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1 Introduction

It has recently been argued that theories of gravity localize quantum information very
differently from local quantum field theories [1]. This argument can be encapsulated in a
principle of holography of information: in a theory of quantum gravity, information that is
available in the bulk of a Cauchy slice is also available near its boundary [2]. This principle
can be made precise and proved in asymptotically AdS spacetimes and in four-dimensional
asymptotically flat spacetimes. In [3], a physical protocol was presented that exploited this
effect to allow observers near the boundary of AdS to extract information about low-energy
states in the bulk without directly exploring the bulk.

In the presence of a negative cosmological constant, these effects may be expected from
the AdS/CFT conjecture [4–6]. But a study of how quantum gravity localizes information
sheds light on the physical origin of holography for gravitational theories. It also indicates
how holography should be extended beyond asymptotically AdS spacetimes to asymptotically
flat spacetimes.

In this paper, we present a direct perturbative analysis of the allowed wavefunctionals
in a theory of gravity coupled to matter in an asymptotically AdS spacetime. We find that
any two wavefunctionals that coincide at the boundary for an infinitesimal interval of time
must also coincide in the bulk. This is a uniquely gravitational effect; wavefunctionals in a
local quantum field theory do not have such a property.

In gravity, the metric is one of the dynamical degrees of freedom. In the Hamiltonian
formalism, which we adopt in this paper, the degrees of freedom are divided into the metric
on a spatial slice and its conjugate momentum, which is related to the extrinsic curvature
of the slice. We consider theories that might have additional matter fields. The values of
these fields on a spatial slice provide another set of canonical variables whose conjugate
momenta are related to the time derivatives of these fields. A wavefunctional assigns a
complex number to any specification of the metric and other fields on a spatial slice.
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Not every wavefunctional is a valid state in a theory of gravity. A valid wavefunctional
must take on the same value for configurations that can be related by a diffeomorphism
that vanishes asymptotically. This leads to a set of constraints on the wavefunctional, of
which the most important constraint is called the Wheeler-DeWitt (WDW) equation [7].

In this paper, we present a direct perturbative analysis of the WDW equation. We build
on an important old paper by Kuchar [8] who analyzed the solutions of the WDW equation
about flat space in the free limit. We extend this analysis by expanding the constraints
to leading nontrivial order in perturbation theory in the gravitational interaction in the
presence of a negative cosmological constant. This analysis is already sufficient to reveal
the remarkable property of these solutions alluded to above.

The structure of the constraints that we find can roughly be described as follows. The
metric degrees of freedom can be divided into a longitudinal component, a transverse-
traceless component and, what we call, a “T-component” that keeps track of the trace [9].
The transverse-traceless component can be freely specified, just like another dynamical field.
Invariance of the wavefunctional under spatial diffeomorphisms fixes its dependence on the
longitudinal component of the metric. The so-called Hamiltonian constraint, which imposes
invariance of the state under diffeomorphisms that mix space and time, fixes the dependence
of the wavefunctional on the T-component. We show that an important role is played by
a specific integral of the Hamiltonian constraint on the entire Cauchy slice which relates
the asymptotic T-component of the metric to the total energy of the transverse-traceless
gravitons and matter-fields on the Cauchy slice.

We prove that these constraints are sufficient to disallow any deformations of the
wavefunctional which alters its form in the bulk without changing its boundary values. The
reason can be understood as follows. A bulk deformation that changes the energy must
necessarily also change the T-component of the metric near the boundary. So deformations
that leave the asymptotic T-component unchanged can only “move” energy from one part of
space to another and must have zero total energy. But the Heisenberg uncertainty principle
tells us that an operator that implements such a deformation must be completely delocalized.
Therefore, while such an operator may commute with the asymptotic metric, it must fail
to commute with some other dynamical operator near the boundary. The final result is
that correlators of the T-component of the metric and of other dynamical operators at the
boundary of AdS for an infinitesimal amount of time completely fix the wavefunctional.

This result establishes, in the perturbative approximation, that one of the central
aspects of holography follows from the constraints of gravity. The significance of this result
can be illustrated by studying the contrast between gravitational and non-gravitational
quantum field theories in AdS. Even in a non-gravitational theory, the specification of data
on the entire timelike boundary of AdS is sufficient to reconstruct physics in the bulk. See
figure 1a. This is just a property of the causal structure and is not indicative of holography.
What our result shows is that, in a gravitational theory, data on an infinitesimal time band on
the boundary of AdS is already sufficient to reconstruct the state in the bulk. See figure 1b.

We emphasize that in a non-gravitational theory, our final result could not possibly be
true. The action of a unitary operator in a bulk at the same time would commute with all
observations on this infinitesimal time band on the boundary by microcausality. Therefore,
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(a) (b)

Figure 1. A common misunderstanding of “holography” is that it only tells us that data on the
timelike boundary of AdS can be used to reconstruct physics at the bulk point P as shown in the
left subfigure. But this statement follows from the causal structure of AdS and does not require
holography. Gravitational theories are genuinely holographic. In this paper we show how, in gravity,
data on an infinitesimal time band (right subfigure) can be used to reconstruct physics in the bulk.

in a non-gravitational theory, it is impossible to distinguish a given state from the state
obtained after the action of such a unitary.

Relationship to previous work. As mentioned above, it has already been argued
previously [1, 2] that gravitational theories localize information very differently from
ordinary quantum field theories. These previous arguments [1, 2], which built on [10, 11],
relied on weak assumptions about the structure of the Hilbert space, and the nature of the
gravitational Hamiltonian to arrive at nonperturbative results.

