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Abstract

In this work, we study the real-time evolution of pseudo-(Rényi) entropy, a general-
ization of entanglement entropy, in two-dimensional conformal field theories (CFTs). We
focus on states obtained by acting primary operators located at different space points or
their linear combinations on the vacuum. We show the similarities and differences be-
tween the pseudo-(Rényi) entropy and entanglement entropy. For excitation by a single
primary operator, we analyze the behaviors of the 2nd pseudo-Rényi entropy in various
limits and find some symmetries associated with the subsystem and the positions of the
inserted operators. For excitation by linear combinations, the late time limit of the nth
pseudo-Rényi entropy shows a simple form related to the coefficients of the combinations
and Rényi entropy of the operators, which can be derived by using the Schmidt decompo-
sition. Further, we find two kinds of particular spatial configurations of insertion operators
in one of which the pseudo-(Rényi) entropy remains real throughout the time evolution.
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1 Introduction

Entanglement entropy, a physical observable stemming from quantum information, has now

pervaded many branches of theoretical physics such as quantum many-body physics [1–3],

high energy physics [4–8], gravitational physics [9–13], and so on. It is worth mentioning that

recently, its quantum corrected holographic version [9,10], a.k.a. quantum extremal surface [14],

in the AdS/CFT correspondence [15–17] has played a crucial role in solving problems such as

black hole information loss [18, 19], providing a reliable way to further understand quantum

gravity.

Also recently, a new quantity associated with a bulk minimal area surface, called pseudo-

entropy, has been introduced in [20] under the framework of AdS/CFT correspondence. Given

a total system S, one can define the pseudo-entropy associated with a subsystem A in terms of
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the corresponding pseudo-Rényi entropy

S
(n)
A ≡

1

1− n log Tr
[
(T 1|2
A )n

]
, (n > 1, n ∈ Z), (1)

where the matrix T 1|2
A involved two nonorthogonal quantum states |ψ1〉, |ψ2〉 ∈ HS , named

reduced transition matrix, is the partial trace of the transition matrix T 1|2,4

T 1|2 ≡ |ψ1〉〈ψ2|
〈ψ2|ψ1〉

, T 1|2
A ≡ TrAc

[
T 1|2]. (2)

The pseudo-entropy of subsystem A

SA ≡ −Tr
[
T 1|2
A log T 1|2

A

]
(3)

is obtained by taking the limit of n→ 1 for S
(n)
A . The reduced transition matrix is not Hermitian

in general; hence the pseudo-entropy usually takes complex values. However, the results in

the qubit system suggest that the real part of pseudo-entropy can be used to characterize the

number of distillable Bell pairs averaged over the histories between the initial and final state [20].

More intriguingly, it was recently found in [21] that the real-time evolution of the real part of

pseudo entropy follows the Page curve [22] under some field-theoretic settings based on the

black hole final state proposal [23]. 5 Hence pseudo-entropy, like entanglement entropy, can

reflect certain underlying correlation structures. Refer to [25–32] for other related developments

of pseudo-entropy.

The main purpose of this paper is to study the real-time evolution of the real part of pseudo-

entropy for locally excited state generated by a single primary operator or linear combination

of a bunch of them in various 2d CFTs. Unlike the case in [21], our investigation can be

regarded as a pseudo-entropy extension of the real-time evolution of the entanglement entropy

after such local operator excitations [33]. In recent years, the time evolution of entanglement

entropy for locally excited states has been widely studied, including rational CFTs [34–36],

irrational CFTs [37], large-c CFTs [38, 39], boundary CFTs [40], warped CFTs [41], CFTs

at finite temperature [42], multiple local excitations [43], and holographic duals of the local

excitations [44–47]. In 2d rational CFTs (RCFTs), it was found that the variation of nth Rényi

entropy for locally primary excited states saturates to a constant equal to the logarithm of

the quantum dimension of the local operator’s conformal family [34–36]. Such saturation get

well interpreted in the picture of propagation of quasiparticles pairs [33, 48]. On the other

hand, it was found in large-c CFTs [38, 39] that a characteristic feature called scrambling

of entanglement would scramble the information of non-perturbative constants like quantum

dimensions and lead to a logarithmically diverged Rényi entropy [38,49].

4Ac refer to the complement of A and we have assumed that the Hilbert space of total system HS can be
divided into HA

⊗HAc .
5More recently, the authors of [24] reproduce the Page curve in another purely field-theoretic way called

moving mirror.
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Since pseudo-entropy is a straightforward generalized concept of entanglement entropy, we

shall study the time evolution behavior of pseudo-entropy for locally excited states in various

2d CFTs. We set up various situations to calculate the pseudo-entropy of locally excited states

in 2d rational CFTs and large-c CFTs and to explore universal properties of pseudo entropy of

locally excited states.

This paper is organized as follows. Section 2 outlines the standard replica method to

compute the nth pseudo-Rényi entropy for locally excited states. In Section 3 we mainly focus

on the case of n = 2. We first study the limiting behaviors of real-time evolution of 2nd pseudo-

Rényi entropy in rational CFTs and large-c CFTs. We then numerically analyze the full-time

evolutions of 2nd pseudo-Rényi entropy in some specific interacting theories. In Section 4,

we extend the above analysis to the nth pseudo-Rényi entropy. We end in Section 5 with

conclusions and prospects. Some useful formulae and calculation details are presented in the

appendices.

2 General calculations of pseudo-Rényi entropy

2.1 Setup for local excitations and S
(n)
A from replica method

In this section, we review the replica calculation for the pseudo-Rényi entropy [20], which is

almost same with that for the ordinary Rényi entropy [6]. Consider a 2d CFT dwells on a plane

Σ1 with coordinates {τ, x} (ds2 = dτ 2 + dx2). We are primarily interested in the cases that

|ψ1〉, |ψ2〉 are states defined by acting various operators on the ground state |Ω〉,

|ψj〉 =
1√
Nj
Oj,1(−τj,1, xj,1)Oj,2(−τj,2, xj,2)...Oj,nj(−τj,nj , xj,nj)|Ω〉, (4)

(τj,i+1 ≥ τj,i > 0, i = 1, 2, ..., nj − 1; j = 1, 2),

where Nj is normalization factor and Oj,i(−τj,i, xj,i) ≡ e−Hτj,iOj,i(xj,i)eHτj,i is operator located

at (τ = −τj,i, x = xj,i). We can write down the corresponding transition matrix (2) in terms of

the path integral language as follows

T 1|2 =
O1,1(−τ1,1, x1,1)...O1,n1(−τ1,n1 , x1,n1)|Ω〉〈Ω|O†2,n2

(τ2,n2 , x2,n2)...O†2,1(τ2,1, x2,1)

〈Ω|O†2,n2
(τ2,n2 , x2,n2)...O†2,1(τ2,1, x2,1)O1,1(−τ1,1, x1,1)...O1,n1(−τ1,n1 , x1,n1)|Ω〉

=


O†

2,1

O1,n1

O†
2,n2

O1,1

τ

x

0

+∞

−∞

τ

x

0+
0−

+∞

−∞

O†
2,1

O1,n1

O†
2,n2

O1,1

2



−1

×

O†
2,1

O1,n1

O†
2,n2

O1,1

τ

x

0

+∞

−∞

τ

x

0+
0−

+∞

−∞

O†
2,1

O1,n1

O†
2,n2

O1,1

2

. (5)

Here the dashed lines represent the free boundaries, and the stars denote the insertion points

of the operators. The reduced transition matrix of the subsystem A is obtained by ”stitching
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up” the upper and lower edges of Ac

T 1|2
A = TrAc

[
T 1|2] =



(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

O†
2,1

O1,n1

O†
2,n2

O1,1

τ

x

0

+∞

−∞

1



−1

×

(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

1

. (6)

Substituting (6) into (1), the path integral representation of S
(n)
A is given by

S
(n)
A =

1

1− n log





(η, η̄) x1=x2 x1<x2 x1>x2

late time (1,0) {0,0} (1,1)

early time a2 a3 a4

Table 1: 123

A

O†
2,1

O1,n1

O†
2,n2

O1,1

O†
2,1

O1,n1

O†
2,n2

O1,1

τ

x

0

+∞

−∞

1



−n

×

Σn

A A A

n n− 1 1

3


=S

(n)
A;vac +

1

1− n
(

log
〈
(O†(n)

2,n2
...O(n)

1,n1
)...(O†(1)

2,n2
...O(1)

1,n1
)
〉

Σn
− n log

〈
O†2,n2

...O1,n1

〉
Σ1

)
. (7)

In the above, S
(n)
A;vac stands for the nth Rényi entropy of A when the total system is in vacuum

state, and Σn is a n-sheeted Riemann surface constructed by gluing n sheets Σ1 together at

subsystem A. The subscript of O(k) denotes that the operator O is living on the kth sheet of

Σn. Since S
(n)
A;vac does not carry any information about excitations, we shall focus on the excess

∆S
(n)
A ≡ S

(n)
A − S

(n)
A;vac hereafter.

