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ABSTRACT

The principle of the holography of information states that in a theory of quantum
gravity a copy of all the information available on a Cauchy slice is also available near the
boundary of the Cauchy slice. This redundancy in the theory is already present at low
energy. In the context of the AdS/CFT correspondence, this principle can be translated
into a statement about the dual conformal field theory. We carry out this translation
and demonstrate that the principle of the holography of information holds in bilocal
holography.

1robert@zjhu.edu.cn
2garry@kemp.za.org

ar
X

iv
:2

21
0.

11
06

6v
1 

 [
he

p-
th

] 
 2

0 
O

ct
 2

02
2



Contents

1 Introduction 1

2 Bilocal Holography 4

3 Convergence of the Operator Product Expansion 8

4 OPE and Holography of Information 12
4.1 Two bulk fields acting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Three bulk fields acting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Generic bulk observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Discussion and Conclusions 18

A OPE Observations 20
A.1 Instructive examples of OPE convergence . . . . . . . . . . . . . . . . . . . 22
A.2 Converting between η and σ . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Introduction

Locality is a cherished principle in physics. Relativistic causality - the fact that no physical
information carrying signal can propagate faster than the speed of light - is implemented
in the statement that spacelike separated fields commute. This ensures that laboratories
in spacelike separated spacetime regions function independently. A deep result express-
ing this independence in the algebraic formulation of quantum field theory is the split
property. As a consequence of the split property, we can specify the state of quantum
fields independently on different parts of a Cauchy slice. This lore is being challenged
[1, 2, 3, 4, 5] in the setting of quantum gravity, by the principle of the holography of
information, which claims that

In a theory of quantum gravity, a copy of all the information available on a Cauchy slice
is also available near the boundary of the Cauchy slice. This redundancy in description is
already visible in the low-energy theory.

This principle demands a dramatic revision of intuition built on locality. For example,
the principle of holography of information implies that given the state near the boundary
of the Cauchy slice, the rest of the state is determined: the split property fails and we
are not guaranteed that laboratories in spacelike separated regions of spacetime function
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independently! The principle of the holography of information is a source of a dramatic
new non-locality1.

The argument of [1, 2, 3, 4, 5] is compelling in its simplicity. The principle of the
holography of information has two basic ingredients. The first is the Reeh-Schlieder
Theorem [15], which is a Theorem about relativistic quantum field theory. We simply
state the theorem and refer the reader to [16] for a readable account with details. Denote
the vacuum of the quantum field theory as |Ω〉 and use H0 to denote the vacuum sector2

of the full Hilbert space H. The vacuum sector consists of all states that can be created
from the vacuum by applying local field operators. Assuming3 that the algebra of local
fields is generated by a hermitian scalar field φ(xµ), we introduce a smeared field φf ≡∫
d~xf(xµ)φ(xµ) and a set of states (both n and the functions fi are varied to get the full

set)

|Ψ{f1,··· ,fn}〉 = φf1φf2 · · ·φfn|Ω〉 (1.1)

Let Σ be a Cauchy hypersurface. Consider an arbitrarily small open set V ⊂ Σ and let
UV be a small neighbourhood of V in spacetime. The Reeh-Schleider theorem states that
even after restricting the functions fi to support in UV , the states |Ψ{f1,··· ,fn}〉 generate
H0. This remarkable result reflects the enormous amount of entanglement in the quantum
field theory vacuum. The second ingredient that goes into the principle of the holography
of information is that, as a consequence of the Gauss law, the energy of a state in gravity
can be measured from near the boundary. This implies that the projector onto the state
of lowest energy, PΩ = |Ω〉〈Ω|, is an element of the boundary algebra of operators. The
principle now follows [1, 2, 3, 4, 5]: First, note that any observable in H0 can be written
as a linear combination of operators of the form |a〉〈b| where |a〉 and |b〉 are allowed to be
any states in H0. Using the Reeh-Schleider theorem we know the complete set of these
operators can be written in the form

|a〉〈b| = φ
f
(a)
1
φ
f
(a)
2
· · ·φ

f
(a)

n(a)

|Ω〉〈Ω|φ
f
(b)
1
φ
f
(b)
2
· · ·φ

f
(b)

n(b)

(1.2)

Since the Gauss law implies that PΩ is an element of the boundary algebra of operators,
and since a product of operators in the boundary algebra is again an element of the
boundary algebra we conclude that the complete set of operators |a〉〈b| belong to the
boundary algebra. Consequently, any observable4 in H0 is an element of the boundary
algebra of operators and the principle is proved.

1For related studies we refer the interested reader to [6, 7, 8, 9, 10, 11, 12, 13, 14].
2The vacuum sector is not necessarily the full Hilbert space as there may be superselection sectors.

This happens, for example, when there are conserved charges that are not carried by any local operator.

In a non-trivial superselection sector an analogue of the Reeh-Schlieder theorem holds, so the existence

of non-trivial superselection sectors should not distract us.
3This assumption is to simplify the discussion and is easily relaxed [16].
4This would include operators that one naively thought were localized deep in the bulk of spacetime.
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This unusual localization of quantum information in quantum gravity is the focus
of this paper. More concretely, the AdS/CFT correspondence gives a non-perturbative
definition of quantum gravity on negatively curved spacetimes in the form of a conformal
field theory. Our goal in this article is to use the AdS/CFT correspondence to search for
signatures of the principle of the holography of information directly in the conformal field
theory. Concretely, we use the bilocal holography of the free O(N) model to study these
questions in higher spin gravity. The construction and key results of bilocal holography
are reviewed in Section 2. The conformal field theory is described using a bilocal collective
field. A key formula from Section 2 is the mapping (2.4) which locates the bulk operator,
corresponding to a given bilocal operator, in the bulk AdS4 spacetime. We also review
the important fact that there is some freedom in the reconstruction of the bulk fields in
the conformal field theory. Results establishing the convergence of the operator product
expansion in unitary conformal field theories, in Minkowski spacetime, are reviewed in
Section 3. In Section 4 we present our central result: the principle of the holography of
information, in bilocal holography, can be verified using the operator product expansion.
We speculate on how the principle is realized in AdS/CFT, in more general situations, in
Section 5.