Although the analysis in this paper is perturbative, it is more explicit. We make no
prior assumptions either about the Hilbert space or about the gravitational Hamiltonian.
Instead, we explicitly construct the low-energy Hilbert space by studying solutions to the
gravitational constraints and we explicitly show that such solutions must have correlations
between a component of the asymptotic metric and the energy of the state. This analysis
also reveals how the unusual localization of quantum information in quantum gravity is
visible at the level of wavefunctionals.

The analysis in this paper takes advantage of the infrared cutoff that is provided
by global AdS boundary conditions. (See comment 6 in section 6.) For this reason the
analysis presented here reproduces Result 5 of [1] — which pertains to asymptotically
AdS spacetimes and was proved there using operator-theoretic techniques — but cannot
immediately be used to make contact with Result 1 and Result 2 of [1], which apply to
asymptotically-flat spacetime. We expect that it should be possible to generalize the proof
of the holography of information presented here to address the infrared subtleties present
in flat space and hope to report on this in forthcoming work.
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The relationship between the bulk constraints and holography was also explored
previously in [12, 13] and more recently in [14] (see also the prescient essay [15]) although
the techniques used in this paper are quite different. A radial version of the WDW equation
was studied in the context of AdS/CFT [16], which was analyzed further in [17] and has
proved to be useful in the context of the study of TT deformations [18–26] and bulk
reconstruction [27]. Here our analysis is different since we are considering the conventional
WDW equation that governs wavefunctionals on a Cauchy slice.

The Wheeler-DeWitt equation has been studied in the mini-superspace approximation —
where we found [28–32] useful — and also in the context of two-dimensional models [33–37]
and in terms of the Ashtekar variables [38]. See [40–42] for a more detailed list of references.
However, there has been relatively little work on a straightforward perturbative analysis of
the equation in higher dimensions. As already mentioned, Kuchar [8] studied this problem
at zeroth order in the gravitational constant, and here we will show that, even at leading
order, the structure of the constraints is interesting and leads to surprising properties of
the solutions.

The question of how the gravitational constraints affect the localization of quantum
information was also studied, from another perspective, in [43, 44]. (See also [45, 46].) How-
ever, these papers reached the opposite conclusion from the one we will reach here: in [43, 44]
it was claimed that it should be possible to perturbatively construct states that differ inside
a bounded region but are asymptotically identical. It appears to us that this conclusion was
reached because [43, 44] focused on the asymptotic gravitational field but failed to consider
quantum correlators of the metric and the dynamical scalar field that was included in the
analysis there. As we will see in section 6 this latter class of correlators, involving both
the metric and dynamical fields, plays an important role and cannot be neglected.

Organization of the paper. This paper is organized as follows. We provide a technical
summary of our results in section 2. In section 3, we provide a quick review of the
constraints on valid wavefunctionals in any theory of quantum gravity. In section 4, we
expand these constraints in perturbation theory and explain how they can be conveniently
organized by dividing the degrees of freedom in the metric into a transverse-traceless,
longitudinal and T-component. In section 5, we show that focusing on the integral of
the Hamiltonian constraint leads to a significant simplification. We solve this integrated
Hamiltonian constraint revealing a structure where the T-component of the metric at
infinity is correlated with eigenfunctionals of the bulk matter energy. We also propose
a procedure to solve the pointwise Hamiltonian and momentum constraints and we give
explicit expressions for the leading order solutions. In section 6 we prove that correlators of
the T-component of the metric and boundary operators, in an infinitesimal time band, are
sufficient to completely fix the structure of the bulk wavefunctional.

As already stated, the results we derive here are valid for theories of gravity and do
not have an analogue in non-gravitational gauge theories. To illustrate this difference,
in appendix A, we analyze the constraints in electromagnetism. We show that they are
significantly weaker than the constraints in a theory of gravity. Consequently, QED
and other nongravitational gauge theories localize information much like ordinary local
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quantum field theories and does not share the unusual constrained properties of gravitational
wavefunctionals. Appendices B, C and D provide additional technical details.

2 Summary of our results

We now provide a concise summary of our results. This section is meant to provide a guide
for the rest of the paper, and some of the notation used here is defined carefully in later
sections. The equations in this section are all linked to corresponding equations in later
sections, which provide a more detailed discussion of the physics.

When gravity is quantized using the canonical formalism, the physical states of the
theory are given by wavefunctionals of the metric gij on a spatial slice, and the matter
fields φ that obey the so-called Hamiltonian and momentum constraints,

H(f)Ψ[g, φ] = 0, Hi(f)Ψ[g, φ] = 0 . (2.1)

These are the constraints displayed in equation (3.10) — where the conjugate momenta
for the metric and the matter fields are denoted πij = −i δ

δgij
and π = −i δδφ — which have

been smeared with a function f that vanishes at the boundary. The momentum constraint
is linear in momenta while the Hamiltonian constraint is quadratic.

To study these constraints, we first expand the metric about a background AdS metric
as gij = γij + κhij where γij is the AdS metric and κ =

√
8πG. We also introduce a corre-

sponding momentum operator Πij = − i√
γ

δ
δhij

that is more appropriate for understanding
perturbation theory. We further decompose this metric fluctuation as

hij = hTT
ij + hL

ij + hT
ij , (2.2)

in terms of the transverse-traceless component, the longitudinal component, and what we
term the “T-component”. This decomposition was introduced about flat space in [9], and we
generalize it to AdS. The precise definition of the three components is given in equation (4.9).
Similarly, the conjugate momentum can be decomposed as Πij = Πij

T + Πij
TT + Πij

L and we
show below equation (4.19) that each component is the canonical momentum associated
with the corresponding metric component.