2.2 The excess of second pseudo-Rényi entropy ∆S
(2)
A

Let us first concentrate on the simplest case that n1 = n2 = 1, n = 2. In the meantime, we

are mainly interested in the case where two inserted operators are the same. Now (4) can be

reduced to

|ψj〉 =
1√
Nj
O(−τj, xj)|Ω〉, (j = 1, 2), (8)

and the corresponding excess of pseudo-Rényi entropy is given by

∆S
(2)
A = − log

〈
O†(2)(τ2, x2)O(2)(−τ1, x1)O†(1)(τ2, x2)O(1)(−τ1, x1)

〉
Σ2〈

O†(τ2, x2)O(−τ1, x1)
〉2

Σ1

. (9)

The above expression is reduced to two- and four-point functions that we know for precisely

solvable CFTs. It coincides with the excess of the second Rényi entropy when the insertion

points are symmetric about the x-axis, i.e., τ1 = τ2 and x1 = x2. Owing to the conformal
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symmetry, when O is a primary operator with chiral and antichiral conformal dimension ∆O,

the two-point and four-point function of O on Σ1 are given by6

〈O†(z2, z̄2)O(z1, z̄1)〉Σ1 =
c12

|z12|4∆O
, (10)

〈O†(z4, z̄4)O(z3, z̄3)O†(z2, z̄2)O(z1, z̄1)〉Σ1 = |z13z24|−4∆OG(η, η̄), (11)

respectively, where (η, η̄) ≡
(
z12z34/(z13z24), z̄12z̄34/(z̄13z̄24)

)
are cross ratios and c12 is normal-

ization factor. Since we can apply the conformal transformation

z =

(
w

w − L

)1/n

, (A = [0, L]), (12)

z =w1/n, (A = [0,+∞)), (13)

to map Σn to Σ1, we obtain the four-point function on Σ2 by applying the above conformal

maps with n = 2

〈O†(w4, w̄4)O(w3, w̄3)O†(w2, w̄2)O(w1, w̄1)〉Σ2 =


∣∣ 16L2z2

1z
2
2

(z2
1−1)2(z2

2−1)2

∣∣−4∆OG(η, η̄) (A = [0, L]),

∣∣16z2
1z

2
2

∣∣−4∆OG(η, η̄) (A = [0,+∞)),

(14)

where we have set

(w3, w̄3)sheet 2 = (w1, w̄1)sheet 1 = (x1 − iτ1, x1 + iτ1),

(w4, w̄4)sheet 2 = (w2, w̄2)sheet 1 = (x2 + iτ2, x2 − iτ2), (15)

as shown in figure 1. Combining (14) with (10), the excess of the second pseudo-Rényi entropy

1

2

O(w1 )

O †(w2 )

O(w3 )

O †(w4 )

1

3

2

A

A

A

0+
0−

0+
0−

0+
0−

1

3

2

A

A

A

0+
0−

0+
0−

0+
0−

4

Figure 1: The 2-sheeted space Σ2. The dashed box represents the subsystem A.

(9) is expressed as a function which depends only on η and η̄

∆S
(2)
A = log

c2
12∣∣η(1− η)
∣∣4∆O ·G(η, η̄)

. (16)

6{z, z̄} := {x + iτ, x − iτ} are complex coordinates on Σ1, likewise for complex coordinates {w, w̄} on Σn.
zij ≡ zi − zj .
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3 Real-time evolution of Re[∆S
(2)
A ]

The real-time evolution of the pseudo-Rényi entropy for locally excited states can be regarded

as a generalization of that of the Rényi entropy for locally excited states [33–38, 40, 42, 50]. In

rational CFTs, it is known that the excess of the Rényi entropy saturates to a constant equal

to the logarithm of the quantum dimension of the inserted primary operator [33,34]. A similar

result for pseudo-Rényi entropy is found in free CFT in [20]. However, [20] only consider the

real-time evolution of pseudo-Rényi entropy with different insertion time and the same insertion

spatial coordinates. Richer evolutionary structures seem to lie in another insertion configuration

of operators—two operators with different spatial coordinates and the same insertion time. In

this section, we mainly explore this insertion configuration and give a general argument in the

light of [34].

3.1 ∆S
(2)
A for two primary operators with different spatial coordi-

nates

In the following, we explore the case where the time coordinates of the two inserted operators

are the same, but the spatial coordinates are different. That is, we are considering the following

real-time dependent transition matrix

T 1|2(t) ≡ e−iHte−εHO(x1)|Ω〉〈Ω|O†(x2)e−εHeiHt

〈Ω|O†(x2)e−2εHO(x1)|Ω〉 , T 1|2
A (t) ≡ TrAc [T 1|2(t)]. (17)

It amounts to perform the following analytic continuation for τ1, τ2 in (8):

τ1 = ε+ it, τ2 = ε− it, (18)

wherein ε > 0 is an infinitesimally small regularization parameter to suppress the high energy

modes [48].

3.1.1 Early time, middle time, and late time behaviors

Let us first study some limiting behaviors of the pseudo-Rényi entropy to obtain some generic

conclusions. The procedure is similar to that of entanglement entropy [34, 38]. For the sub-

system A of infinite length, we are mainly interested in the early time and late time limits of

pseudo-Rényi entropy, while for the subsystem A of finite length, we are also interested in the

middle time limit.7

The subsystem A = [0,∞): Consider the case of A = [0,∞), in which we are mainly

interested in the early (t→ 0) and late (t→ +∞) time limits. According to the expression of

7Based on the result of entanglement entropy in finite scales [34], the middle time may be defined as the
interval [u, v], where u = min

[
|x1|, |x2|, |L− x1|, |L− x2|

]
, v = max

[
|x1|, |x2|, |L− x1|, |L− x2|

]
.
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the 2nd pseudo-Rényi entropy (16), it’s helpful to study the early and late time behaviors of η

and η̄ firstly, which we summarize in the table 1.8 We can see from the table that for general

Table 1: Early time and late time behaviors of (η, η̄) for the subsystem A = [0,∞).

(η, η̄) x1x2 > 0 x1x2 < 0

Late time (t→∞) (1, 0) (1, 0)

Early time (t→ 0)
x1 > 0 > x2 x2 > 0 > x1(1

2
+ a, 1

2
+ a)

a = x1+x2

4
√
x1x2

(
1
2

+ a, 1
2
− a
) (

1
2
− a, 1

2
+ a
)

space configurations of the two inserted points, the late time behaviors of cross ratios are

uniform. Still, the early time behavior is somewhat intricate. One can, however, obtain concise

results by thinking about the situations where two operators are very close together. Intuitively,

we may expect the results to degenerate into the case of Rényi entropy. The quadratic limit of

cross ratios is given by

lim
x1→x2

lim
t→0

(η, η̄) '
{

(0, 0), x2 < 0

(1, 1), x2 > 0
, (19)

These coincide with the second Rényi entropy results in [36]. Another intriguing case is to set

x2 = −x1 6= 0, where the early time limit of cross ratios is reduced to

lim
t→0

(η, η̄) '
(1

2
,
1

2

)
. (20)

We next follow the arguments in [34, 38] to cope with the function G(η, η̄) in (16). In general

CFTs, G(η, η̄) can be expressed as follows using the conformal blocks [51]

G(η, η̄) =
∑
p

(Cp
O†O)2FO(p|η)F̄O(p|η̄), (21)

where Cp
O†O is the coefficient of the three-point function 〈O†Oφp〉 and the index p corresponds

to each φp of all Virasoro primary fields. We can normalize G(η, η̄) such that the two-point

function (10) has a unit normalization c12 = 1, and it leads to the following behavior of FO(p|η)

in η → 0 limit9

lim
η→0

FO(p|η) = η∆p−2∆O(1 +O(η)). (22)

The above behavior indicates that as η goes to zero, the identity operator dominates the

contribution in the summation of (21). Moreover, with the bootstrap relation

G(η, η̄) = G(1− η, 1− η̄), (23)

8The details of derivation can be found in appendix A.1.
9Note we set φ0 to be equal to the identity operator, which means ∆0 = 0.
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we obtain behaviors of G(η, η̄) in two limits for general 2d CFTs

lim
η→0
η̄→0

G(η, η̄) ' |η|−4∆O , lim
η→1
η̄→1

G(η, η̄) ' |1− η|−4∆O . (24)

The above results correspond precisely to the early time behavior of the G(η, η̄) function when

the spatial positions of the two inserted operators tend to coincide.

The late time behavior of G(η, η̄), according to the table 1, requires some knowledge of the

behavior of conformal block in the limit η → 1. For rational CFTs, the fusion transformation

[52,53]

FO(p|1− η) =
∑
q

Fpq[O] · FO(q|η) (25)

can be exploited to give the expression of FO(p|η) in η → 1 limit and thus fix the leading-order

of the late time behavior of G

lim
η→1
η̄→0

G(η, η̄) ' d−1
O (1− η)−2∆O η̄2∆O , (26)

where dO = 1/F00[O] is the quantum dimension [53] of O. Combine (9) with (24) and (26), we

find the following expression for the second pseudo-Rényi entropy

∆S
(2)
A '

{
0, t→ 0 && x1 ∼ x2,

log dO, t→∞. (27)

It is noted that the late limit of both 2nd pseudo-Rényi entropy and Rényi entropy saturates

to log dO, which indicates that the quasiparticle pair picture seems to be preserved in the

pseudo-entropy.

