that there might be a story here.

It would also be interesting to put various applications of the ANEC [66] and the
QNEC [67] through these modular flow “filters” and see what happens. For example it
would be fascinating to see what becomes of the BMS algebra uncovered in [68] under the
action of relative modular flow.

Finally it is important to uncover the AdS/CFT dual of these statements. Likely the
methods studied in [69, 70] and [71, 72] would be useful here.

A Relative modular operator

In this appendix we collect various formula related to the relative modular operator. We are
particularly interested in defining these objects when the vector states are not necessarily
cyclic and separating. These considerations are standard and can be found in the Appendix
of [43]. We warn the reader that we have a different convention for labeling our S and
A relative modular operators - the state labels are switched. This convention was used in
[55] and we stick with this.

Take v to not be cyclic and separating. This means that there could be some o € A
such that a|1)) = 0 (not separating) and also that A |1)) may generate a proper subspace
of H instead of the full Hilbert space (not cyclic). To describe this situation we define
support projections as the minimal projectors that satisfy:

SAW) ) =) sA(W) e A (A1)
YWY [y =) V() ed (A2)

An equivalent definition follows from finding the projector onto the following subspaces:

[A" )]
[Al)]

m(V)H CH
T (WYH CH (A.4)

—~
?>
(98]

N—
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These are seen to be equivalent as follows. Firstly the 7(¢)) commutes with A" since for
arbitrary state |¢;) € H and for all o’ € A"

(¢1] [ma(®), '] |g2) = (xal @' |d2) — (1] @' [x2) (Ixi) = m(¥) |¢:)) (A.5)
= (xala' [x2) — (xala'[x2) =0 (o [xi) = 7()a’ [xi)) (A.6)

so 7 is in A. Secondly it is the minimal such projector leaving 1 invariant since if it were
not there would be another projector my € A with moH C 7(¢))H which also leaves invariant
the subspace:

[A'[9)] = [A'ma [¢)] = ma [A'[)] (A7)
such that mH C m(v)H = moem(Y)H C mH implying that m = 7(¢)). Thus 7 = s* and
similarly for the commutant.

Note that if (1)) is not the unit operator, then % is not cyclic for A" and (1 — 7 (¢)))
annihilates 1 which means that v is not separating for A. That is the lack of either of
these two properties exchange under A <> A’.

We now move to the modular operators. We will consider two state 1, ¢ neither
of which needs to be cyclic and separating. We start with the definition of the Tomita
operators:

Suje (@) + X)) =n(@)al|g) VX €1 —a'(¥)H (A.8)
S (@]0) + 1)) =m(@)al [v) V& e (-7 (d)H (A.9)

for « € A. Note that, for the first equation above, if both « [1)) = 0 and |y’) = 0 vanish
then af[A'|Y)] = 0 = 7(¥)a’ = 0 so 0 is mapped to 0 as is necessary for a linear
operator. The Tomita operators are closable as defined and we will use the same symbol
for the closure as the original operator. The support of these operators is:

SUpP(Syjsr Shyy) = 7' (W)T(S)H  supp(Spy, Sy ) = w(W)7' (9)H (A.10)
Applying the definitions twice we have:
SyleSepy = m(¥)7'() (A.11)
SojySyle = (V)m() (A.12)
For the commutant algebra we have:
S (& [0) + 1) =7 (W) (@) e) ¥ xe—m()H (A.13)
Sop (0’ 10) +16) = (@) () lw) ¥ x e (1 —m(o)H (A.14)

for o/ € A" with support that is complementary to (A.10). And similar equations hold for
the commutant as in (A.11). Now consider:

(8'19) +1x) Syg (1) + [X'))) = (Bl + 1) m(@)at ) (A.15)
= (81}, at18)) = (alv),(8)119)) = (ale) + ) 7' @)E) 1)) (A16)
= (o) + XY Siyo (8'19) + X)) (A.17)
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which means that (because the above states are dense on the appropriate support)

st

1 ot
bor Selw = Sl (A.18)

ro_
Syls =
where the later equation follows a similar analysis.