We then expand the constraints in perturbation theory. It is convenient to set the AdS
scale, ` = 1 and treat κ as a small dimensionless parameter that allows us to organize the
perturbative expansion. The validity of perturbation theory then requires that any numbers
that emerge from the action of derivative operators on the wavefunctional should not scale
with 1

κ and we ensure this below.
At leading order in κ, the momentum constraint implies that the wavefunctional Ψ[h, φ]

is independent of hL. This is simply the statement that the wavefunctional should be
invariant under linearized spatial diffeomorphisms. At next order, it gives(

−2∇jΠij
L + κQi

)
Ψ[h, φ] = 0 , (2.3)

whereQi is quadratic in the canonical variables and is given in (4.30). We have Πij
L =− i√

γ
δ

δhL
ij

so the second order momentum constraint determines the dependence of Ψ in hL
ij .

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

At leading order in κ, the Hamiltonian constraint implies that the T-component of
the metric vanishes: hT = 0 + O(κ). At next order, the Hamiltonian constraint fixes the
T-component of the metric via(

−DijhT
ij + κQ

)
Ψ[h, φ] = 0 , (2.4)

where Dij is given in (5.42) and Q is given in (4.43). This sets hT
ij to a non-trivial O(κ) value.

To analyze these constraints, we first integrate the Hamiltonian constraint over a
Cauchy slice Σ to obtain a simpler constraint, which takes the form(

−H∂ +
∫

Σ
ddx
√
γ NHbulk

)
Ψ[h, φ] = 0 , (2.5)

where
H∂ ≡

1
2κ

∫
∂Σ
dd−1Ω J ini . (2.6)

Here the ADM current J i, which is integrated over the boundary ∂Σ after contracting with
the normal ni, is linear in the metric fluctuation and defined in (4.8). It depends only on the
T-component of the metric as shown in (4.35) and gives the ADM energy H∂ . In (2.5), N
is the lapse function; Hbulk is quadratic in the canonical variables and its precise definition
is given in equation (4.57). It can be viewed as the “bulk energy density” involving the
transverse-traceless gravitons and the matter. Thus, the integrated Hamiltonian constraint
gives a quantum version of the familiar statement that the energy is a boundary term in
canonical gravity.

Since the integrated Hamiltonian constraint is so simple, we can explicitly obtain
wavefunctionals that solve it. The solutions take the form of a “dressed” Fock space that we
construct as follows. First, we obtain wavefunctionals of hTT and φ that form an ordinary
free-field Fock space in AdS and are eigenstates of the free-field Hamiltonian. We choose a
basis for these wavefunctionals that we denote by

ψ
E,{a}
F [hTT, φ] .

The superscript E indicates the energy of the state in the Fock space, and the superscript
{a} is an additional label for degenerate energy eigenstates.

These Fock space wavefunctionals can be promoted to a solution of the integrated
constraint by additionally specifying that they are eigenstates of the integral of the boundary
metric that appears on the left of equation (2.5):

ψ
E,{a}
I [H∂ , h

TT, φ] = ψ
E,{a}
F [hTT, φ]⊗ |H∂ = E〉 . (2.7)

The constraints (2.4) and (2.3) constitute an infinite number of constraints — one at
each point of the Cauchy slice. So the solution to the integrated Hamiltonian constraint
obtained above needs to be improved further to obtain a solution to these constraints. We
present an explicit leading order solution to the pointwise constraints in section 5.2 and
appendix D. In addition, we give a simple discussion of a procedure that makes it clear that
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each solution of the integrated constraint (2.7) can be uniquely uplifted to a solution of the
pointwise constraint (2.1):

ψ
E,{a}
I [H∂ , h

TT, φ]→ ΨE,{a}[h, φ] . (2.8)

This argument is enough to ensure that once the dependence of the wavefunctional on
hTT and φ in the auxiliary Fock space is chosen, there is no further freedom to specify its
dependence on hT and hL. The integrated constraint fixes the detailed form of hT at the
boundary and, although the solution to the pointwise constraints that we find is both new
and interesting, we do not require the explicit form of the dependence of the wavefunctional
on hT and hL in the bulk for obtaining our main result.

We then define a natural inner product on the space of solutions (see section 5.3)
and show that it is compatible with the structure of the constraints. This allows us to
meaningfully compute correlation functions of observables using these wavefunctionals.

The above analysis of the constraints allows us to obtain a striking result. We show
that any two pure or mixed states in a theory of gravity that agree on the boundary of AdS
for an infinitesimal interval of time must agree everywhere in the bulk. To demonstrate
this result we consider a general density matrix that depends on two metric perturbations,
hij and h̃ij and two matter perturbations, φ and φ̃. We write it in the form

ρ[h, φ, h̃, φ̃] =
∑

E,E′,{a},{a′}
c(E,E′, {a}, {a′})ρE,E′,{a},{a′}[h, φ, h̃, φ̃] , (2.9)

where c(E,E′, {a}, {a′}) is a list of coefficients and a basis of density matrices

ρE,E
′,{a},{a′}[h, φ, h̃, φ̃] ≡ ΨE′,{a′}[h̃, φ̃]ΨE,{a}[h, φ]∗ , (2.10)

is obtained by combining the solutions to the constraints obtained above.
We consider a simple class of gauge invariant operators that are supported only on

the boundary, and therefore automatically commute with the constraints (2.1). One such
operator is H∂ displayed in (2.6), whereas other operators — which we denote by O(t,Ω)
— correspond to the boundary limit of fluctuations of the dynamical fields, including the
transverse-traceless graviton and matter fields. We first show that if two density matrices
ρ1 and ρ2 yield the same correlators of the following combination of such operators

〈Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)Hm

∂ 〉ρ1 = 〈Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)Hm

∂ 〉ρ2 , (2.11)

then the respective coefficients c1(E,E′, {a}, {a′}) and c2(E,E′, {a}, {a′}) must satisfy the
following identity at each individual value of E and E′∑
{a},{a′}

[
c1(E,E′, {a}, {a′})− c2(E,E′, {a}, {a′})

]
〈O(t1,Ω1) . . .O(tq,Ωq)〉ρE,E′,{a},{a′} = 0 .