We next move to analyse large-c CFTs. For large-c CFTs, in the limit ∆p/c � 1, the

conformal block has the following universal form [54,55]

FO(p, η) ' η∆p−2∆O · 2F1(∆p,∆p, 2∆p; η), (28)

where 2F1(a, b, c; z) is the hypergeometric function. Whereas, the authors in [38] argued that

the above approximation fails when η is very close to 1 such as |1 − η| ∼ (Dp
O)
− 1

2∆O , where

Dp
O ∼ exp(cα) (α is a certain positive constant) is exponentially large and in RCFTs D0

O

coincides with the quantum dimension dO. When η is very close to 1, the leading order of

FO(p, η) is given by [38]

FO(p, η) ' 1

Dp
O
· (1− η)−2∆O ,

(
|1− η| . (Dp

O)
− 1

2∆O
)
. (29)

Furthermore, following the arguments in [38], the summation in Eq.(21) can be approximated

by counting the contribution of the conformal vacuum block

G(η, η̄) ' FO(0, η)F̄O(0, η̄) (30)

8



when we are considering large-c theroies with gravity duals. Eq.(22) with Eq.(28-30) together

lead to another type of the late time limit of G(η, η̄)

G(η, η̄) '
{
η̄−2∆O , |1− η| & (Dp

O)
− 1

2∆O ,
1
D0
O
· (1− η)−2∆O η̄−2∆O , |1− η| . (Dp

O)
− 1

2∆O .
(31)

Substituting (24) and (31) into (16) respectively, We obtain three distinct stages of evolution

of the second pseudo-Rényi entropy.

∆S
(2)
A '


0, t→ 0 and x1 ∼ x2,

log
[(
− (x1−x2+2iε

4t
)2
)−2∆O], max

[
|x1|, |x2|, ε

]
� t . 1

4
(D0
O)

1
4∆O
√

(x1 − x2)2 + 4ε2,

logD0
O, t & 1

4
(D0
O)

1
4∆O
√

(x1 − x2)2 + 4ε2.

(32)

Like Rényi entropy [38], the second pseudo-Rényi entropy has an intermediate process of log-

arithmic time evolution. If we take the real part of ∆S
(2)
A , as we are interested in, the corre-

sponding logarithm evolves as follows

Re
[
∆S

(2)
A

]
= 4∆O log

4t√
(x1 − x2)2 + 4ε2

, (33)

which matches the result in [38] when two space points coincide. It’s rewarding to mention

that when we take the large-c limit first, like in holography, D0
O will go to infinity, and ∆S

(2)
A

is left with logarithmical growth.

The subsystem A = [0, L]: In the case of finite scale, the early time and late time behaviors

of the cross ratios can be readily obtained from the expressions of cross ratios (92) after the

analytic continuation,

lim
t→0

(η, η̄) '


(1

2
+ b, 1

2
+ b), x1, x2 < 0||0 < x1, x2 < L||L < x1, x2,

(1
2

+ b, 1
2
− b), x1 > L > x2 > 0||L > x1 > 0 > x2,

(1
2
− b, 1

2
+ b), x2 > L > x1 > 0||L > x2 > 0 > x1,

(1
2
− b, 1

2
− b), x1 > L > 0 > x2||x2 > L > 0 > x1,

(
b = L(x1+x2)−2x1x2

4
√
x1x2(L−x1)(L−x2)

)
,

(34)

lim
t→∞

(η, η̄) '
(
− L2(x2 − x1 + 2iε)2

16t4
,−L

2(x2 − x1 − 2iε)2

16t4

)
' (0, 0). (35)

Once again, we encounter a complicated early time behavior, and it can be simplified by taking

quadratic limit (x1 ∼ x2 and t ∼ 0)

lim
x1→x2

lim
t→0

(η, η̄) '
{

(0, 0), x2 < 0||L < x2,

(1, 1), 0 < x2 < L.
(36)

Furthermore, we find that another interesting class of space configurations, |x1|, |x2| � L, can

also reduce the early time results (34),

lim
t→0

(η, η̄) ' (0, 0), (|x1|, |x2| � L). (37)
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To analytically extract the middle time
(
t ∈ [u, v], u = min

[
|x1|, |x2|, |L − x1|, |L − x2|

]
,

v = max
[
|x1|, |x2|, |L−x1|, |L−x2|

])
behavior of cross ratios, let us consider the large L limit,

that is, L � |x1 − x2|. This is because one can expect that when L � |x1 − x2|, the middle

time behavior of ∆S
(2)
A will tend to the late time behavior of ∆S

(2)
A of the infinite subsystem.

Consider two special spatial configurations that satisfy the constraint: i. L� max
[
|x1|, |x2|

]
;

ii. L � max
[
|L − x1|, |L − x2|

]
. The above two configurations correspond to the situation

where operators live concentratedly near the left and right boundaries of A, respectively.10 In

these cases, the value of the cross ratios at a typical middle time, t = L/2, can be calculated

analytically

lim
t→L

2

(η, η̄) '


(

1 + (x2−x1+2iε)2

L2 ,− (x2−x1−2iε)2

9L2

)
' (1, 0), L� max

[
|x1|, |x2|

]
,

(
− (x2−x1+2iε)2

9L2 , 1 + (x2−x1−2iε)2

L2

)
' (0, 1), L� max

[
|L− x1|, |L− x2|

]
.

(39)

We obtain a middle-time behavior similar to the late-time behavior (86) for the infinite sub-

system. For more general cases, the numerical calculation shows that

(η, η̄)
∣∣∣
t∈[u′,v′]

'
{

(1, 0), L� |x1 − x2| && xmin <
L−|x1−x2|

2
,

(0, 1), L� |x1 − x2| && xmin >
L−|x1−x2|

2
, (xmin ≡ min

[
x1, x2

]
),

(40)

where u′ = min
[{
|x1|, |x2|, |L−x1|, |L−x2|

}
\{u}

]
, v′ = max

[{
|x1|, |x2|, |L−x1|, |L−x2|

}
\{v}

]
for x1 6= x2 and [u′, v′] = [u, v] for x1 = x2.

Combining with the previous discussion of G(η, η̄), according to Eqs.(36), (40), and (35),

we get the picture of the evolution of ∆S
(2)
A under some constraints in RCFTs11

∆S
(2)
A '


0, t ∼ 0 &&

(
|x1 − x2| ∼ 0 || L� |x1|, |x2|

)
,

log dO, t ∈ [u′, v′] && L� |x1 − x2| && xmin <
L−|x1−x2|

2
,

log d̄O, t ∈ [u′, v′] && L� |x1 − x2| && xmin >
L−|x1−x2|

2
,

0, t→∞.

(41)

3.1.2 Examples in 2d CFTs

In the previous subsection, we have studied several limiting behaviors of the second pseudo-

Rényi entropy. However, there are still some mysteries about the evolution of ∆S
(2)
A that limit

analysis is infeasible to solve:

1. The intermediate process of the evolution of Re[∆S
(2)
A ] from an initial value to log dO in

RCFTs.
10One may also interested in the opposing situation that the operators are scattered at both ends of A. The

middle time behavior of cross ratios in this case is found to be

lim
t→

√
2L
2

(η, η̄) '
(1

2
+O(1/L),

1

2
+O(1/L)

)
, L� max

[
|x1|, |L− x2|

]
. (38)

11Note that normally the quantum dimension dO is real, and this is true in all the models considered in this
paper (i.e. we have d̄O = dO in this paper).
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2. Is there anything special about Re[∆S
(2)
A ] evolution in certain symmetric spatial configu-

rations (such as x1 = −x2 for A = [0,∞))?

In this subsection, we will resort to numerical analysis to uncover the whole time evolution

picture of ∆S
(2)
A under several specific 2d CFT models. We expect that the above problems will

be answered to some extent in these concrete models. Before entering into the numerical study,

we first point out some model-independent symmetries of the second pseudo-Rényi entropy,

which are reflected in the following examples.

Symmetries for ∆S
(2)
A : Re-examining the cross ratios of finite and infinite subsystem ((92)

and (85),respectively), one can find some hidden symmetries of them,

η(x2, x1, t) =
[
η(x1, x2, t)

]∗
, η̄(x2, x1, t) =

[
η̄(x1, x2, t)

]∗
, (42)

η(−x1,−x2, t) = 1− η̄(x1, x2, t),
(
A = [0,∞)

)
, (43)

η(L− x1, L− x2, t) = η̄(x1, x2, t),
(
A = [0, L]

)
, (44)

where ” ∗ ” denotes complex conjugate. Further, it’s easy to show that the above symmetries

may be extended to ∆S
(2)
A when the G(η, η̄) function has the following properties

G(η, η̄) =G(η̄, η), (45)

G(η∗, η̄∗) =[G(η, η̄)]∗. (46)

Combining (16), (42), and (46), one obtains the first symmetry of ∆S
(2)
A ,

∆S
(2)
A (x2, x1, t) =

{
∆S

(2)
A (x1, x2, t), Tr

[(
T 1|2
A (t)

)2] ∈ R−,[
∆S

(2)
A (x1, x2, t)

]∗
, Tr

[(
T 1|2
A (t)

)2] ∈ C \ R−.
(47)

Combining (16), (23), and (43-45), the second symmetry of ∆S
(2)
A reads

∆S
(2)
[0,L](x1, x2, t) =∆S

(2)
[0,L](L− x1, L− x2, t), (48)

∆S
(2)
[0,∞)(x1, x2, t) =∆S

(2)
[0,∞)(−x1,−x2, t). (49)

There are some physical or mathematical understandings that may explain the appearance of

the above symmetries. For A = [0, L], both A and Ac are invariant under reflection with respect

to x = L/2, which implies two sets of space configurations are symmetric. Thus pseudo-Rényi

entropy should be equal with the inserted points (x1, x2) and (L− x1, L− x2), hence we obtain

(48); For A = [0,∞), we may have the equality S
(n)
A (x1, x2, t) = S

(n)
Ac (−x1,−x2, t) in terms of

the symmetry of the system. In addition to the basic property S(n)(T 1|2
Ac ) = S(n)(T 1|2

A ) of the

nth pseudo-Rényi entropy [20], we obtain (49); Eq.(47) can be interpreted by the fact that

exchanging x1 with x2 is equivalent to let T 1|2(t) →
(
T 1|2(t)

)†
. The above argument suggests

11



that these symmetries hold not only for the 2nd pseudo-Rényi entropy, but also for any order.