We move now to the relative modular operators. Consider the positive self adjoint

operators:
_ gt _qf
Aylg = S¢|¢S¢|¢, Agjy = S¢|¢5¢|w (A.19)

with support
supp(Ayjg) = 7' (W)m(Q)H  supp(Agpy) = m(P)7' () H (A.20)
For the commutant algebra we learn that:
v = (Suio) Sus = SuieSlys = Al = ()7 (9) (A.21)
Ay =SepSh, = Ay =7 @)r() (A.22)

We can define powers of the modular operators Afm o etc. to be zero when acting on
(1 —7'(¢)7(¢))H and to be the usual power when acting on the support of Ay, which for
example means that A?bl 6= 7' ()7 (¢). So for example we have:

(ALy) Ag7, = w(w)r(¢) (A.23)

Furthermore we can apply polar decompositions to the Tomita operators, where the anti-
linear part is not unitary, but rather a partial anti-linear isometry with the support and
range of the Tomita operators:

1/2
Sw|¢ = le(bAw/W etc (A24)
where:
Thoduls =7 @)n(0) e, = m()7(9) (A.25)
Todolw = 7@ () Jgpdl, =7 ($)m(6) ete (A.26)
(with appropriate support and range.) Plugging back into the Tomita operators and (A.19)
we have:
1/2 1/2 FoA1/2 A —1/2
J¢|¢A¢\¢J¢|¢A¢|¢ = W(w)ﬂ'/(¢) - J¢|¢J¢|¢(J¢|wA¢‘¢J¢W) = A¢|1/1 (A27)
which by the uniqueness of the polar decomposition implies that:
= _ gt 1/2 oA —1/2
Tplodoly = mW)T' (@) Jyje = gy JuipByiadoly = By (A.28)
where the last equation implies that:
TulgByle = BolyTuls (A.29)
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by the anti-linearity of J.
For the complement we use (A.18) to derive:

The = Jow  (Bye)” =A% (A4.30)

In order to understand relative modular flow and co-cycles we have to apply the Connes
2 x 2 or 3 x 3 trick which we present here in a vector language. Consider the Hilbert space:

Hiot = Hr @ HrR @ Horr (A.31)

where H 1, r are both simple n-dimensional qunit Hilbert spaces with basis |7) ;4 = 0,1,...,n—
1. In this Hilbert space we consider the state:

"1
V) = > —=lirir) ® |¢i) (A.32)
;\/ﬁ L'R

where |¢;) are vector states in the QF T Hilbert space that need not be cyclic and separating.
We will actually consider the state as living in the subspace projected by the support
projectors of the states ¢;:

H = [liLir) ® 7' (¢:)m(;)Horr : 1,5 =0,1,...n — 1] C Hier (A.33)

where the square brackets means the linear span. We now consider the algebra of operators
acting on this new Hilbert space:

yeh: =3 10 (ihp®c € n(d)An(d) (A.34)
ij

The commutant is:
Vet s A=Y ()G olRed, der()A (s (A.35)
ij

and ® is cyclic and separating for these algebras after we project to the subspace H. The

generalized Tomita operator is:
Sy ) =+ W) (A.36)

from which one finds:

S=_licir) (ijrl ® Sy;,  Sijcjilon) = cl; 1)) (A.37)
tj
Note that this later Tomita operator acts between Hilbert spaces:
Sitj 7 ()7 (0 Horr — 7' (¢5)m(di) Horr (A.38)

We can relate this to our original definition of the Tomita operators by passing back to the
original unprojected Hilbert spaces setting cj; = m(¢;)am(¢;):

Sym(d)a o) = m(¢i)at |6;) (A.39)
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We can lose the m(¢;) on the left hand side since the orthogonal part is killed on the right
hand side anyway. Or in other words we can extend the definition S; i|; to the larger Hilbert
space consistent with the right hand side by dropping this projector and also demanding:

Syjaldi) = m(¢i)at |¢;) (A.40)
Sﬂj(l - W’(gf)i))HQFT =0 (A.41)

which is the same definition we gave for i = ¢ and j = ¢ in (A.8).
The modular operator for the n x n Hilbert space is:

AZSTS:Z|Z'LjR> <iLjR|®Ai|j, Ai\] _Sz|yS|J (A.42)
]
and the modular conjugation operator is:

J= Z ljrir) (iLir| ® jz'|j §i|j = ~i|jA1/'2 (A.43)

ilj
iJ

where J2 = 1, JAJ] = A~!. The projected modular operators act between the following
Hilbert spaces:

Ay 7 (Gi)m(d5) Horr — ' (¢i)m(dj) Horr (A.44)

Jij; 7 (0w (05) Haorr — 7' (o)) (di) Horr (A.45)

and can be extended to Hgpr as we did with the Tomita operators.
We now apply the results of Tomita-Takesaki theory to these new modular operators.
That is we know that A = AAA ™ and A’ = JAJ. Computing:

atyaTe =3 Z<|k> (kDe® (1) (i) © AffciAgs (A.46)

I = Z Z ® (k) (kDR ® Jyjicij i (A7)

This is only consistent with the form of the algebra given in (A.34) if we have:
Ainicii Ay € m(0)An(d;), ey € m(ei) An(e)) (A.48)

and the flowed operator is the same operator for all k. Extending these statements to the
full Hilbert space by setting the flowed and conjugated operators to zero away from the
support we find that:

ki ,;‘” € Ar'(¢r) , acA (A.49)

where we are forced to add 7/(¢y) so that it vanishes away from this support. For example
this is consistent with s — 0 where we find m(¢;)am(¢;)7’(¢r). Note that we can pick «
in A rather than the projected algebra since the modular operators above anyway apply
this projection. Note the flowed operator is now marginally not independent of k due to

T (Pk)-

46 —



If we set ¢ = j this defines the standard modular automorphism group but now for a
non-cyclic and separating vector:

APaAT® = oli(a)n'(¢r),  ofi(a) = AGalg (A.50)

where in the later equation we have used a cyclic and separating vector €) to define this

flow.
For o = 1 we can define the operator in A that is independent of k as the co-cycle:

Hilr = (Doi: Do)’ (¢r) . (D = Doy)s € A (A.51)
which can be extracted by picking ¢ to be a cyclic and separating vector. The co-cycle
satisfies:

(D¢i : D¢;j)l = (Dg; : D) (A.52)
(D¢i : Dg;){(Di : Dgj)s = ol (m(5)) (A.53)
(Dgi : De;)o(Dei - Do)t = o2 ((61)) (A.54)

where the right hand side of the later two equations are projection operators if [w(¢;), 7(¢;)] =
0 which means that for states with commuting support projectors the co-cycle is a partial
isometry.

There is the following relation on triples of the co-cycle:

. . _ , ; m(¢1)m(¢2) = 7(¢1) or
(D1 : Dpa)s(Doa - Do3)s = (Depy : Dop3)s f (2)m(63) = 7(3) (A.55)

where the later conditions on the projectors can be guaranteed by demanding:
m(p1)H C m(p2)H or w(p3)H C m(d2)H (A.56)
Similary for the modular conjugation operators we have:
Tuicis T € 7' (0) AT (65), cyj € m(90) An(9) (A.57)
which extends to the Hgpr in the usual way with:
Jejiadj € A'm(onr) acA (A.58)

and where apart from the projector m(¢y) this is the same operator independent of k. We
define the non relative modular conjugation action as:

Jiad; = j% (a)m(es), §%(@) = Japadyq (A.59)
The equivalent of the co-cycles are the following linear operators:
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which satisfies:
(©5,)7 = (05, (©;,)T(6;) = 3% (x(d:), (©),)(0,)7 = ¥ (n(e5)) (A.61)

where this is then a partial isometry if [7(¢;), 7(¢;)] = 0.
For example if we specify that ¢; = (2, cyclic and separating, and ¢; = 1) we find that:

Jadya = O, (Og) (04,) =7 (¥),  (Oh) (O, = Jar(¥)Ja  (A.62)

where the support of this operator is: supp(@’mw) = 7' (¢)H and supp(@’Qw)Jr = Jaom(¢Y)JoH.
We also have the useful relations:

Sy = Jﬂ@&w, Jo = (@&W,)TJQ Jy = (elf?\TZJ)T‘]Q@g?\?/J (A.63)

There is also a triple relation:

11\2 /2|3 = /1|3 . 7T(¢2)7T(¢3) — ﬂ_(¢3) (A64)

where again this later condition can be achieved only under the conditions specified for the
support projectors.
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