(2.12)
We only demand that the equations above hold at O(1) and not at O(κ) so that we can
study them reliably within our perturbative setup. In particular, this means that n,m, q
are limited to O(1) integers as well and cannot scale with an inverse power of κ and the
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passage from (2.11) to (2.12) can be performed reliably provided the energy of the state
in (2.9) does not scale with log

(
1
κ

)
in AdS units. We show that there is no non-trivial

solution to these equations if the ti above are allowed to range in the infinitesimal interval
[0, ε]. Therefore if two pure or mixed states agree on the boundary for even an infinitesimal
time interval then they must be the same.

This last result that we obtain is central to the notion of holography since it tells us
that, in a theory of gravity, the state in the bulk is completely determined by boundary
data in an infinitesimal time interval. Here we see that this surprising aspect of gravity
follows directly from the constraints of the theory.

3 Preliminaries

In this section, we set the stage for our analysis, establish some notation, and review the
constraints that must be satisfied by physical states in any theory of gravity.

3.1 Action and boundary conditions

We will study gravity with a negative cosmological constant in d+1 dimensions, as described
by the action

S = 1
2κ2

∫
dtddx

√
−ĝ (R̂− 2Λ) + SGHY + Smatter, (3.1)

where κ =
√

8πG, R̂ is the d+ 1-dimensional Ricci scalar, SGHY is the Gibbons-Hawking-
York boundary term and Λ is a cosmological constant. We will use hats to differentiate
spacetime quantities with Cauchy slice quantities. The specific details of the matter sector
will not be important in the subsequent analysis although we will use scalar fields as an
example for illustration.

We are interested in spacetimes that are asymptotically AdS. Note that in both the
classical and the quantum theory it is necessary to fix asymptotic boundary conditions on
the metric. The metric is then allowed to fluctuate in the bulk. We introduce a coordinate
r so that the conformal boundary is attained as r →∞. We then demand that near this
boundary

ds2 −→
r→∞

`2
(
−(1 + r2)dt2 + dr2

1 + r2 + r2dΩ2
d−1

)
(3.2)

where the AdS length ` will be set to one for the rest of the paper. Note that, in these units,
κ is a dimensionless number and we will assume that κ� 1 which is simply the assumption
that the Planck length is much smaller than the cosmological length.

This means that we allow for the standard normalizable boundary conditions for
fluctuations of the metric and matter fields following [47–49], demanding that the metric
and matter fluctuations have appropriate falloffs near the boundary.1

1It is of interest to consider other kinds of boundary conditions [50, 51]. However, if the boundary
conditions allow energy to escape from AdS, then one-loop effects generically generate a mass for the graviton
in the bulk [52] leading to a theory that might have qualitatively different properties from standard theories
of gravity.
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3.2 Canonical formalism

In the canonical formalism for gravity described by ADM [9], the line element is written
using a d+ 1 split

ds2 = −N2dt2 + gij(dxi +N idt)(dxj +N jdt) , (3.3)

where N is called the lapse function, and N i is called the shift vector. The metric on a
Cauchy slice Σ, at a fixed value of t, is gij where i, j, . . . run only over the spatial coordinates.

We can rewrite the action as

S = 1
2κ2

∫
dtddxN

√
g
(
KijKklg

ikgjl −K2 +R− 2Λ
)

+ SGHY + Smatter , (3.4)

using the extrinsic curvature of the slice of constant t, given by

Kij = 1
2N (−ġij +DjNi +DiNj) , (3.5)

where Di is the covariant derivative with respect to gij , K = gijKij and R is the Ricci
scalar on the slice.

The canonical momentum is defined as

πij = δS

δġij
= − 1

2κ2
√
g
(
gilgjkKlk − gijK

)
. (3.6)

The conjugate momenta for the lapse and shift vanish identically leading to the primary
constraints [53]

πN = δS

δṄ
= 0, πNi = δS

δṄi
= 0 . (3.7)

The Hamiltonian can be written in the form

H = H0 +H∂ , (3.8)

where
H0 =

∫
Σ
ddx
√
g (NH+N iHi) , (3.9)

and H and Hi are given by

H = 2κ2g−1
(
gikgjlπ

klπij − 1
d− 1(gijπij)2

)
− 1

2κ2 (R− 2Λ) +Hmatter , (3.10)

Hi = −2gijDk
πjk
√
g

+Hmatter
i , (3.11)

where Hmatter is the matter Hamiltonian density, Hmatter
i is the matter momentum density

and H∂ is a boundary contribution [54] whose explicit form we give below in (4.7).
The matter Hamiltonian is obtained in a standard way using canonical quantization.