We shall make a numerical examination on them in section 4.

On the other hand, one can see that there are two special space configurations — x1 = L−x2

for A = [0, L] and x1 = −x2 for A = [0,∞), that are screened out by these symmetries. Taking

x1 = −x2, A = [0,∞) as an example, the operation of swapping x1 and x2 is equivalent to the

spatial reflection operation, which means that ∆S
(2)
[0,∞)(x1,−x1, t) is real when Tr

[(
T 1|2

[0,∞)(t)
)2] ∈

C \R−. For A = [0, L], simple algebra shows that ∆S
(2)
[0,L](x1, L−x1, t) = log

c212

|η(1−η)|4∆OG(η,η∗)
.12

Since one can expect G(η, η∗) to be greater than 0, we obtain a real second pseudo-Rényi

entropy evolution in this insertion configuration, whose correctness is verified in subsequent

examples.

Finally, when only paying attention to the real part of ∆S
(2)
A , the above results show that

the evolution of Re[∆S
(2)
A ] may be ”4-fold degenerate”,

Re[∆S
(2)
[0,L](x1, x2, t)] = Re[∆S

(2)
[0,L](L− x1, L− x2, t)]

=Re[∆S
(2)
[0,L](x2, x1, t)] = Re[∆S

(2)
[0,L](L− x2, L− x1, t)], (50)

Re[∆S
(2)
[0,∞)(x1, x2, t)] = Re[∆S

(2)
[0,∞)(−x1,−x2, t)]

=Re[∆S
(2)
[0,∞)(x2, x1, t)] = Re[∆S

(2)
[0,∞)(−x2,−x1, t)]. (51)

Hence we may choose to label each space configuration with the following parameters

xm ≡
x1 + x2

2
, l ≡ |x1 − x2|. (52)

Example I— Free scalar: Let us warm up with a simple example — the c = 1 free scalar,

and choose the operator O = 1√
2

(
e
i
2
φ + e−

i
2
φ
)

which has (chiral and antichiral) conformal

dimension ∆O = 1
8

and quantum dimension dO = 2. The corresponding function G(η, η̄)

is found to be G(η, η̄) = 1+|η|+|1−η|
2
√
|η||1−η|

, which apparently satisfies Eqs.(45), (46) and gives the

following concise expression of ∆S
(2)
A ,

∆S
(2)
A (η, η̄) = log

2

1 + |η|+ |1− η| . (53)

On the other hand, utilizing the identity
〈
σ(z1, z̄1)...σ(z2n, z̄2n)

〉2

Σ1
=
〈
O(z1, z̄1)...O(z2n, z̄2n)

〉
Σ1

and ∆O = 2∆σ [56], where σ is the spin operator in Ising model, it can be found that

∆S
(n)
A [O-excitation] = 2∆S

(n)
A [σ-excitation]. Thus our calculations in this part are also ap-

plicable to the case of σ-excitation in Ising model.

Now we turn to the numerical component. The first is the simpler case that A = [0,∞).

As shown in figure 2(a), since the relative size between the spacing of two operators and the

12The absolute value here is |η| ≡ √η · η∗.
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Figure 2: The real-time evolution of Re[∆S
(2)
A ] in c = 1 free scalar, where the insertion operator is

chosen to be 1√
2
(eiφ + e−iφ) and the regulator ε = 10−5. (a): A = [0,∞), l = 2; (b): A = [0, 20], l =

2; (c): A = [0, 10], xm = −5; (d): A = [0, 20], xm = 10.

scale of the subsystem is not involved in this case, we fix l (l = 2) and adjust xm to observe

the evolution of Re[S
(2)
A ]. One can read a common feature from these evolving curves (except

for the case of xm = 0): There is a small hump between the early time evolution determined

by (87) and the late time evolution determined by Eq.(86). We can explain the appearance

of the hump to some extent in terms of the picture of quasiparticle propagation. Under the

quasiparticle propagation picture, the time nodes at which the hump shape evolution begins

and ends correspond exactly to the time nodes at which two quasiparticle pairs moving at the

speed of light from the insertion points enter or leave the subsystem A. It can be found that

the peak of the hump shape evolution is reached at t ' |xm|, and the value of the cross ratios

at this time is given by

lim
t→|xm|

(η, η̄) =


(

1
2

+O(t− |xm|), 1
2

+ xm√
4x2
m− 1

4
l2+ε2−iεl

+O(t− |xm|)
)
, xm < 0,(

1
2

+ xm√
4x2
m− 1

4
l2+ε2−iεl

+O(t− |xm|), 1
2

+O(t− |xm|)
)
, xm > 0.

(54)

Obviously xm√
4x2
m− 1

4
l2+ε2−iεl

→ ±1
2

when |xm| � l, but the approximation is accurate enough

when |xm| ≥ l. Thus we have

lim
t→|xm|

(η, η̄) '
{(

1
2
, 0
)
, xm ≤ −l,(

1, 1
2

)
, xm ≥ l.

(55)
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However, due to the symmetries of G(η, η̄), the above two cases give the same value of Re[S
(2)
A ].

For the most special case of xm = 0, which we have already encountered in the limit analysis

(20), Re[S
(2)
A ] behaves exactly like the second Rényi entropy [50]. In fact, we find ∆S

(2)
A is real

in this case,

∆S
(2)
[0,∞)(x,−x, t) =

{
0, 0 ≤ t < |x|,
log 2, t > |x|, (56)

which is consistent with our previous symmetry analysis. Next, we categorize the case of

A = [0, L] in terms of the relative size between the spacing of two operators and the scale of

the subsystem. When the distance between two operators is much smaller than the length of

the subsystem (i.e. l � L), as depicted in figure 2(b), we reproduce the evolution pattern

described by Eq.(41). Notice that we lost the middle time behavior of log dO in the case of

xm = 10, since in this case the related time interval (interval in Eq.(40)) is a null set. Unlike

the case of the infinite subsystem, We can see that the small hump virtually appears twice in

the evolving curves in figure 2(b). Again, this coincides with the picture of quasiparticle pairs

propagation in a finite subsystem. The cross ratios for the peaks of the humps are found to be

lim
t→|xm|

(η, η̄) '


(

1
2
, 0
)
, L� l && xm ≤ −l,(

1, 1
2

)
, L� l && l ≤ xm ≤ (L− l)/2,(

0, 1
2

)
, L� l && (L+ l)/2 ≤ xm ≤ L− l,(

0, 1
2

)
, L� l && xm ≥ L+ l.

(57)

lim
t→|L−xm|

(η, η̄) '


(

1
2
, 0
)
, L� l && xm ≤ −l,(

1
2
, 0
)
, L� l && l ≤ xm ≤ (L− l)/2,(

1
2
, 1
)
, L� l && (L+ l)/2 ≤ xm ≤ L− l,(

0, 1
2

)
, L� l && xm ≥ L+ l.

(58)

Re[S
(2)
A (η, η̄)] is equal in the above cases, on account of the symmetries of G(η, η̄). We then

gradually increase the spacing between operators such that the constraint l � L no longer

holds (see figure 2(c)). We can see that the intermediate behavior of log dO gradually vanishes

as l increases, but the peaks of the humps seem to remain the same. Another interesting case,

as we have discussed in symmetry analysis, is to fix xm = L/2 and then gradually increase

l. As shown in figure 2(d), we do obtain a real pseudo-Rényi entropy. Meanwhile, the result

shows that the middle time behavior of S
(2)
A tends to zero instead of log dO, and the time to

saturation of middle time behavior also shifts from 1
2
L to

√
2

2
L (38) with the increase of l.

Example II—Minimal model: Another simple example is the excitation of (2, 1) operator

φ(2,1) in the minimal models M(p, p′) with p > p′. The conformal dimension and quantum

dimension of the φ(2,1) are well-known to be ∆(2,1) = 3p
4p′
− 1

2
and d(2,1) = −2 cos πp

p′
, respectively.

In addition, it has a relatively simple four-point function [57, 58] that satisfies Eqs.(45) and
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(46),

G(η, η̄) = |η|
p
p′ |1− η|

p
p′ ·

sin
(
πp
p′

)
sin
(

3πp
p′

)
sin
(

2πp
p′

) |I1(η)|2 +
sin
(
πp
p′

)
sin
(
πp
p′

)
sin
(

2πp
p′

) |I2(η)|2
 , (59)

where the functions I1,2 are defined as follows

I1(η) =
Γ
(

3p
p′
− 1
)

Γ
(

1− p
p′

)
Γ
(

2p
p′

) · 2F1

(
p

p′
,−1 +

3p

p′
,
2p

p′
, η

)
,

I2(η) =η
1− 2p

p′
Γ
(

1− p
p′

)
Γ
(

1− p
p′

)
Γ
(

2− 2p
p′

) · 2F1

(
p

p′
, 1− p

p′
, 2− 2p

p′
, η

)
. (60)

The normalization factor c12 in (16) can be read off by taking the limit z12 = z34 → 0 of the

four-point function13, and the result turns out to be c2
12 =

sin
(
πp
p′

)2

sin
(

2πp
p′

) · Γ
(

1− p
p′

)4

Γ
(

2− 2p
p′

)2 . Since the minimal

models are unitary iff p− p′ = ±1, below we consider only these unitary cases and use critical

Ising M(4, 3), tricritical Ising M(5, 4), three-state Potts at criticality M(6, 5) and so on as

prototypical examples.