A potential point of confusion can be clarified immediately: the reader might wonder if,
in the setting of the AdS/CFT correspondence, the holography of information is trivially
true. After all, doesn’t the statement of the AdS/CFT correspondence, that the dynamics
of the bulk is coded into the dynamics of a conformal field theory living on the boundary,
imply the holography of information? This is a misunderstanding of the principle. The
principle of the holography of information is a statement about the quantum gravity
theory itself. The proof of the principle [1, 2, 3, 4, 5], as reviewed above, does not invoke
AdS/CFT in any way at all, and consequently it also holds (for example) for a theory
of quantum gravity in flat spacetime where a holographic dual is not even established.
Our goal is to use AdS/CFT to map the principle of the holography of information into a
statement about the conformal field theory. This statement should be proved using only
conformal field theory methods i.e. without appealing to AdS/CFT or to the holographic
gravity dual. If this succeeds, it provides non-trivial support for the principle.

Finally, the setting of our study is higher spin gravity which differs in some important
ways from usual Einsteinian gravity. The spectrum of higher spin gravity includes not
just a massless spin two graviton, but rather there are massless gauge fields for every
even integer spin. It is clear that higher spin gravity will not share all the features of
Einsteinian gravity and there may be important differences between the two. Nonetheless,
we believe that this is a reasonable arena in which to test the holography of information.
Higher spin gravity is a quantum theory - so the Reeh-Schlieder theorem applies, and
it does enjoy the gauge invariance that is responsible for the Gauss law. Thus the key
ingredients needed to prove the principle are present.
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2 Bilocal Holography

The AdS/CFT correspondence [17, 18, 19] relates a conformal field theory (with loop
expansion parameter ~) to a theory of quantum gravity (with loop expansion parameter
1
N

). Changing the loop expansion parameter requires a non-trivial rearrangement of the
conformal field theory degrees of freedom. It can be achieved by collective field theory
[20, 21] which expresses the theory in terms of invariant variables. The key insight is that
the collective field variables have no explicit N dependence, so that the 1

N
expansion is

manifestly generated as the loop expansion of the collective field theory. Since collective
field theory provides a constructive approach to holography, it is the ideal framework for
this study. In what follows we work at the leading order in the large N expansion.

The conformal field theory we study, the free O(N) model, has the Lagrangian

L =
1

2
∂µφ

a∂µφa (2.1)

and is defined in 2 + 1 dimensions. There is compelling evidence [22] that this theory is
AdS/CFT dual [23, 24] to higher spin gravity [25, 26, 27] in AdS4 spacetime. Hologra-
phy for vector models, using a collective field description, was first proposed in [28] and
then developed in a series of papers5 [29, 30, 31, 32, 33, 44, 35], to which the reader is
referred for more details. The discussion is most transparently carried out using a light-
front quantization, since it is then possible to choose light cone gauge and to reduce to
physical degrees of freedom. Denote the conformal field theory coordinates with little
letters as x+, x−, x and the coordinates of the dual AdS4 spacetime with capital letters
as X+, X−, X, Z, with Z the extra holographic coordinate. For the O(N) model, at each
time x+ we change from the original field φa(x+, x−, x) to a new set of gauge invariant
variables, given by the bilocal fields

σ(x+, x−1 , x1, x
−
2 , x2) = φa(x+, x−1 , x1)φa(x+, x−2 , x2) (2.2)

where the index a is summed. The bilocal packages the complete set of independent single
trace equal x+ gauge invariant fields. This collective field is a function of 5 coordinates. In
what follows, it is convenient to perform a Fourier transform in the x− coordinate, which
trades x−1 and x−2 for the conjugate momenta p+

1 and p+
2 . We also perform a Fourier

transform in the AdS spacetime, trading coordinate X− for coordinate P+. The change
of field variable from φa to σ is associated with a Jacobian which is highly non-linear
and leads to an infinite sequence of interaction vertices [37]. The single trace spectrum of
primary operators includes a scalar of dimension ∆ = 1 and higher spin currents Jµ1···µ2s

of every even integer spin 2s and dimension ∆ = 2s + 1. As usual, every single trace
primary corresponds to a field of the dual higher spin gravity: there is a massless gauge
field AM1···M2s of every even integer spin, as well as a scalar field. The bilocal develops a

5Related but distinct ideas were recently put forward in [36].
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large N expectation value, which we denote as σ0(x+, x−1 , x1, x
−
2 , x2). Expanding about

this background defines the fluctuation η(x+, x−1 , x1, x
−
2 , x2)

σ(x+, x−1 , x1, x
−
2 , x2) = σ0(x+, x−1 , x1, x

−
2 , x2) + η(x+, x−1 , x1, x

−
2 , x2) (2.3)

It is the fluctuation η(x+, x−1 , x1, x
−
2 , x2) that is identified with the fields of the higher spin

gravity. Note that we can write η(x+, x−1 , x1, x
−
2 , x2) =: φa(x+, x−1 , x1)φa(x+, x−2 , x2) :. We

will use this equation below.

The higher spin currents of the conformal field theory are traceless and conserved.
Consequently, not all components of the current are independent. In the end, there are
two independent components of the current at each spin. In the higher spin gravity, we
fix light cone gauge A+M2···M2s = 0 and solve the associated constraint. This leave a
gauge field with all polarizations transverse to the lightcone AXXZZX···. This gauge field
is totally symmetric and traceless, so that in the end we have two independent physical
components of the gauge field at each spin [38]. The basic claim of bilocal holography
is that the theory of the physical degrees of freedom of the higher spin gauge field is
given by the bilocal collective field theory description of the independent components of
the conformal field theory current. This is supported by the explicit form of the GKPW
dictionary, worked out in the lightcone gauge, in [39], and the fact that by performing a
suitable change of coordinates the generators of the conformal group [38] acting on the
independent components of the currents in the conformal field theory and on the physical
degrees of freedom in the gravity, are mapped into each other. To write this representation
in the higher spin theory it is useful to employ the four AdS spacetime coordinates as
well as an additional variable θ whose role is to organize the higher spin fields. See
equation (2.13) below. The change of coordinates that relates the conformal field theory
and gravity representations identifies x+ = X+, and relates the remaining conformal
field theory coordinates (p+

1 , x1, p
+
2 , x2) to the remaining AdS coordinates (P+, X, Z, θ) as

follows

x1 = X + Z tan

(
θ

2

)
x2 = X − Z cot

(
θ

2

)
p+

1 = P+ cos2

(
θ

2

)
p+

2 = P+ sin2

(
θ

2

)
(2.4)

This is easily inverted

X =
p+

1 x1 + p+
2 x2

p+
1 + p+

2

Z =

√
p+

1 p
+
2 |x1 − x2|

p+
1 + p+

2

P+ = p+
1 + p+

2 θ = 2 tan−1

(√
p+

2

p+
1

)
(2.5)

In addition to mapping the generators correctly, one also finds that the conformal field
theory equations of motion for the independent components of the currents are mapped
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into the higher spin equations of motion for the physical degrees of freedom of the higher
spin gauge field. In this way the equivalence between the bilocal collective field theory
and the AdS higher spin gravity is made manifest. The utility of this map is that it nicely
explains where localized excitations in the conformal field theory map into the bulk.