Let us illustrate this in the example of a scalar field of mass m, described by the action

Smatter = −1
2

∫
dtddx

√
g N

(
(∂φ)2 +m2φ2

)
, (3.12)

– 9 –
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the conjugate momentum is π = √gN−1(∂tφ−N i∂iφ) and the Hamiltonian and momentum
density are

Hmatter = 1
2g
−1π2 + 1

2
(
gij∂iφ∂jφ+m2φ2

)
, Hmatter

i = 1
√
g
π ∂iφ . (3.13)

We obtain secondary constraints by demanding that the primary constraints are
preserved by time evolution. These secondary constraints are nontrivial and are called the
Hamiltonian and momentum constraints. They can be described as follows. Let f be any
function that dies off smoothly as r →∞ and let

H(f) ≡
∫

Σ
ddxHf, Hi(f) ≡

∫
Σ
ddxHif . (3.14)

Then the Hamiltonian and momentum constraints are

H(f) = 0, Hi(f) = 0 . (3.15)

Note that (3.15) are equivalent to imposing H = 0 and Hi = 0 at all points except for the
conformal boundary.

The exclusion of the boundary can be understood using a simple physical argument.
The constraints (3.15) express the diffeomorphism invariance of the theory. But, as is
standard in gauge theories, only small diffeomorphisms — those diffeomorphisms that
vanish smoothly at the conformally boundary — are redundancies in the description. Large
diffeomorphisms — those diffeomorphisms that act nontrivially at the conformal boundary
— generate physical transformations and should not be viewed as trivial.

3.3 Quantum theory

So far our description has been classical. In the quantum theory, the states are given by
wavefunctionals

Ψ[g, φ] .

Note that, to lighten the notation, we do not display the indices on g and on other tensors
when they appear in an argument of the wavefunctional. Here, φ is used as a collective
variable for the matter fields in the theory. The wavefunctional returns a complex number
upon being given a configuration of the metric and matter fields on the entire Cauchy slice.

The conjugate momenta act on these wavefunctionals via

πijΨ[g, φ] = −i δ

δgij
Ψ[g, φ], πΨ[g, φ] = −i δ

δφ
Ψ[g, φ] . (3.16)

In the quantum theory, we demand that all valid wavefunctionals are annihilated by the
constraints. The primary constraints tell us that the wavefunctional is independent of N
and Ni since they imply that

δ

δN
Ψ[g, φ] = 0, δ

δN i
Ψ[g, φ] = 0 . (3.17)

In the quantum theory, the information about how the d-geometries are glued together
into a spacetime geometry must be extracted from the canonical momentum and not
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from the values of N or N i. If one takes the classical limit in the quantum theory, then
the expectation value of the momentum operator can be related to the classical extrinsic
curvature via (3.6).

Finally, the wavefunctional must be annihilated by the Hamiltonian and momentum
constraints

H(f)Ψ[g, φ] = 0, Hi(f)Ψ[g, φ] = 0 . (3.18)

These constraints can be understood as imposing the gauge invariance of the wavefunctional
in the quantum theory. As usual, we do not impose invariance under large gauge trans-
formations which may act non-trivially on the state. For mixed states, the corresponding
condition is that the density matrix must commute with the constraints.

A valid observable in the theory, denoted O, is a Hermitian operator that commutes
with the constraints

[O,H(f)] = 0, [O,Hi(f)] = 0 . (3.19)

A simple set of gauge-invariant observables are just given by the boundary limits of bulk
operators. Such observables manifestly satisfy (3.19) because H(f) and Hi(f) vanish near
the boundary. Such observables may depend on the boundary coordinates including the
boundary time and, in the discussion below, we display this dependence as O(t,Ω). We
discuss these observables further in section 6.

4 Perturbative expansion

In this section, we will expand the constraints in the perturbative regime about the AdS
background. We start by introducing the perturbative variables and then proceed to the
perturbative expansion. All the derivations described in this section are checked using
xAct [55] and xPert [56] in a Mathematica notebook associated with this paper [57].

4.1 Perturbative setup

Metric fluctuation. In perturbation theory, we expand the metric as

gij = γij + κhij , (4.1)

where κ =
√

8πG and the background metric, γij , corresponds to the metric on a constant
time slice of global AdSd+1.

γijdx
idxj = dr2

1 + r2 + r2dΩ2
d−1 . (4.2)

Equation (4.1) should be taken as the definition of the perturbative variable hij . Note
that, for now, this equation is just an exact change of variables although below we will
perform a perturbative expansion in κ. We will find it convenient to represent states as
wavefunctionals of this new variable using the notation

Ψ[h, φ] .
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Momentum operator. It is also convenient, in perturbation theory, to work in terms of
the momentum operator

Πij = κ
√
γ
πij . (4.3)

In the wavefunctional representation, the action of this operator is just

Πij = − i
√
γ

δ

δhij
, (4.4)

and so this operator is canonically conjugate to hij up to a factor of 1√
γ that is included so

that Πij transforms like a tensor field on the background.

Derivatives and indices. We will use ∇i to denote the covariant derivative associated
to the background metric γij . This should be distinguished from Di which is the covariant
derivative associated to the full metric gij . Furthermore, for the rest of this paper, we will
raise and lower indices using only the background metric γij . We remind the reader that
indices are summed only over the spatial coordinates and if time appears in a formula, it is
displayed separately.

Shift and lapse. The primary constraints imply that neither N nor N i enter in any
wavefunctional or observable. Nevertheless, in our analysis it will be convenient to fix the
background value of N to be

N2 = 1 + r2. (4.5)

Since N is not an observable, the reader can just take equation (4.5) to specify a certain
function of the coordinates that will be useful in the analysis.

Background properties. In our computations, it will be useful to use the following
identities satisfied by the background quantities:

Rijk` = γi`γjk − γikγj`, Rij = −(d− 1)γij ,
R = −d(d− 1), ∇i∇jN = γijN, (4.6)

and the cosmological constant is Λ = −d(d−1)/2. We are using conventions where `AdS = 1.