Now we turn to the numerical part to observe which properties of the evolution of ∆S
(2)
A

in the free scalar are retained in the minimal models. Figure 3(a) and 3(c) demonstrate the

full-time evolution of Re[∆S
(2)
A ] in the cases of A = [0, L] (L� l) and A = [0,∞), respectively.

In these two cases, it can be found that Re[∆S
(2)
A ] saturates to the theoretical value log d(2,1) in

the middle and late time, respectively, which coincides with the case of free scalar. Whereas,

since figure 3(c) is drawn under the first symmetric space configuration ( x1 = −x2 = ±5),

a comparison between the corresponding curve (xm = 0) in figure 2(a) shows that there are

significant differences in the behavior of ∆S
(2)
A in two theories: i). Except for Ising model

M(4, 3), ∆S
(2)
A no longer remains real in the full-time evolution, which is manifest to seen in

figure 3(b).14 The trace of (T 1|2
A )2 is negative over an interval except for the Ising model, which

results in a complex ∆S
(2)
A ; ii). The evolution of pseudo-Rényi entropy in the case of xm = 0

no longer behaves like that of Rényi entropy; Figure 3(d) exhibits the evolution of ∆S
(2)
A under

the second symmetric space configuration xm = L/2 in the case of A = [0, L]. As predicted

by the symmetry analysis, we can see that ∆S
(2)
A is real throughout the time evolution. Notice

that (η, η̄) takes the value of (1/2, 1/2) at the peak or valley of the middle time evolution.

Example III—Wess–Zumino–Witten model: The last example we would like to explore

is the excitation of gαβ (z, z̄) operator in a Wess–Zumino–Witten (WZW) model with affine Lie

13We have 〈φ(2,1)(z1, z̄1)φ(2,1)(z2, z̄2)φ(2,1)(z3, z̄3)φ(2,1)(z4, z̄4)〉 → c212|z12|−8∆(2,1) in the limit of z12 = z34 → 0.
14Note that the complex ∆S

(2)
A is not contradictory with the previous symmetry analysis, because by symmetry

analysis we can only prove that Tr[(T 1|2
A )2] is real in the case of A = [0,∞].
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Figure 3: (a) and (c): The time evolution of Re[∆S
(2)
A ] under the φ(2,1)-excitation in minimal models.

The regulator is chosen to be ε = 10−5. We have A = [0, 20], l = 2, xm = −5 for (a), and A = [0,∞),
xm = 0, l = 10 for (c). The dashed lines correspond to log d(2,1) for different p/p′; (b): The time

evolution of eS
(2)
A;vac · Tr[(T 1|2

A )2] in the case of A = [0,∞), where S
(2)
A;vac is the 2nd Rényi entropy of

A when the total system is in the vacuum state. The parameters are selected as ε = 10−5, xm = 0,

l = 10; (d): The time evolution of ∆S
(2)
A in the case of A = [0, L]. The parameters are selected as

L = 20, ε = 10−5, xm = 10, l = 2. ∆S
(2)
A (η, η̄) = ∆S

(2)
A (1/2, 1/2) at the dashed lines.

algebra SU(N)k. The operator gαβ (z, z̄) in the fundamental representation α = {1, 0, ..., 0}
has the (chiral and antichiral) conformal dimension ∆g = N2−1

2Nκ
and quantum dimension dg =

N−1· Γ(1/κ)Γ(−1/κ)
Γ(N/κ)Γ(−N/κ)

, where κ ≡ N+k. The four-point function of gαβ and its Hermitian conjugates

is the solution of the well-known Knizhnik-Zamolodchikov equations [59]

〈gαβ (z1, z̄1)
(
gαβ (z2, z̄2)

)†
gαβ (z3, z̄3)

(
gαβ (z4, z̄4)

)†〉Σ1

=
〈
gαβ (z1, z̄1)(g−1)βα(z2, z̄2)gαβ (z3, z̄3)(g−1)βα(z4, z̄4)

〉
Σ1

=|z13z24|−4∆g
∑

i,j,n=1,2

XnnF (n)
i (η)F (n)

j (η̄), (61)
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Figure 4: The real-time evolution of Re[∆S
(2)
A ] or ∆S

(2)
A in SU(N)k WZW models with gαβ -excitation.

The regulator is chosen to be ε = 10−5. (a), (b), (c): A = [0,∞), l = 10, xm = 0. The dashed

lines correspond to log dg for different N and k; (d): A = [0, 20], xm = 10, l = 2. ∆S
(2)
A (η, η̄) =

∆S
(2)
A (1/2, 1/2) at the dashed lines.

where

X11 = 1, X22 =
Γ
(
N+1
κ

)
Γ
(
N−1
κ

)
Γ
(
k
κ

)
Γ
(
k
κ

)
N2 · Γ

(
k+1
κ

)
Γ
(
k−1
κ

)
Γ
(
N
κ

)
Γ
(
N
κ

) ,
F (1)

1 (η) = η−2∆g(1− η)
N
κ
−2∆g · 2F1

(
1/κ,−1/κ, 1−N/κ; η

)
,

F (1)
2 (η) =

1

k
η1−2∆g(1− η)

N
κ
−2∆g · 2F1

(
1 + 1/κ, 1− 1/κ, 2−N/κ; η

)
,

F (2)
1 (η) = η

N
κ
−2∆g(1− η)

N
κ
−2∆g · 2F1

(
(N − 1)/κ, (N + 1)/κ, 1 +N/κ; η

)
,

F (2)
2 (η) = −NηNκ −2∆g(1− η)

N
κ
−2∆g · 2F1

(
(N − 1)/κ, (N + 1)/κ,N/κ; η

)
. (62)

We next explore the full-time evolution behavior of ∆S
(2)
A utilizing the above information.

Particularly, we are mainly concerned with the behavior of ∆S
(2)
A evolution under the two

symmetric space configurations, i.e. xm = 0 for A = [0,∞) and xm = L/2 for A = [0, L].

As shown in figure 4, we can see that in the case of xm = 0, A = [0,∞), there are three

evolution patterns of Re[∆S
(2)
A ] determined by the relative size of the rank N and level k.

When N ≤ k (see figure 4(a) and (b)), we find that Tr[(T 1|2
A (t))2] is always greater than 0, thus

∆S
(2)
A remains real in the full-time evolution. A rather fascinating situation is that N = k, since

again we observe a pseudo-Rényi entropy evolution identical to that of Rényi entropy. When

N > k, the 2nd pseudo-Rényi entropy evolution behavior is similar to that in the minimal

model. Since Tr[(T 1|2
A (t))2] is less than 0 near t = l/2, we have a complex pseudo entropy of in
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a certain interval. Figure 4(d) depicts the behaviors of S
(2)
A under the second symmetric space

configuration xm = L/2 in A = [0, L]. Notice that no matter k is greater than N or not, we

obtain a pseudo-Rényi entropy that remains real throughout time evolution.

summaries of the above results: Let us take a short stay to briefly summarize the above

results and try to answer the questions posed at the beginning of the section.

1. In general, there are one or two hump evolutions (for example, figure 2(a), (b)) between

the early time and late time evolution of ∆S
(2)
A , and the value of ∆S

(2)
A at the peaks of

humps is ∆S
(2)
A (η, η̄) = ∆S

(2)
A (1

2
, 0).

2. We find two special spatial configurations of operators, x1 = −x2 for A = [0,∞) and

x1 = L − x2 for A = [0, L], in which the the trace of
(
T 1|2
A (t)

)2
always remains real.

Within them, for the case of x1 = L− x2, we expect Tr
[(
T 1|2
A (t)

)2]
to be greater than 0,

resulting in a real ∆S
(2)
A , which is consistent with all the numerical results.

3. In the e
i
2
φ+e−

i
2
φ-excitation of free scalar and gαβ -excitation of SU(N)k WZW models

(N = k), we observe that the 2nd pseudo-Rényi entropy exhibits the same behavior as

Rényi entropy in the case of x1 = −x2, A = [0,∞), i.e.

∆S
(2)
[0,∞)(x1,−x1, t) =

{
0, 0 ≤ t < |x1|,
log d, t > |x1|.

(63)

3.2 Linear combination of operators

In the previous subsection, we study the real-time behaviors of ∆S
(2)
A for states excited by the

same primary operator. It’s not so straightforward to extend the results to two different primary

operators. Simply substituting one of the operators would probably make a non-normalizable

transition matrix since the two-point function for two different primary operators is likely to

be zero. One feasible way is to consider the linear combinations of operators.15 Consider a

real-time dependent transition matrix T ψ|ψ̃(t) = e−iHt|ψ〉〈ψ̃|eiHt
〈ψ̃|ψ〉 consisting of two quantum states

|ψ〉 and |ψ̃〉,

|ψ〉 :=
1√

〈O†(x, ε)O(x,−ε)〉
O(x,−ε)|Ω〉, |ψ̃〉 :=

1√
〈Õ†(x̃, ε)Õ(x̃,−ε)〉

Õ(x̃,−ε)|Ω〉,

O(x,−ε) =
∑
p

CpOp(x,−ε), Õ(x̃,−ε) =
∑
p

C̃pOp(x̃,−ε). (64)

In the above, O(x, ε) ≡ eεHO(x)e−εH , Op are primary or descedant operators that are orthog-

onal to each other in the sense of the two-point function, Cp(C̃p) are superposition coefficients

used to give a non-zero inner product.