One natural application of the above result is to the problem of subregion duality. By
studying the subregion−L ≤ x ≤ L the paper [40] showed that it is possible to reconstruct
the bulk region given by X2 + Z2 ≤ L2. The curve X2 + Z2 = L2 is the geodesic in the
AdS4 spacetime that connects the endpoints X = ±L, Z = 0 on this constant X+ slice,
so it is the Ryu-Takayanagi surface [41] in lightcone quantization. In this way we recover
the expected entanglement wedge reconstruction result, giving confidence that the bilocal
collective map encodes the conformal field theory degrees of freedom into the AdS4 bulk
in the correct way.

We are interested in the location of operators, after mapping to the dual gravity, in
the holographic Z direction. We know that both p+

1 > 0 and p+
2 > 0. Consequently in

the formula

Z =

√
p+

1 p
+
2

p+
1 + p+

2

|x1 − x2| (2.6)

the prefactor

√
p+1 p

+
2

p+1 +p+2
is non-zero and always less than one. By restricting to bilocals with

|x1− x2| ≤ ε we restrict to operators that live in a tiny band in the neighbourhood of the
boundary, certainly within Z < ε. An arbitrarily small ε implies that this band becomes
arbitrarily small. Conversely, the only way in which we can probe deep into the bulk,
corresponding to large values for Z, is by making the separation x1 − x2 large.

It is interesting to ask where single trace primaries map to in the AdS4 bulk. The
scalar primary is given by φa(x+, x−, x)φa(x+, x−, x) i.e. it is obtained from the bilocal
(2.2) by setting x1 = x2 = x and x−1 = x−2 = x−. Consequently, it is located on the
boundary Z = 0. The conserved currents are given by

Js(x
+, x−, x, α) = Jµ1µ2···µs(x

+, x−, x)αµ1αµ2 · · ·αµs

=
s∑

k=0

(−1)k : (α · ∂)s−kφa(x+, x−, x) (α · ∂)kφa(x+, x−, x) :

k!(s− k)!Γ(k + 1
2
)Γ(s− k + 1

2
)

(2.7)

where αµ is a polarization vector employed as a convenient book keeping device. The
equal x+ bilocal field eliminates components of the current with + polarizations, so we
will set α+ = 0. In this case the derivatives above are all with respect to x− or x. To
express these currents in terms of the bilocal field we need to separate the points slightly
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so that we can act with derivatives on either field separately

Js(x
µ, α) =

s∑
k=0

(−1)k : (α · ∂1)s−k (α · ∂2)k :

k!(s− k)!Γ(k + 1
2
)Γ(s− k + 1

2
)
η(x+, x−1 , x1, x

−
2 , x2)

∣∣∣
x1=x2=x,x−1 =x−2 =x−

(2.8)

For the purpose of constructing the spinning current it is enough to separate the two
points x1 and x2 by an arbitrarily small amount ε, evaluate the relevant derivatives and
then send x2 → x1. Put differently, we can construct the current at x1 from the bilocal
field η(x+, x−1 , x1, x

−
2 , x2) with |x1 − x2| < ε where ε can be arbitrarily small. Thus the

complete set of single trace primary operators, after mapping to the dual gravity, are
supported in an arbitrarily small neighbourhood of the boundary.

Finally, it was pointed out in [40] there is some freedom in the reconstruction of the
bulk fields. This freedom will be used in what follows. To see how this arises, notice that
from the map (2.4) and (2.5) it follows that a bilocal with coordinates x1 and x2 maps to
a semi-circle (

X − x1 + x2

2

)2

+ Z2 =

(
x1 − x2

2

)2

(2.9)

in the bulk. Some simple trigonometry (see Figure 1) implies that

tan θ =
Z

X − x1+x2
2

=
2
√
p+

1 p
+
2

p+
1 + p+

2

(2.10)

Figure 1: The bilocal describing a pair of excitations localized at (x1, p
+
1 ) and (x2, p

+
2 )

correspond to a bulk excitation localized at (X,Z) as shown. The bilocal conformal field

theory excitation (two red circles) maps into a bulk excitation on the semicircle above.

This figure lives on a constant x+ = X+ slice. The angle θ is related to p+
1 and p+

2

according to (2.10).
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so that θ appearing in Figure 1 is the same coordinate θ appearing in the map [40].
Consequently, varying p+

1 and p+
2 moves us along the semi-circle. To obtain a definite

value of θ and P+ for the bulk field, we need to evaluate the bilocal at

p+
1 =

1

2
P+ (1− cos θ) p+

2 =
1

2
P+ (1 + cos θ) (2.11)

We can then Fourier transform to obtain a field localized at a definite X−, if we wish to.
The bulk field reconstructed in this way is a linear combination of many different spinning
gauge fields

Φ(X+, X−, X, Z, θ) =
∞∑

s=−∞

(
AZZ···ZZ cos(2sθ) + AZZ···ZX sin(2sθ)

)
(2.12)

Components of the gauge field with additional x polarizations immediately follow from
the fact that the gauge field is completely symmetric and traceless. To obtain a specific
gauge field of a definite spin, localized at a specific bulk point, we need to do an integral
over θ as follows

AZZ···ZZ =

∫ π

0

dθ Φ(X+, X−, X, Z, θ) cos(2sθ)

AZZ···ZX =

∫ π

0

dθ Φ(X+, X−, X, Z, θ) sin(2sθ) (2.13)

Thus, a gauge field with a definite spin, a definite polarization and located at a definite

bulk point in AdS4 comes from a bilocal located at a definite x1, x2,
x−1 +x−2

2
but completely

smeared over the relative coordinate x−1 − x−2 . Further, for this construction we can
use any semi-circle that passes through the bulk point so that infinitely many different
reconstructions of the bulk field, each using a different bilocal field6, are possible. This is
the fluidity in the bulk/boundary dictionary that appears in the quantum error correction
interpretation of AdS/CFT [53]. This fluidity is needed to resolve apparent inconsistencies
of bulk reconstruction.