4.1.1 Boundary Hamiltonian

In terms of the notation introduced above, the boundary contribution to the Hamiltonian
in (3.8) takes on a simple form. This can be viewed as an AdS version of the ADM energy.
It is given as

H∂ = 1
2κ

∫
∂Σ
dd−1ΩniJ

i , (4.7)

where
Ji ≡ N∇j(hij − hγij)−∇jN(hij − hγij) (4.8)

will be called the ADM current. We show in appendix C that this agrees with various
prescriptions for the gravitational energy in AdS. Here dd−1Ω denotes the appropriate

– 12 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

measure for boundary integration and ni denotes the normal to the boundary.2 Note that,
in the coordinates (4.2) the area of a sphere at large r grows like O

(
rd−1

)
which precisely

compensates the large r falloff of J i. Also note that as a consequence of (3.15), the bulk
contribution to the energy of any state vanishes. The nonzero contribution to the energy
comes only from the boundary term (4.7).

4.2 ADM decomposition

In order to better understand the Hamiltonian and momentum constraints given in (3.10)
and (3.11), it is convenient to use the ADM decomposition of symmetric tensors [9].
ADM originally introduced this decomposition about flat space, and here we present the
generalization to an AdS background. We refer the reader to [58] for related discussion.

We decompose the metric perturbation as

hij = hTT
ij + hT

ij + hL
ij , (4.9)

and the three terms in the sum are called the transverse-traceless component, the T-
component and the longitudinal component respectively. We will perform precisely analogous
decompositions for other tensor fields below and, in each case, the three components will
be labeled by “TT”, “T” and “L” as above.

The transverse-traceless component obeys

∇ihTT
ij = 0, γijhTT

ij = 0 . (4.10)

The T-component of the metric is also transverse

∇ihT
ij = 0 , (4.11)

but only captures information about the trace of the transverse part of the decomposition.
The longitudinal component is of the form

hL
ij = ∇iεj +∇jεi , (4.12)

in terms of an arbitrary vector field εi that vanishes at the conformal boundary.
Given any tensor field hij , the decomposition (4.9) is unique and can be obtained by

solving a set of elliptic partial differential equations as we now describe. The transversality
conditions (4.11) and (4.10) imply that εi is obtained as the solution to

∇i∇iεj +∇i∇jεi = ∇ihij , (4.13)

which has a unique solution for εi subject to our boundary conditions and thereby yields
hL
ij . Note that the Killing vectors of the background cannot be added to a solution of the

equation above to obtain another solution since they do not vanish asymptotically.
We denote the trace of the transverse part of the metric by

hT = γij
(
hij − hL

ij

)
= γijhT

ij . (4.14)

2For concreteness, we can take dd−1Ω to be the volume form of the unit sphere and ni = rd−1ni where
ni is the unit normal to the boundary.
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We want the T-component of the metric to depend linearly on the metric, correspond to a
single degree of freedom, and vanish when hT vanishes. This is achieved by introducing an
auxiliary scalar field χ and writing

hT
ij = 1

d
hTγij −

1
d− 1

[
∇i∇j −

1
d
γij∆

]
χ , (4.15)

where ∆ ≡ ∇i∇i. The condition (4.11) implies that χ must obey

(∆− d)χ = hT . (4.16)

Once the longitudinal and T-component have been determined as above, the hTT component
of the metric is what remains: hTT

ij = hij − hL
ij − hT

ij . Note that, by construction, the
conditions (4.10) are met.

It is also clear that the degrees of freedom on both sides of equation (4.9) match. The
propagating modes of the graviton are contained in hTT

ij and represent (d + 1)(d − 2)/2
degrees of freedom. There are d degrees of freedom in hL

ij corresponding to the components
of εi and 1 degree of freedom in hT

ij . This gives a total of d(d+ 1)/2 as appropriate for a
symmetric tensor.

The terms in the decomposition (4.9) are orthogonal when contracted and integrated
over the Cauchy slice. For instance,∫

Σ
ddx
√
γ hTT,ijhL

ij = −2
∫

Σ
ddx
√
γ∇ihTT,ijεj = 0 , (4.17)

where we have integrated by parts and utilized (4.10). A similar argument shows that the
integral of a T-component with the longitudinal component vanishes. We also find that∫

Σ
ddx
√
γ hTT,ijhT

ij = 1
1− d

∫
Σ
ddx
√
γ hTT,ij∇i∇jχ = 0 , (4.18)

where in the first step we used the fact that hTT,ij is traceless and in the second step we
integrated by parts and used the property (4.10).

We now turn to the canonical momenta. Note that (4.4) tells us that Πij is an operator-
valued field. Nevertheless we can perform a decomposition similar to (4.9). We write

Πij = Πij
TT + Πij

T + Πij
L . (4.19)

The canonical generator [9] that induces an infinitesimal shift in the metric fluctuation,
hij → hij + ζij , is simply

G = i

∫
Σ
ddx
√
γΠijζij . (4.20)

Using the orthogonality of the components demonstrated above, it is clear that the canonical
generator diagonalizes so that

G = i

∫
Σ
ddx
√
γ
(
Πij

TTζ
TT
ij + Πij

Tζ
T
ij + Πij

L ζ
L
ij

)
, (4.21)

which implies that

Πij
TT = − i

√
γ

δ

δhTT
ij

, Πij
T = − i

√
γ

δ

δhT
ij

, Πij
L = − i

√
γ

δ

δhL
ij

. (4.22)
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4.3 Expansion of the constraints

In this section, we present the perturbative expansion of the constraints. A similar analysis
was performed in [8] about Minkowski space.