15We thank Tadashi Takayanagi for bringing this idea to our attention.
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3.2.1 The expected late time limit of ∆S
(n)
A

Let’s focus on the case where A = [0,∞), we expect the late time limit of ∆S
(n)
A to take the

following form

lim
t→∞

∆S(n)[T ψ|ψ̃A (t)] =
1

1− n log

[∑
p

(
CpC̃

∗
p〈O†p(w̃, ¯̃w)Op(w, w̄)〉∑

p′ Cp′C̃
∗
p′〈O†p′(w̃, ¯̃w)Op′(w, w̄)〉

)n

e(1−n)S(n)[Op]

]
, (65)

where w = x−iε, w̃ = x̃+iε, and S(n)[Op] is the late time limit of the difference of entanglement

entropy of Op-excitation (S(n)[Op] = log dp in RCFTs). It is difficult to utilize replica trick to

prove Eq.(65). Nevertheless, we can provide a quantum mechanical derivation from another

perspective, which as far as we know was first introduced in [43].16 We next numerically examine

the correctness of Eq.(65) using the replica trick in the concrete model.

3.2.2 Example in critical Ising

We would like to compute ∆S
(2)
A of linear combination operators in the critical Ising model

to examine Eq.(65). There are three primary operators in the Ising model at a critical point,

namely the identity I, the spin σ, and the energy density ε. The fusion rule of them is well-

known,

ε× ε = I, σ × σ = I + ε, σ × ε = σ. (66)

For simplicity, below, we consider the combination of σ and I as a typical example.

Example—σ+I: Let us first define two linear combination operators

O(w, w̄) ≡ Cσ · σ(w, w̄) + CI · I, Õ(w̃, ¯̃w) ≡ C̃σ · σ(w̃, ¯̃w) + C̃I · I. (67)

According to the fusion rule and (9), only four- and two-point functions of σ are involved in

the calculation,

〈σ(z1, z̄1)σ(z2, z̄2)〉Σ1 =
1

|z12|1/4
,

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉Σ1 =

(
1

2

∣∣∣∣√ z14z23

z12z34z13z24

∣∣∣∣+
1

2

∣∣∣∣√ z13z24

z12z34z14z23

∣∣∣∣
+

1

2

∣∣∣∣√ z12z34

z13z24z14z23

∣∣∣∣
) 1

2

. (68)

In addition, since in general ∆S
(2)
A of the mixed operator cannot be written as a function of

cross ratios, we choose to use the following coordinates mapping between (w, w̄) on Σ2 and

16The derivation is presented in appendix B.
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(z, z̄) on Σ1 [34] to complete the analytic continuation of time,

z1 =
√
w1 = i

√
−x1 − t+ iε, z̄1 =

√
w̄1 = −i

√
−x1 + t− iε, (69)

z2 =
√
w2 = i

√
−x2 − t− iε, z̄2 =

√
w̄2 = −i

√
−x2 + t+ iε. (70)

We start with the case of {C̃p} 6= {Cp} and x̃ = x. An efficient way is to set Cσ = q ∈ [0, 1],

CI = 1−q, C̃σ = qk, C̃I = 1−qk, and obviously what we will obtain when k 6= 1 is pseudo-Rényi

entropy rather than Rényi entropy. Figure 5(a) shows the behavior of the late time limits of

∆S
(2)
A when we adjust the mixed coefficient q. We can see that the late time limits of ∆S

(2)
A

obtained by replica method numerically (square points) are in good agreement with the results

(solid lines) given by Eq.(65). With the increase of q, the contribution of σ operator gradually

increases, which leads to the saturation value of 2nd (pseudo-) Rényi entropy gradually shifting

from 0 (log dI) to log
√

2 (log dσ). Except for the late time limit, it’s also intriguing to depict

the the full-time evolution of ∆S
(2)
A , see figure 5(b). We find that although ∆S

(2)
A saturates to

a real value, globally ∆S
(2)
A is complex in all cases except k = 1 (the case of Rényi entropy).
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Figure 5: (a) and (c): The late time limits of ∆S
(2)
A with respect to the mixing factor q in σ+I-

excitation. The regulator is chosen to be ε = 10−5; (b): The full-time evolution of Re[∆S
(2)
A ] in

σ+I-excitation. Parameters are selected as q = 0.5, x = x̃ = −5, ε = 10−5. The dashed lines are the
theoretical limits derived from Eq.(65) for the corresponding parameters; (d): The full-time evolution

of ∆S
(2)
A in σ+I-excitation. Parameters are selected as x = −x̃ = ±5, ε = 10−5. The dashed lines are

the theoretical limits derived from Eq.(65) for the corresponding parameters.

The other interesting case we shall investigate is that {C̃p} = {Cp}, x̃ 6= x. Let us set C̃σ =

Cσ = q, C̃I = CI = 1− q. According to (65), since 〈O†p(w̃, ¯̃w)Op(w, w̄)〉 =
(
(x̃− x)2 + 4ε2

)−2∆p
,
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only the information of the distance of two space points l ≡ |x̃−x| is related. We then plot the

change of saturation value of ∆S
(2)
A with q under different l, as depicted in figure 5(c). Once

again, we find that the theoretical value (solid lines) given by Eq.(65) is consistent with the

numerical result (square points) given by replica trick. On the other hand, when the insertion

point is symmetric about the origin, i.e. x̃ = −x, ∆S
(2)
A is found to be real throughout the the

time evolution (see figure 5(d)), which is consistent with the previous symmetry analysis.

4 General arguments and examples on ∆S
(n)
A

In the previous section, we study the real-time behavior of ∆S
(2)
A for two insertion operators with

different spatial coordinates. Meanwhile, we propose a formula to describe the late time limit

of ∆S
(n)
A of linear combination operators. However, as shown in appendix B, its rationality also

depends on the behavior of nth pseudo-Rényi entropy of a single primary operator insertion.

Therefore, in this section, we shall quest for the properties of ∆S
(n)
A for two operators with

different space points in the light of the results of ∆S
(2)
A that we have found before.

Late time limit of ∆S
(n)
A : The excess of nth pseudo-Rényi entropy of the reduced transition

matrix T 1|2
A (t) (17) can be obtain from Eq.(7) by computing the 2n-point function on the replica

manifold Σn. Our primary purpose is to explore the existence of the late time saturation value

of log dO in pseudo-Rényi entropy of higher-order when the subsystem A = [0,∞). Hence we

employ the conformal map (13) to obtain the coordinates of 2n operators on Σ1 first,

z2k+1 =e2πi
k+1/2
n (−x1 − t+ iε)

1
n , z̄2k+1 = e−2πi

k+1/2
n (−x1 + t− iε) 1

n ,

z2k+2 =e2πi
k+1/2
n (−x2 − t− iε)

1
n , z̄2k+2 = e−2πi

k+1/2
n (−x2 + t+ iε)

1
n , (k = 0, ..., n− 1). (71)

Then we have

〈O†(w2n, w̄2n)O(w2n−1, w̄2n−1)...O(w1, w̄1)〉Σn
〈O†(w2, w̄2)O(w1, w̄1)〉nΣ1

= Cn · 〈O†(z2n, z̄2n)O(z2n−1, z̄2n−1)...O(z1, z̄1)〉Σ1 ,

(72)

where

Cn ≡
(

(x1 − x2)2 + 4ε2

n2

)2n∆O

×
2n∏
i=1

(zn−1
i z̄n−1

i )−∆O

'
(

(x2 − x1)2 + 4ε2

n2

)2n∆O

× t4(1−n)∆O + sub-leading order terms (73)

'0 (t→∞).

On the other hand, we find that at the late time (t→∞)

lim
t→∞

(z2(k+1)+2 − z2k+1) ' x2 − x1 + 2iε

nt
e2πi k+1

n t
1
n ' 0,

lim
t→∞

(z̄2k+2 − z̄2k+1) ' x1 − x2 + 2iε

nt
e−2πi

k+1/2
n t

1
n ' 0, (k = 0, ..., n− 1; z2n+2 ≡ z2n). (74)
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Figure 6: The fusion transformations to obtain ∆S
(n)
A .

The above results enable us to factorize the 2n-point function 〈O†(z2n, z̄2n)...O(z1, z̄1)〉Σ1 into

n-point functions by using the fusion transformation (25) n− 1 times (see figure 6),

〈O†(z2n, z̄2n)...O(z1, z̄1)〉Σ1

'(F00[O])n−1 ×
(
n−1∏
k=0

(z2k+4 − z2k+1)(z̄2k+2 − z̄2k+1)

)−2∆O

+ sub-leading order terms

'(F00[O])n−1 ×
(

(x2 − x1)2 + 4ε2

n2

)−2n∆O

× t4(n−1)∆O + sub-leading order terms (75)

Substituting (73) and (75) into the r.h.s. of Eq.(72), it’s easy to find that the leading-order

contribution at late time is (F00[O])n−1 = d1−n
O . In this way, we obtain the late time value of

∆S
(n)
A

lim
t→∞

∆S
(n)
A = log dO. (76)

Symmetries of ∆S
(n)
A : The second intention in this section is to investigate whether the

symmetries found in second pseudo-Rényi entropy, i.e. Eq.(47-49), still hold in higher-order or

not. It may be difficult to verify analytically, but the numerical examination is easy to take.