Although we do not need it for what follows, note that bilocal holography has been
studied for the interacting IR fixed point of the O(N) model in [42, 43] and the bilocal
holography of the thermofield double has been constructed in [44, 45, 46].

3 Convergence of the Operator Product Expansion

In the next section we will be making use of the operator product expansion (OPE). To
prepare for this application, this section reviews results about the convergence of the OPE
in unitary conformal field theories, in Minkowski spacetime.

6The different bilocals have different values of x1 and x2. See Figure 2.
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Figure 2: The bulk field located at bulk point P can be constructed using the bilocal

σ(x+, p+
1 , x1, p

+
2 , x2) or using the bilocal σ(x+, p+

1 , xa, p
+
2 , xb) due to fluidity in the recon-

struction of bulk fields from bilocals in the conformal field theory. There are an infinite

number of different possible reconstructions corresponding to the fact that an infinite

number of semi-circles with distinct endpoints, all passing through P , can be drawn.

In conformal field theory the OPE, which expresses the product of two fields at dif-
ferent points as a sum of a (possibly infinite) number of local fields, is often a convergent
expansion. Our application uses the OPE of two identical scalar operators. Conformal
symmetry groups all local operators of the theory into conformal multiplets, consisting
of a primary operator together with its derivatives (descendants). The OPE is written in
terms of a sum over the primary operators O as follows

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∑
O

fφφOPO(yµ, ∂x)O(x) (3.1)

If the primary operators O have a non-zero spin they will also have indices. The con-
tractions of these indices is not written explicitly above. The coefficient function PO is
a power series in ∂y which encodes the contribution of the primary O and all of its de-
scendants. The form of this function is completely fixed by conformal invariance in terms
of the operator scaling dimensions. The number fφφO is called the OPE coefficient and
it together with the spectrum of scaling dimensions of the primary operators completely
determines the dynamical content of the conformal field theory.

The convergence of the OPE is established by using it to relate an n+ 2 point corre-
lation function to an n+ 1 point correlation function as follows [47]

〈φa(x)φa(y)
n∏
i=1

ψi(zi)〉 =
∑
O

fφφOPO(x− y, ∂y)〈O(y)
n∏
i=1

ψi(zi)〉 (3.2)

There is some freedom in writing this formula as we might write the product φ(x)φ(y) as
a sum of operators located at different points. Natural choices include at x, at y or at the
midpoint (x + y)/2. The statement that the OPE converges is that statement that the
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right hand side of the above formula is absolutely convergent at finite separation x − y,
rather than being just an asymptotic expansion in the limit x→ y. It is simplest to start
in Euclidean space where we can appeal to radial quantization. The convergence of the
OPE expansion is then related to the convergence of a scalar product of two Hilbert space
states. The argument [48] starts by quantizing the theory radially with point y as the
origin. In the case that

|x− y| < min
i
|zi − y| (3.3)

we can find a sphere separating the points x, y from the points zi where the remaining
operators are inserted. The LHS of (3.2) is then the overlap 〈Ψ|Φ〉 of the two states

|Φ〉 = φa(x)φa(y)|0〉 〈Ψ| = 〈0|
n∏
i=1

ψi(zi) (3.4)

produced by acting on the radial quantization in and out vacua. Thus, the convergence of
the OPE expansion is related to the convergence of a scalar product of two Hilbert space
states in radial quantization. Convergence is then implied by a basic theorem about
Hilbert spaces: the scalar product of two states converges when one of the two states is
expanded into an orthonormal basis.

What is the rate of convergence of the OPE? By focusing on four point functions,
this rate was studied in [47]. The expansions are convergent in a finite region with an
exponential convergence rate for the two different schemes considered, corresponding to
the case that φ(x)φ(y) is expressed as a sum of operators inserted at y or at x+y

2
[47]. All

results described so far refer to the convergence of the OPE in the Euclidean theory. To
obtain convergence results for the Minkowskian theory, the Euclidean four point functions
need to be analytically continued to imaginary time. This question has been considered
carefully in the paper [49] which studied the convergence properties of operator product
expansions (OPE) for Lorentzian conformal field theory four-point functions of scalar
operators implied by analytic continuation of the Euclidean results we have just reviewed.
The key results for us are Theorem 4.1, Theorem 4.4 and Theorem 4.6 of [49] which give
the criteria for the convergence of the s-channel, t-channel and u-channel OPEs. In terms
of the conformal cross ratios

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

14x
2
23

x2
13x

2
24

(3.5)

where xµ = (t, ~x) and

x2
ij = −(ti − tj)2 + (~xi − ~xj) · (~xi − ~xj) (3.6)

we introduce two parameters z, z̄ as follows

u = zz̄ v = (1− z)(1− z̄) (3.7)
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If neither z nor z̄ belong to (1,∞) then the s-channel OPE is convergent, if neither z nor
z̄ belong to (−∞, 0) then the t-channel OPE is convergent and finally if neither z nor z̄
belong to (0, 1) then the u-channel OPE is convergent. These are the basic results that
we use below.

We will be using the OPE for products of operators that all live on the same equal x+

slice. In this case

xµi = (x+, x−i , xi) x2
ij = (xi − xj)2 (3.8)

so that only the coordinate transverse to the lightcone appears in the conformal cross
ratios. The parameters z, z̄ are then defined by

(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2
= zz̄

(x1 − x4)2(x3 − x2)2

(x1 − x3)2(x2 − x4)2
= (1− z)(1− z̄) (3.9)

�1⇥�2 �3⇥�4 (A)

�1⇥�2

�3⇥�4 (B)

�1⇥�2

�3⇥�4

(C)

2

Figure 3: The s-channel OPE converges for the configurations (A) and (B) above. It does

not converge for configuration (C).