4.3.1 Momentum constraint

Let us start by considering the momentum constraint (3.11). We consider successive
approximations to the constraint which we write as

√
gHi = √γH(n)

i + O
(
κn−1

)
, n = 0, 1, 2, . . . (4.23)

by which we mean that H(n)
i captures all terms in the expansion of the left hand side up to

terms of order κn−2.
The zeroth order term in the momentum constraint vanishes trivially,

H(0)
i = 0 . (4.24)

First order. At leading order, the momentum constraint takes the form

H(1)
i = −2

κ
γij∇kΠjk . (4.25)

The momentum constraint simply tells us that the wavefunctional is independent of hL
ij to

leading order. This can be seen as follows. Consider the infinitesimal gauge transformation
xi → xi + ξi. Then we see that

Ψ[hij +∇iεj +∇jεi, φ] = Ψ[h, φ] +
∫

Σ
ddx (∇iεj +∇jεi)(x) δ

δhij(x)Ψ[h, φ]

= Ψ[h, φ]− 2i
∫

Σ
ddx
√
γ εj(x)∇iΠij(x)Ψ[h, φ] = Ψ[h, φ]

(4.26)

at leading order in εi, where we have used the leading-order momentum constraint in the
last equality.

Alternately, this can also be seen from the decomposition (4.19). The leading order
momentum constraint tells us that

− 2γij∇kΠjk
L Ψ[h, φ] = 0 + O(κ) , (4.27)

which is equivalent to Πjk
L Ψ[h, φ] = 0 + O(κ).

Second order. At next order, we have

H(2)
i = (∇ihjk − 2∇khij)Πjk − 2hij∇kΠjk − 2

κ
γij∇kΠjk +Hmatter

i . (4.28)

The first order constraint implies that hij∇kΠjk = O(κ) which is subleading. We can then
rewrite the constraint as

2
κ
γij∇kΠjk

L = Qi (4.29)

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

where we have defined

Qi ≡ (∇ihjk − 2∇khij)Πjk +Hmatter
i , (4.30)

and Hmatter
i is the contribution of the matter to momentum constraint. For a free scalar

field, we have from (3.13)

Hmatter
i = 1

√
γ
π ∂iφ . (4.31)

This shows that the second order momentum constraint determines the O(κ) part of Πjk
L in

terms of O(1) quantities.

4.3.2 Hamiltonian constraint

We now consider the perturbative expansion of the Hamiltonian constraint. We consider
successive approximations

√
gH = √γH(n) + O

(
κn−1

)
, (4.32)

by which we mean that H(n) includes all the terms from the Hamiltonian constraint up to
terms of order κn−2.

At zeroth order, we simply have

H(0) = − 1
2κ2 (R− 2Λ) . (4.33)

Plugging in the values from (4.6), we see that this term vanishes identically: H(0) = 0.

First order. At first order, we obtain

NH(1) = − 1
2κN

(
∇i∇jhij −∇i∇ih+ (d− 1)h

)
= − 1

2κ∇
iJi , (4.34)

which we have written as a total derivative in terms of the ADM current (4.8). Note the
factor of N that we have inserted on the l.h.s. of (4.34). It is only with this factor that
the expression turns into a total derivative, and this fact will play an important role in the
analysis below.

In the decomposition (4.9), it can be seen that this expression (4.34) involves only
hT
ij and not hTT

ij or hL
ij . It is clear that hTT

ij disappears because of the transverse-traceless
condition. The longitudinal component also disappears from this expression. This can be
checked explicitly from (4.12) by evaluating H(1) on (4.12) and commuting the covariant
derivatives and using the background identities (4.6). This can also be understood from the
fact that, at first order, the longitudinal component corresponds to an infinitesimal spatial
diffeomorphism. Hence, it doesn’t change the Ricci scalar which is constant according
to (4.6). This implies that H(1) doesn’t depend on hL

ij . The end result is that

NH(1) = 1
2κN

(
−∇i∇ihT + (d− 1)hT

)
, (4.35)
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where we denote hT = γijhT
ij . Since hT

ij has only one degree of freedom, which can be taken
to be hT, the first order Hamiltonian constraint implies that

hT
ij = 0 + O(κ) . (4.36)

In the sections below, we will work out aspects of the O(κ) correction to this equation,
which will play a central role in our analysis.

Second order. At second order, we have contributions from the term quadratic in Πij

and the matter stress tensor:

N
√
γH(2) = 2N√γ

(
ΠijΠij −

1
d− 1Π2

)
− 1

2N [√g(R− 2Λ)](2) +N
√
γHmatter , (4.37)

and we should expand the term in the brackets to second order in κ. The expansion is
performed in the accompanying Mathematica script [57]. It leads to many terms which we
can organize as

−N [√g(R− 2Λ)](2) = 1
4
√
γN

(
−hij(∆N + 2)hij + h(∆N − d)h

)
(4.38)

+ 1
2
√
γN

(
2hij∇i∇khjk +∇ihij∇khjk + 2∇ih∇jhij + h∇i∇jhij

)
+ 1

2
√
γ∇iLi −

1
2κ∇iJ

i ,

where we have introduced a Laplace-type operator

∆Nhij = N−1∇k(N∇khij) . (4.39)

The total derivative involves a current

Li ≡ −N∇jLij + Lij∇jN + 1
2N

(
hjk∇ihjk − h∇ih

)
, (4.40)

where we have defined

Lij ≡ 2hhij − hikh k
j + γijhk`h

k` − 1
2γijh

2 . (4.41)

There is also a contribution from the ADM current J i evaluated on the O(κ) part of hij , the
order one part being zero by the first order constraint. Finally, the second order Hamiltonian
constraint takes the form

NH(2) = NQ− 1
2κ∇iJ

i , (4.42)

where we have defined

Q ≡ 2
(

ΠijΠij −
1

d− 1Π2
)

+ 1
8
(
−hij(∆N + 2)hij + h(∆N − d)h

)
+ 1

4∇iL
i

+ 1
4
(
2hij∇i∇khjk +∇ihij∇khjk + 2∇ih∇jhij + h∇i∇jhij

)
+NHmatter .