One good object of study is the σ-excitation in the critical Ising model, since the 2n-point

function of the spin operator σ is well-known [56,60],

〈σ(z1, z̄1)...σ(z2n, z̄2n)〉Σ1 =
1

2n

∑
εi=±1 i=1,...,2n∑

εi=0

∏
i<j

|zi − zj|εiεj/2. (77)

With the help of (71) and (77), we can study the evolution behavior of ∆S
(n)
A under the first

symmetric space configuration, i.e. x1 = −x2, A = [0,∞). On the other hand, for the second

symmetric space configuration of x1 = L− x2 in A = [0, L], the coordinates of 2n operators on

Σ1 will change to the following form

z2k+1 =e
2πik
n

(
x1 + t− iε

x1 + t− iε− L

) 1
n

, z̄2k+1 = e−
2πik
n

(
x1 − t+ iε

x1 − t+ iε− L

) 1
n

,

z2k+2 =e
2πik
n

(
x2 + t+ iε

x2 + t+ iε− L

) 1
n

, z̄2k+2 = e−
2πik
n

(
x2 − t− iε

x2 − t− iε− L

) 1
n

, (k = 0, ..., n− 1).

(78)
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Figure 7 demonstrates all situations that we are interested in. We find that the symmetries

(47-49) also hold in the higher-order pseudo-Rényi entropy. It can be clearly seen from figure

7(b) and (d). Because we know that the establishment of(47-49) may bring about a real

∆S
(n)
A evolution. Another interesting finding is that (b) shows that the evolution of higher-

order pseudo-Rényi entropy of σ-excitation under the first symmetric space configuration still

maintains the evolution pattern described by (63).17 We can also explore the asymmetric cases,

as shown in (a) and (c), and there are two points worth noting: i). The higher-order pseudo-

Rényi entropy in asymmetric space configuration still has hump evolution, and its peak value

changes with n; ii). Figure 7(c) suggests that after the relative sizes of L and l are fixed, the

middle time behavior of log d will gradually disappear with the increase of n.
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Figure 7: The real-time evolution of Re[∆S
(n)
A ] or ∆S

(n)
A for σ-excitation in critical Ising model.

The regulator ε = 10−5. (a): A = [0,∞), xm = ±5, l = 2; (b): A = [0,∞), xm = 0, l = 10; (c):
A = [0, 10], xm = −2 or 12, l = 2; (d): A = [0, 20], xm = 10, l = 22.

5 Conclusions and prospect

In this work, we study a generalized version of entanglement entropy and Rényi entropy, which

are so-called pseudo-entropy (PE) and pseudo-Rényi entropy (PRE), respectively, in 2d CFTs.

In particular, the real-time evolution of PRE associated with two locally excited states has been

evaluated in various 2d CFTs, e.g., free bosonic field theory, critical Ising model, WZW model

17Due to the increasing computational complexity, we verify this point up to n = 7.
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as well as large-c CFTs. These locally excited states are generated by acting local operators on

the vacuum state, and these operators can be a single primary operator or a linear combination

of them. Some fascinating behaviors of PRE evolution are found as follows:

For the reduced transition matrix generated by two primary operators with different spatial

coordinates (17), we show that when subsystem A has an infinite length, the late time value

of 2nd PRE is logarithmically divergent in large-c CFTs (take the large c limit first). The late

time value of nth PRE saturates to log d in RCFTs (for Example, see figure 7(a)), where d

is the quantum dimension of the corresponding primary operator. Whereas, when subsystem

A has a finite length, we show that the middle time behavior of log d of PRE in RCFTs

gradually disappears as the distance between operators or the order number n increases (see

figure2(c) and figure 7(c) respectively). Unlike the entanglement entropy, we find that in

general, there is a hump during the evolution between the early and late time evolution of

the nth PRE (for example, see figure (7)(a)), and for n = 2, its peak value can be found as

∆S
(2)
A (η, η̄) = ∆S

(2)
A (1/2, 0), where (η, η̄) are cross ratios.

On the other hand, for excitation by a linear combination of operators, using Schmidt

decomposition, we find that the late time limit of the nth pseudo-Rényi entropy is governed

by the formula (65). A prominent property that distinguishes linear combination excitation

from single primary operator excitation is that the late limit of PRE under linear combination

excitation is not necessarily the same as that of Rényi entropy (see, for example, figure 5(c)).

This means that for the case of a single primary operator, the initial information about the

positions of the insertion operators is lost in the long-time evolution. In contrast, for the

case of linear combinations, the late limit of the pseudo-Rényi entropy still contains the initial

information of the operator positions. It would be interesting to explore whether it is possible

to recover the initial data by using the late time limit of pseudo-Rényi entropy.

Finally, building on the analysis of the cross ratios, we uncover three kinds of symmetries

for the 2nd PRE (47-49), which naturally screen out two kinds of special space configurations

of insertion operators—x1 = −x2 for subsystem A = [0,∞) and x1 = L − x2 for subsystem

A = [0, L]. We show that the trace of
(
T (2)
A (t)

)2
is always real in both configurations, and we

expect Tr
[(
T (2)
A (t)

)2]
to be positive in the second configuration, which gives us a real 2nd PRE

evolution. For the first configuration, although the evolution of PRE under it is not always

real, in some theories, the evolution of PRE under the first configuration in A = [0,∞) shows

the same evolutionary pattern as Rényi entropy (see figure 2(a) in the free scalar theory, figure

4(a) in the WZW models, and figure 7(b) in the critical Ising model), i.e., we may have

∆S
(n)
A=[0,∞)(x,−x, t) =

{
0, 0 ≤ t < |x|,
log d, t > |x|. (79)

It will be an attractive research direction for us in the future to fully clarify the condition

that PRE remains real in the time evolution process and the condition that PRE behaves as
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Rényi entropy in the first symmetric space configuration. Furthermore, it’s also interesting to

make a higher-dimensional generalization of our results and dig out the possible corresponding

holographic counterpart.
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A Several time limits of cross ratios

In this appendix, we will analyze the cross ratios in various limits under two configurations of

the subsystem A.

A.1 A = [0,∞)

For the case of A = [0,∞), the cross ratios in Euclidean signature can be expressed in polar

coordinates on Σ2 as follows

η =
1

2
− (r1 + r2) cos

(
θ1−θ2

2

)
+ i(r1 − r2) sin

(
θ1−θ2

2

)
4
√
r1
√
r2

,

η̄ =
1

2
− (r1 + r2) cos

(
θ1−θ2

2

)
− i(r1 − r2) sin

(
θ1−θ2

2

)
4
√
r1
√
r2

, (80)

where (r1 cos θ1, r1 sin θ1) = (x1,−τ1), (r2 cos θ2, r2 sin θ2) = (x2, τ2), (0 ≤ θj < 2π, j = 1, 2),

and

cos(θ1 − θ2) = 2 cos2

(
θ1 − θ2

2

)
− 1 = 1− 2 sin2

(
θ1 − θ2

2

)
=

x1x2 − τ1τ2√
(x2

1 + τ 2
1 )
√

(x2
2 + τ 2

2 )
. (81)

Since the two Euclidean times τ1 and τ2 after analytic continuation are ε + it and ε − it,

respectively, we may set τ1 = τ2 = ε before the analytic continuation. It leads to two ranges

of θ1 − θ2 which depend on x1 + x2: 0 < θ1 − θ2 < π when x1 + x2 < 0; π < θ1 − θ2 < 2π

when x1 + x2 > 0. Thus we have the following expressions of sin(cos)
(
θ1−θ2

2

)
after the analytic

continuation

cos

(
θ1 − θ2

2

)
=

(
1

2
+

x1x2 − ε2 − t2
2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

) 1
2

sgn[−(x1 + x2)],

sin

(
θ1 − θ2

2

)
=

(
1

2
− x1x2 − ε2 − t2

2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

) 1
2

, (82)
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where we define

sgn[x] ≡
{

1, x > 0,

−1, x < 0.
(83)

Substituting (82) into (80), and let

r1 =
√
x2

1 + (ε+ it)2, r2 =
√
x2

2 + (ε− it)2, (84)

we find that the cross ratios can be expressed as

η(x1, x2, t) =
(x1 + x2 + 2t) + 2

√
(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)

4
√

(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)
,

η̄(x1, x2, t) =
(x1 + x2 − 2t) + 2

√
(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)

4
√

(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)
. (85)

As x1 = x2 = −l < 0, the above result coincides with that of [36]. According to (85), one can

evaluate the early time limit and late time limits for cross ratios

lim
t→∞

(η, η̄) '
(

1 +
(x2 − x1 + 2iε)2

16t2
,−(x2 − x1 − 2iε)2

16t2

)
' (1, 0), (86)

lim
t→0

(η, η̄) '


(

1
2

+ x1+x2

4
√
x1x2

, 1
2

+ x1+x2

4
√
x1x2

)
, x1x2 > 0,(

1
2

+ x1+x2

4
√
x1x2

, 1
2
− x1+x2

4
√
x1x2

)
, x1 > 0 > x2,(

1
2
− x1+x2

4
√
x1x2

, 1
2

+ x1+x2

4
√
x1x2

)
, x2 > 0 > x1.