In terms of these parameters, the conditions for the convergence of the OPE are rather
intuitive, see Figure 3. For the purpose of illustration, consider the s-channel OPE. The
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s-channel OPE computes the operator products φ1×φ2 and φ3×φ4. For example, consider
the four point function

〈σ(x+, x−1 , x1, x
−
2 , x2)σ(x+, x−3 , x3, x

−
4 , x4)〉

= 〈φa(x+, x−1 , x1)φa(x+, x−2 , x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉 (3.10)

and choose (x1, x2, x3, x4) = (1, 2, 3, 4) which gives a value of

z =
1

4
= z̄ (3.11)

According to [49] the s-channel OPE expressing each bilocal as a sum of local opera-
tors converges. This is also the case for the choice (x1, x2, x3, x4) = (5, 2, 3, 4) which
corresponds to

z =
3

4
= z̄ (3.12)

If on the other hand we choose (x1, x2, x3, x4) = (1, 3, 2, 4) we find a situation in which
the two bilocals “straddle” each other and we do not expect the s-channel OPE for each
bilocal to converge. In this case we find that

z = 4 = z̄ (3.13)

so that according to [49] the s-channel OPE expressing each bilocal as a sum of local
operators does not converge. In this case however, we can still use the t-channel OPE
which computes φ1 × φ4 and φ2 × φ3. This corresponds to a rather non-trivial rearrange-
ment of the gauge invariant degrees of freedom as this OPE channel takes the product
of fields belonging to different gauge invariant bilocal fields. There is however nothing
wrong with proceeding in this way and in fact equality of these channels has been used
for the conformal bootstrap in [50].

Finally, note that the only difference between the OPE φa(x1)φa(x2) and the OPE
: φa(x1)φa(x2) : is that we do not include the contribution of the identity operator in
: φa(x1)φa(x2) :. The identity operator is a scalar primary that has no descendants.
The contribution of the identity corresponds to the contribution coming from contracting
φa(x1) with φa(x2), which is precisely what the normal ordering subtracts out.

4 OPE and Holography of Information

The principle of the holography of information predicts that any collection of bulk op-
erators can be expressed as an element of the boundary algebra. In Section 2 we have
argued that all of the single trace primary operators are supported in an arbitrarily small
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neighbourhood of the boundary. By separating x1 and x2 to be arbitrarily distant, the
bilocal field η(x+, x−1 , x1, x

−
2 , x2) corresponds to a bulk operator located arbitrarily deep

in the bulk, i.e. it is located at an arbitrarily large Z value in the AdS4 bulk. Thus,
the holography of information is verified if we could replace the bilocal field by a sum of
single trace primaries. This is exactly what the OPE does, so we see that in the conformal
field theory, the principle of the holography of information has reduced to the statement
of the OPE. This proves that measuring an appropriate linear combination of operators
that belong to the boundary algebra is equivalent to measuring the bulk operator.

This argument glosses over an important point: the radius of convergence of the
OPE inside a correlator is not predetermined but depends on the next-closest operator
insertion. Thus, we might spoil the convergence of the OPE for any given bilocal, by
including another bilocal that straddles it, exactly as in Figure 3 (C). To really turn
the above observation into a careful argument, one would need to show that this bilocal
overlapping problem can always be avoided, i.e. that it never prevents us from writing
any product of bulk operators as a convergent sum of gauge invariant operators belonging
to the boundary algebra. For the case of a single bulk field, corresponding to a single
bilocal, this is indeed the case. When more than one bulk field acts, more care is needed.
We start by considering the action of two bulk fields and then three bulk fields before
considering the general case.

4.1 Two bulk fields acting

In the case of two bulk fields acting there is, apparently, already the possibility that
convergence of the OPE is spoiled. For a product of bilocals

〈η(x+, x−1 , x1, x
−
2 , x2)η(x+, x−3 , x3, x

−
4 , x4)〉 (4.1)

we want to use the OPE in the s-channel since both products : φ1 × φ2 : and : φ3 × φ4 :
are separately gauge invariant. This is not the case for either the t or u-channels, so that
working in either of these channels we should not expect the result of the OPE to be
expressed in terms of single trace primaries and their descendants.

However, a potential problem becomes apparent: there are three possible configu-
rations as shown in Figure 4. The s-channel OPE converges only for (A) and (B). If
configuration (C) arises, we are not able to rewrite each bilocal as a sum of single trace
primaries. Fortunately, as we now explain, it is always possible to avoid configuration
(C).

The key physical input from bilocal holography that we exploit is the fluidity of the
bulk/boundary dictionary. Recall that to reconstruct a field at a bulk point, we can use
any bilocal associated to a semi-circle that passes through the point. So the question
of whether it is possible or not to avoid configuration (C) boils down to the question of
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Figure 4: The OPE converges for configurations (A) and (B) and does not converge for

configuration (C). In (C) the semicircles depicting the bulk locus of each bilocal intersect.

whether or not it is possible to choose semi-circles, each passing through a distinct bulk
point, without intersecting each other. To simplify the question, assume that the semi-
circles share the same centre i.e. it is only the radius of each semi-circle that changes. The
only parameter that we vary when choosing the two semi-circles is their common centre.
Since they share a common centre, as long as the radii of the semi-circles are distinct,
they do not overlap. Obviously it is always possible to choose a point on the boundary
that is not equidistant from the two bulk points so that, thanks to the fluidity in the bulk
reconstruction, we can always arrange to be in configuration (B). Thus, the product of any
two bulk operators (acting at distinct events) can always be expressed as an appropriate
linear combination of single trace primary operators and their descendants. An observer
measuring only observables belonging to the boundary algebra can indeed learn the result
that would be obtained by measuring the product of any two bulk operators.

In the Appendix A.1 we explicitly test the convergence of the OPE in the free O(N)
model conformal field theory, for the three configurations shown in Figure 4.

4.2 Three bulk fields acting

The case of three bulk fields acting is indicative of the generic bulk configuration. In
this case it is no longer possible, for every configuration that can arise, to replace each
bilocal with a sum over single trace primaries and their descendants. In general, rewriting
the bulk operators in terms of boundary operators necessarily involves scrambling up the
information contained in different bilocals. This does not affect the conclusion that it
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is possible to write any product of three bulk operators (acting at distinct events) as a
convergent sum over operators in the boundary algebra.

See Figure 5 for configurations that are possible when three operators act. For con-
figurations (A) and (B) the OPE channel which computes φ1 × φ2, φ3 × φ4 and φ5 × φ6

converges, so that for these two configrations each bulk operator is individually replaced
by a sum over operators localized in the neighbourhood of the boundary. This channel
does not converge for the remaining four configurations.

�1 �2 �3 �4 �5 �6

(A)

�1 �2 �3 �4�5 �6

(B)

�1 �3 �4 �2 �5 �6

(C)

�1 �2�5 �6 �4�3

(D)

�1 �2�3 �4 �5 �6

(E)

�1 �2 �5 �6�3 �4

(F )

5

Figure 5: Configurations that arise when three bulk operators act.

Now, consider configuration (C). An OPE channel that converges computes φ1 × φ3,
φ2 × φ4 and φ5 × φ6. It is not obviously possible to express the results of these OPEs
in terms of local single trace operators, since both φ1 × φ3 and φ2 × φ4 are not gauge
invariant. An extra step is needed, which computes the OPE between the result produced
from the φ1 × φ3 OPE and the result produced from the φ2 × φ4 OPE. We denote this
using the schematic but transparent notation (φ1 × φ3) × (φ2 × φ4). The result of this
final OPE is now gauge invariant and consequently can be expressed in terms of single
trace local operators7. Thus, this configuration of bulk operators acting can again be

7We are using the fact that the single trace local operators are a generating set for the complete set

of gauge invariant operators. We are implicitly assuming that we consider operators whose dimension is

held fixed as N →∞ to avoid the appearance of new gauge invariant operators constructed using εa1···aN .
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expressed as a sum of local single trace primaries and their products, and thus is an
element of the boundary algebra. To achieve this however, we have had to scramble up
the information contained in the bilocals η(x+, x−1 , x1, x

−
2 , x2) and η(x+, x−3 , x3, x

−
4 , x4).

The same sequence of OPE computations can be applied to configurations (D) and (E).
Finally, for configuration (F) the information mixing between the different bilocals, i.e.
between the different bulk fields, is maximal. Indeed, in this case we would need to
compute ((φ1×φ3)× (φ2×φ5))× (φ4×φ6). The arguments of the following section show
that we can always choose to avoid this configuration, if we so wish. Indeed, it is always
possible to arrange that we have configuration (D).

4.3 Generic bulk observables

Consider the situation in which we have a total of K bulk operators acting at K distinct
points in the bulk AdS4 spacetime. We have already seen the each bilocal is associated
to a semicircle in the bulk and that any bulk operator located at an event lying on
the semicircle can be constructed from the bilocal. We will now argue that it is always
possible to choose p semi-circles with the same centre, each passing through a distinct
bulk point and each with a distinct radius. For an illustration of a configuration of this
type see Figure 6 for an illustration, with K = 4. Our configuration of K bulk operators
has operators localized at points (Xi, Zi, X

−
i ) i = 1, ..., K. Denote the coordinate of the

common centre of the semi-circles as (Xc, 0). The condition for points i and j to be
equidistant from the centre is

C

P1

P2

P3

P4

4

Figure 6: It is always possible to choose a centre (C) for K non-intersecting semicircles

such that a bulk point Pi lies on the ith semicircle. At each semi-circle endpoint there is

an operator, which is contracted with the operator at the other endpoint.

(Xi −Xc)
2 + Z2

i = (Xj −Xc)
2 + Z2

j (4.2)
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which has a unique solution

Xc =
X2
i −X2

j + Z2
i − Z2

j

2(Xi −Xj)
(4.3)

There are thus at most K(K − 1)/2 values for Xc at which two radii coincide. Choosing
any other value for Xc gives a suitable set of semi-circles, which completes the argument.

Moving from left to right the fields are labelled as φ1, φ2, · · · , φ2K−1, φ2K . The struc-
ture of the sequence of OPE’s we compute are dictated by the interplay between gauge
invariance and convergence of the OPE, since we need the OPE to converge, and it is only
gauge invariant products that are a sum of local single trace operators and their products.
We use the product of a pair of boundary observables to describe this collection of bulk
operators

Oboundary = Oboundary,1Oboundary,2 (4.4)

The first boundary observable is obtained by taking a suitable sequence of OPEs so that
we can replace φ1, φ2, · · · , φ2K−3, φ2K−2 by a local operator

Oboundary,1 = (· · · (((φ1 × φ2)× (φ3 × φ4))× (φ5 × φ6)) · · · ) (4.5)

The second boundary observable computes the OPE φ2K−1 × φ2K

Oboundary,2 = (φ2K−1 × φ2K) (4.6)

We have combined φ1, φ2, · · · , φ2K−2 into a gauge invariant local operator, through the
use of multiple OPEs, and we have combined φ2K−1, φ2K into a local gauge invariant
operator. These are separately both elements of the boundary algebra.

To get some insight into the meaning of Oboundary note that if we excite the bulk state
from which Oboundary was derived, with bilocals that have both points inside all semicircles
as shown in the first configuration in Figure 7 then we have

〈
∏
i

η(x+, x−i , xi, x
−
2K−i, x2K−i)η(x+, x−a , xa, x

−
b , xb)η(x+, x−c , xc, x

−
d , xd)η(x+, x−e , xe, x

−
f , xf )〉

= 〈Oboundary,1η(x+, x−2K−1, x2K−1, x
−
2K , x2K)

×η(x+, x−a , xa, x
−
b , xb)η(x+, x−c , xc, x

−
d , xd)η(x+, x−e , xe, x

−
f , xf )〉

= 〈Oboundary,1Õboundary,2〉 (4.7)

with Õboundary,2 a new local operator, arising from a sequence of OPEs between the fields
in the bilocal η(x+, x−2K−1, x2K−1, x

−
2K , x2K) and the fields in the excitations. This gives

some insight into the relation between the product of bulk operators and Oboundary: the
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Figure 7: The three smaller semicircles above (with endpoints labelled a, b, c, d, e, f) rep-

resent small excitations of the bulk state. The bulk state is produced by the bilocals

corresponding to the large semicircles. For the first two configurations we can excite the

operator Oboundary itself i.e. the equality of the product of bulk operators and Oboundary

can be used as an operator equation. For the last configuration shown we need to obtain

a new representation before we can replace the product of bulk operators by operators

living in the boundary algebra.

relation between Oboundary and the collection of bulk operators can not be treated as an
operator equation. As a general conclusion, new excitations are added to a given bulk
state a new representation for Oboundary must be worked out. This new representation
scrambles up the information residing in the excitations and the information in the bulk
operators which produced the bulk state. Nevertheless, the conclusion that the collection
of bulk operators including the additional excitations, can be represented by an operator
belonging to the boundary algebra holds.