(87)

A.2 A = [0, L]

For the case of A = [0, L], we can write the Euclidean cross ratios in polar coordinates

η =
1

2
− (r1r4 + r2r3) cos

(
θ1−θ2−θ3+θ4

2

)
+ i(r1r4 − r2r3) sin

(
θ1−θ2−θ3+θ4

2

)
4
√
r1
√
r2
√
r3
√
r4

,

η̄ =
1

2
− (r1r4 + r2r3) cos

(
θ1−θ2−θ3+θ4

2

)
− i(r1r4 − r2r3) sin

(
θ1−θ2−θ3+θ4

2

)
4
√
r1
√
r2
√
r3
√
r4

, (88)

where (r1 cos θ1, r1 sin θ1) = (x1,−τ1), (r2 cos θ2, r2 sin θ2) = (x2, τ2), (r3 cos θ3, r3 sin θ3) = (x1 −
L,−τ1), (r4 cos θ4, r4 sin θ4) = (x2 − L, τ2) (0 ≤ θj < 2π, j = 1, 2, 3, 4), and

cos(θ1 − θ2) = 2 cos2

(
θ1 − θ2

2

)
− 1 = 1− 2 sin2

(
θ1 − θ2

2

)
=

x1x2 − τ1τ2√
(x2

1 + τ 2
1 )
√

(x2
2 + τ 2

2 )
,

cos(θ3 − θ4) = 2 cos2

(
θ3 − θ4

2

)
− 1 = 1− 2 sin2

(
θ3 − θ4

2

)
=

(x1 − L)(x2 − L)− τ1τ2√
(x1 − L)2 + τ 2

1

√
(x2 − L)2 + τ 2

2

.

(89)
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Similar to the arguments in Appendix A.1 , we obtain the expressions of sin(cos)
(
θ1−θ2

2

)
and

sin(cos)
(
θ3−θ4

2

)
after the analytic continuation as follows

cos

(
θ1 − θ2

2

)
=

(
1

2
+

x1x2 − ε2 − t2
2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

) 1
2

sgn[−(x1 + x2)],

sin

(
θ1 − θ2

2

)
=

(
1

2
− x1x2 − ε2 − t2

2
√

(x2
1 + (ε+ it)2)

√
(x2

2 + (ε− it)2)

) 1
2

,

cos

(
θ3 − θ4

2

)
=

(
1

2
+

(x1 − L)(x2 − L)− ε2 − t2
2
√

(x1 − L)2 + (ε+ it)2
√

(x2 − L)2 + (ε− it)2

) 1
2

sgn[2L− (x1 + x2)],

sin

(
θ3 − θ4

2

)
=

(
1

2
− (x1 − L)(x2 − L)− ε2 − t2

2
√

(x1 − L)2 + (ε+ it)2
√

(x2 − L)2 + (ε− it)2

) 1
2

, (90)

where sgn[x] is the sign function (83) that we define. Substituting (90) into (88), and let

r1 =
√
x2

1 + (ε+ it)2, r2 =
√
x2

2 + (ε− it)2,

r3 =
√

(x1 − L)2 + (ε+ it)2, r4 =
√

(x2 − L)2 + (ε− it)2, (91)

we find that the cross ratios can be expressed as

η(x1, x2, t) =
(x1 + x2 + 2t)L

[
(L− x1 − t)(L− x2 − t) + ε2 + iε(x1 − x2)

]− 1
2

4
√

(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)

+
1

2

(
1−

√
(x1 + t)(x2 + t) + ε2 + iε(x1 − x2)

(L− x1 − t)(L− x2 − t) + ε2 + iε(x1 − x2)

)
,

η̄(x1, x2, t) =
(x1 + x2 − 2t)L

[
(L− x1 + t)(L− x2 + t) + ε2 − iε(x1 − x2)

]− 1
2

4
√

(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)

+
1

2

(
1−

√
(x1 − t)(x2 − t) + ε2 − iε(x1 − x2)

(L− x1 + t)(L− x2 + t) + ε2 − iε(x1 − x2)

)
. (92)

As a self-consistent test, it can be found that (92) degenerates to (85) as L→∞.

B Derivation of Eq.(65)

Let us first define a series of normalized excited states with the help of Op

|Op(x)〉 :=
1√

〈O†p(x, ε)Op(x,−ε)〉
Op(x,−ε)|Ω〉,

(
〈Op′(x′)|Op(x)〉 =

δpp′ · 〈O†p(x′, ε)Op(x,−ε)〉√
〈O†p(x, ε)Op(x,−ε)〉〈O†p(x′, ε)Op(x′,−ε)〉

)
. (93)
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|ψ〉 and |ψ̃〉 can be written as two superposition states of |Op〉

|ψ〉 =
∑
p

√
λp|Op(x)〉, |ψ̃〉 =

∑
p

√
λ̃p|Op(x̃)〉, (94)

where

λp =
(Cp)

2〈O†p(x, ε)Op(x,−ε)〉∑
p′ |Cp′ |2〈O†p′(x, ε)Op′(x,−ε)〉

,
∑
p

|λp| = 1,

λ̃p =
(C̃p)

2〈O†p(x̃, ε)Op(x̃,−ε)〉∑
p′ |C̃p′ |2〈O†p′(x̃, ε)Op′(x̃,−ε)〉

,
∑
p

|λ̃p| = 1. (95)

Generally speaking, |Op〉 is an entangled state living in the sub-Verma module Hp

⊗
Hp̄. It

can be written in the following form by Schmidt decomposition

|Op(x)〉 =
∑
i

api (x)|pi(x)〉 ⊗ |(p̄i(x)〉, (96)

where {|pi(x)〉} and {|p̄i(x)〉} parameterized by x are two orthonormal basises of Hp and Hp̄

repectively, and api (x) are real coefficients. In these basisies the nth Rényi entropy of |Op(x)〉
reads

S(n)[Op(x)] =
1

1− n log
{

Tr(⊕pHp)

[ (
Tr(⊕pHp̄)|Op(x)〉〈Op(x)|

)n ]}
=

1

1− n log
∑
i

(
api (x)

)2n
,

(97)

meanwhile, the transition matrix becomes

T ψ|ψ̃ =
1∑

p

√
λp

√
λ̃∗p〈Op(x̃)|Op(x)〉

∑
p.p′

√
λp

√
λ̃∗p′
∑
i,j

api (x)ap
′

j (x̃)|pi(x)〉|p̄i(x)〉〈p′j(x̃)|〈p̄′j(x̃)|.

(98)

The reduce transition matrix is obtained by tracing out the anti-holomorphic part,

T ψ|ψ̃H =Tr⊕p̄Hp̄T ψ|ψ̃

=
∑
p

∑
i,j,k

√
λp

√
λ̃∗pa

p
i (x)apj(x̃)〈p̄j(x̃)|p̄i(x)〉〈pj(x̃)|pk(x)〉∑

p′′

√
λp′′
√
λ̃∗p′′〈Op′′(x̃)|Op′′(x)〉

· |pi(x)〉〈pk(x)|, (99)

which in general is off-diagonal. We can compute the trace of (T ψ|ψ̃H )n,

Tr
[
(T ψ|ψ̃H )n

]
=
∑
p

(√
λp

√
λ̃∗p

)n
(∑

p′′

√
λp′′
√
λ̃∗p′′〈Op′′(x̃)|Op′′(x)〉

)n
×
∑
{i},{j}

api1(x)apj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉...apin(x)apjn(x̃)〈p̄jn(x̃)|p̄in(x)〉〈pjn(x̃)|pi1(x)〉.

(100)
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To further reduce (100), let us turn to consider a more straightforward case that

|φ(t)〉 = e−iHt|Op(x)〉, |φ̃(t)〉 = e−iHt|Op(x̃)〉. (101)

According to the analysis in section 4, we know that the late time limit of ∆S(n)
[
T φ|φ̃A (t)

]
is

equal to limt→∞∆S(n)
[
TrAc|φ(t)〉〈φ(t)|

]
, and the latter we already know is equal to (97) [43].

On the other hand, following the logic in [43], it’s natural to expect that

lim
t→∞

∆S
(n)
A

[
T φ|φ̃(t)

]
=

1

1− n log Tr⊕pHp

[(
T φ(0)|φ̃(0)
H

)n]
=

1

1− n log
[
〈Op(x̃)|Op(x)〉−n

×
∑
{i},{j}

αpi1(x)αpj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉...αpin(x)αpjn(x̃)〈p̄jn(x̃)|p̄in(x)〉〈pjn(x̃)|pi1(x)〉
]

(102)

Comparing Eq.(97) with Eq.(102), we obtain the equality∑
{i},{j}

αpi1(x)αpj1(x̃)〈p̄j1(x̃)|p̄i1(x)〉〈pj1(x̃)|pi2(x)〉...αpin(x)αpjn(x̃)〈p̄jn(x̃)|p̄in(x)〉〈pjn(x̃)|pi1(x)〉

=〈Op(x̃)|Op(x)〉n
∑
i

(
api (x)

)2n
(103)

Substituting Eq.(103) into Eq.(100) and taking some algebra, we finally obtain

1

1− n log Tr
[
(T ψ|ψ̃H )n

]
=

1

1− n log

[∑
p

(
CpC̃

∗
p〈O†p(w̃, ¯̃w)Op(w, w̄)〉∑

p′ Cp′C̃
∗
p′〈O†p′(w̃, ¯̃w)Op′(w, w̄)〉

)n

e(1−n)S(n)[Op]

]
,

(104)

which, in the light of the logic in [43], just corresponds to the late time limit of nth

pseudo-Rényi entropy of A. Let {C̃p} = {Cp} = 1 and x̃ = x, it can be readily found that

(104) is reduced to the Eq.(2.26) in [43].
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