5 Discussion and Conclusions

We have been able to demonstrate the principle of the holography of information in the
setting of bilocal holography. The detailed form of the map (2.5) and the redundancy it
implies in reconstructing bulk operators has played an important role in the argument,
so it is worth discussing the logic that leads to (2.5). First collective field theory is used
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to set up the field theory of invariant variables. The claim is that the collective field
theory of the invariant variables is the dual gravitational theory8. In the case of bilocal
holography this assertion is supported [29] by showing that the AdS isometry generators
and the conformal field theory generators are obtained from each other through the change
of variables (2.4) and (2.5). The same change of variables relates the equations of motion
of the conformal field theory and the higher spin gravity. The fact that this is even
possible is not at all obvious given that there are 10 generators in the so(2,3) algebra, and
the action of these on an infinite number of conformal field theory currents is to match
the action on an infinite number of higher spin gauge fields. With this map in hand
the principle of the holography of information is implied by a familiar but remarkable
statement in conformal field theory: the operator product expansion. This convincingly
confirms the principle of the holography of information and is simultaneously another
positive indication that bilocal holography is indeed constructing the quantum gravity
dual to the original conformal field theory.

Our discussion has been in the context of the bilocal description of the O(N) vector
model, which is dual to higher spin gravity. However, we suspect that these are general
lessons about how the principle of the holography of information arises from the conformal
field theory, in AdS/CFT. In the case of the vector model, the invariant variables are
given by the gauge invariant contraction of a pair of vector fields and thus the invariant
fields are bilocal. For theories with matrix valued fields, there are many more ways in
which a gauge invariant variable can be constructed. By taking products of matrix fields,
located at different points in spacetime and dressed with the necessary Wilson lines to
produce a gauge invariant operator, we are naturally lead to bilocal, trilocal and in general
multi-local operators. The scale-radius duality of AdS/CFT [54] suggests that multi-local
operators with well separated locations explore deep into the holographic direction, while
the local limit in which all the points in the multi-local operator approach each other,
map into a bulk operator located at the boundary. In this case too, the OPE can be used
to take the product of separated operators and express them in terms of local operators,
so that once again we start to see how all of the information on a given Cauchy slice might
be coded into the boundary of that slice.
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A OPE Observations

In this Appendix we work out the operator product expansion for a gauge invariant
product of two scalar fields. Exactly as in [51] this amounts to an application of Taylor
expansions. We use the formulas below to explicitly illustrate the convergence criteria
derived in [49]. The primary operators that appear in this operator product are the
conserved higher spin currents of spin 2s, given by (see for example [52])

J2s(y, x) = yµ1 · · · yµ2sJµ1···µ2s(x)

= π
N∑
a=1

2s∑
k=0

(−1)k
:
(
yµ ∂

∂xµ

)2s−k
φa(x)

(
yν ∂

∂xν

)k
φa(x) :

k!(2s− k)!Γ(k + 1
2
)Γ(2s− k + 1

2
)

(A.1)

and the spin zero primary J0 = φa(x)φa(x). Consider the unequal time bilocal

η(xµ1 , x
µ
2) =: φa(t1, ~x1)φa(t2, ~x2) : (A.2)

Introducing the coordinates

xµ =
1

2
(xµ1 + xµ2) yµ =

1

2
(xµ1 − xµ2) (A.3)

so that

∂

∂xµ1
=

1

2

(
∂

∂xµ
+

∂

∂yµ

)
∂

∂xµ2
=

1

2

(
∂

∂xµ
− ∂

∂yµ

)
(A.4)

we can expand η(xµ1 , x
µ
2) to all orders in yµ as follows

η(xµ1 , x
µ
2) =

N∑
a=1

: φa(xµ + yµ)φa(xµ − yµ) :

=
N∑
a=1

∞∑
r,t=0

1

r!t!
:

(
yµ

∂

∂xµ

)r
φa(x)

(
−yν ∂

∂xν

)t
φa(x) : (A.5)

The fact that we deal with a real field and that we perform the OPE around the midpoint
between the two fields implies that odd powers of derivatives sum to zero leaving only
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even powers. The operator product expansion of φa with itself includes the currents J2s

and J0 as well as their descendants so that

N∑
a=1

: φa(xµ + yµ)φa(xµ − yµ) : =
∞∑
s=0

∞∑
d=0

csd

(
yµ

∂

∂xµ

)2d

J2s(y, x) (A.6)

The number csd tells us about the contribution of the level 2d descendant of the primary
current with spin 2s. To solve for the csd we can study the polynomial equation

∞∑
r,s=0

1

r!

1

s!
pr1p

s
2

∣∣∣∣∣
even

=
∞∑
s=0

∞∑
d=0

csd(p1 + p2)2dπ
2s∑
k=0

(−1)kp2s−k
1 pk2

k!(2s− k)!Γ(k + 1
2
)Γ(2s− k + 1

2
)

∣∣∣∣∣
even

Here pq1p
k
2 stands for : (yµ∂xµ)qφa (yν∂xν )

kφa : so that from both sides we must keep only
terms that are symmetric under swapping 1↔ 2. With the help of mathematica we easily
find that

c0d =
1

22d(d!)2
and csd =

(2s)!(4s− 1)!!

d!22d+4s−1(d+ 2s)!
s > 0 (A.7)

Up to this point we have not made any use of conformal symmetry - we have just performed
a Taylor expansion. Using conformal symmetry every local operator of the theory can be
classified as either a primary operator, or as a derivative of a primary operator, that is, a
descendant. A primary operator and all of its descendants belong to the same irreducible
representation so it is natural to rewrite the OPE as a sum over just the primaries, which
we will denote by O

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∑
O

fφφOPO(yµ, ∂x)O (A.8)

If the primary operators O have a non-zero spin they will also have indices. The contrac-
tions of these indices is not written explicitly. The coefficient function PO is a power series
in ∂y which encodes the contribution of the primary O and all of its descendants. The
form of this function is completely fixed by conformal invariance in terms of the operator
scaling dimensions. The number fφφO is called the OPE coefficient and it together with
the spectrum of scaling dimensions of the primary operators completely determines the
dynamical content of the conformal field theory. For the O(N) model where we know the
complete set of primaries we can write (A.9) slightly more explicitly as

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∞∑
s=0

fφφJ2sPJ2s(y
µ, ∂x)J2s(y, x) (A.9)

In the checks that are performed in the next section, (A.6) is perfectly sufficient, and
we will not need the more elegant result (A.9).
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Finally, we will also find it useful to make use of the OPE

N∑
a=1

: φa(xµ)φa(xµ + yµ) : =
∞∑
s=0

∞∑
d=0

c̃sd

(
yµ

∂

∂xµ

)d
J2s(y, x) (A.10)

The fact that now both even and odd descendants appear simply reflects the fact that
this OPE is less symmetrical than the OPE studied in (A.6). Again, with the help of
mathematica we find

c̃0d =
(2d− 1)!!

2d(d!)2
and c̃sd =

(2s)!(4s− 1)!!(2d+ 4s− 1)!!

2d+4s−1(d+ 4s)!d!
s > 0 (A.11)

A.1 Instructive examples of OPE convergence

As an explicit check of OPE convergence, we calculate the s-channel OPE for the case
(x1, x2, x3, x4) = (1, 2, 3, 4). This configuration was discussed in Section 3, where we
concluded that according to [49] the s-channel OPE should converge. Our conventions
are spelled out in the two point function

〈φa(x+, x−1 , x1)φa(x+, x−2 , x2)〉 =
1

|x1 − x2|
(A.12)

The exact value of the four-point function we study is

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4) =
1

|x1 − x3|
1

|x2 − x4|
+

1

|x1 − x4|
1

|x2 − x3|
=

7

12
. (A.13)

To check convergence of the OPE, we now use formula (A.6) for each bilocal. This
corresponds to the s-channel OPE. Defining

x =
1

2
(x1 + x2), y =

1

2
(x1 − x2) (A.14)

z =
1

2
(x3 + x4), w =

1

2
(x3 − x4), (A.15)

we have

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉 =
∞∑

s,s′=0

∞∑
d,d′=0

csdcs′d′ (y∂x)
2d (w∂z)

2d′ 〈J2s(y, x)J2s′(w, z)〉. (A.16)

Each term in the sum on the RHS has a definite conformal dimension given by 2s+ 2s′+
2d+ 2d′+ 1. We truncate the sum with a cut on the dimension of the operators summed,
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Figure 8: We compare the exact four-point function 〈φ1φ2φ3φ4〉 value with the corre-

sponding series expansions obtained from the OPE. The exact value of the four point

function is represented by a horizontal line at 7/12. The series expansion is truncated

with cut off Λ. The horizontal axis shows the value of Λ. Convergence is extremely rapid.

implemented as 2s+2s′+2d+2d′ ≤ Λ. We then compare the truncated sum to the exact
result given by 7/12. The results, up to Λ = 10 are shown in Figure 8. The numerical
results are convincing evidence indicating that the OPE convergences.

The configuration (x1, x2, x3, x4) = (1, 3, 2, 4) was also discussed in Section 3. Accord-
ing to [49] the s-channel OPE should not converge. For this configuration, the exact value
of the four point function is 4/3. Again truncating the series obtained from the OPE,
with cut off values Λ = 0, 1, 2, · · · , 7 we obtain

{2, 6, 22, 86, 342, 1366, 5462, 21846} (A.17)

for the value of the sum. The sum is clearly diverging.

Finally, the last configuration we study is (x1, x2, x3, x4) = (6,−1, 3, 4). This config-
uration was also discussed in Section 3. It corresponds to a configuration of type (B)
in Figure 3 and according to [49] the s-channel OPE converges. Implementing a simple
application of the midpoint OPE rule (A.6), we numerically find that the OPE does not
converge. This is also the case if we use the OPE (A.10). To find the convergent OPE
expansion it is useful to transform to a different conformal frame. As we have already
seen, the four point function (and the conformal cross ratios) depend only on the coordi-
nate transverse to the light cone. To move to the new conformal frame, we start with a
translation (if needed) to position the origin between points x2 and x3 as shown in Figure
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9. We then apply the conformal inversion operation which takes

I : xµ → x′µ =
xµ

x · x (A.18)

Figure 9: The initial configuration, shown on the left, is of type (B) in Figure 3. Perform

an inversion about a point located between x2 and x3. This leaves point x2 as the left

most point, but reverses the order of x1, x3, x4 so that we land up in a configuration of

type (A) in Figure 3. The final configuration is shown on the right.

We have the equality

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉

= 〈I · Iφa(x+, x−1 , x1)I · Iφa(x+, x−2 x2)I · Iφb(x+, x−3 , x3)I · Iφb(x+, x−4 , x4)I · I〉

which is true since inversion squares to the identity I · I = 1. Since the free scalar field
has ∆ = 1

2
we know that

Iφa(xµi )I = (x′i · x′i)∆φ′a(x′µi ) =
√
x′i · x′iφ′a(x′µi ) i = 1, 2 (A.19)

Assuming that the conformal field theory vacuum is invariant under I we now easily find

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉

=

√√√√ 4∏
i=1

x′i · x′i〈φ′a(x′+, x′−1 , x′1)φ′a(x′+, x′−2 x
′
2)φ′b(x′+, x′−3 , x

′
3)φ′b(x′+, x′−4 , x

′
4)〉

We are now in a configuration of type (A) so that we can apply the mid point OPE given
in (A.6) to obtain a convergent s-channel OPE.

A.2 Converting between η and σ

Both η(x+, x−1 , x1, x
−
2 , x2) and σ(x+, x−1 , x1, x

−
2 , x2) appear. They are defined as

σ(x+, x−1 , x1, x
−
2 , x2) = φa(x+, x−1 , x1)φa(x+, x−2 , x2) (A.20)
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and

η(x+, x−1 , x1, x
−
2 , x2) =: φa(x+, x−1 , x1)φa(x+, x−2 , x2) : (A.21)

so that we can write the operator equation

σ(x+, x−1 , x1, x
−
2 , x2) = η(x+, x−1 , x1, x

−
2 , x2) + 〈σ(x+, x−1 , x1, x

−
2 , x2)〉 (A.22)

This is an operator equation so it can be used inside any correlation function. As an
example

〈η(x+, x−1 , x1, x
−
2 , x2)η(x+, x−3 , x3, x

−
4 , x4)〉 = 〈σ(x+, x−1 , x1, x

−
2 , x2)σ(x+, x−3 , x3, x

−
4 , x4)〉

− 〈σ(x+, x−1 , x1, x
−
2 , x2)〉〈σ(x+, x−3 , x3, x

−
4 , x4)〉

(A.23)

Consequently any expectation value of η’s can be turned into an expectation values in-
volving only σ’s.
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