(4.43)
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4.4 Integrated constraint

We will find it very useful to also consider the integrated second order Hamiltonian constraint

H
(2)
0 =

∫
Σ
ddx
√
γ NH(2) . (4.44)

It is important to perform the integral with the measure that defines the canonical Hamilto-
nian, i.e. with a factor of N as shown above. In this section, we show that the complicated
expression obtained in (4.42) and (4.43) simplifies greatly upon integration.

To show this, we will use the ADM decomposition (4.9) and (4.19). We will also use
the fact that, as shown above, the first order constraints will set hT

ij = O(κ) and Πij
L = O(κ).

So we drop terms where hT
ij and Πij

L multiply another O(1) quantity since this allows us to
avoid writing a number of unnecessary terms that will eventually not be relevant for our
analysis.

First, the integrated constraint becomes independent of hL
ij = ∇iεj + ∇jεi. This is

trivial at first order because hL
ij corresponds to an infinitesimal diffeomorphism. At second

order, the cancellation is non-trivial and quite remarkable.3 It follows from the fact that
we can write the constraint as

NH(2) = 2N
(

ΠijΠij −
1

d− 1Π2
)
− 1

8N hijTT(∆N + 2)hTT
ij +NHmatter

+ 1
2∇iM

i + 1
4∇iL

i[hTT]− 1
2κ∇iJ

i + O
(
hT
)
,

(4.45)

where the O
(
hT
)
term is subleading as explained above, and where the dependence in εi is

fully captured by the divergence of the following current

M i = N
(
−∇jM ij + hTT

jk ∇j∇kεi − 2∇ihTT
jk ∇jεk − hTT,ij∇j∇kεk + 2dhTT,ijεj

)
+∇jN

(
M ij + hTT,ij∇kεk − hTT,ik∇kεj + 2εk∇jhTT,ik

)
,

(4.46)

where we have defined

M ij ≡ εiεj + εk∇j∇iεk + γij
(
(d− 2)εkεk − εk∆εk

)
. (4.47)

3This can be understood as follows. The Ricci scalar is constant on the background, so it is invariant
under the diffeomorphism xi → xi+κεi. As a result, the second order Hamiltonian constraint is also invariant
under that diffeomorphism, as the variation of √γ and N can be ignored because we assume H(0) = H(1) = 0.
This diffeomorphism modifies the metric according to hij → hij +∇iεi +∇jεi +κh

(2)
ij +O(κ2). At linearized

order, this generates an arbitrary hL
ij and shows that the first order constraint is independent of the

longitudinal metric. At second order, we also generate a subleading term whose explicit expression is
h

(2)
ij = ∇iεk∇jεk − εiεj + γijεkε

k + LεhTT
ij . By applying the above diffeomorphism to the constraint at

hL = 0, we obtain
NH(2)∣∣

hL=0
= NH(2) − 1

2∇iJ
i[h(2)] ,

where we used the fact that since H(2) captures terms up to O
(
κ0) the subleading term h(2) can only affect

it through those terms that have an explicit factor of κ−1. This shows the dependence on hL in NH(2) is
indeed captured by a total divergence.
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Above, the symbol Li[hTT] means that (4.40) is evaluated only on hTT
ij and this evaluation

reduces to

Li[hTT] = N hTT
jk ∇kh

ij
TT −

3
2N hjkTT∇ih

TT
jk +∇iN hTT

jk h
jk
TT −∇

jN hikTTh
TT
jk . (4.48)

The validity of this rewriting is checked in the associated Mathematica notebook [57].
From equation (4.45) it is clear that the integration of NH(2) over the entire Cauchy

slice leads to boundary terms that involve M i, Li[hTT] and J i. The terms involving M i and
Li[hTT] are quadratic in the metric fluctuation and since we have imposed normalizable
boundary conditions their decay at large r is faster than the growth of the area of the sphere.
Therefore the boundary contribution from these terms vanishes. On the other hand, the
boundary term involving J i, upon integration over the boundary, gives the ADM energy H∂ .

Let’s now consider the kinetic piece

2
∫

Σ
ddx
√
γ N

(
ΠijΠij −

1
d− 1Π2

)
. (4.49)

To analyze the term quadratic in Πij
T it is convenient to write the decomposition of section 4.2

as
ΠT,ij = 1

d− 1 (γijΠT − αij) (4.50)

where
αij = N∇i∇jα+∇iN∇jα+∇jN∇iα (4.51)

in terms of a scalar operator-valued field α that satisfies the analogue of (4.16) for ΠT:

(∆− d)(Nα) = ΠT . (4.52)

From the expression (4.50), we see that the term quadratic in Πij
T in the kinetic piece can

be written ∫
Σ
ddx
√
γ N

(
ΠT,ijΠ

ij
T −

1
d− 1Π2

T

)
= − 1

d− 1

∫
Σ
ddx
√
γ NαijΠij

T . (4.53)

Using (4.51), we can write

Nαij = ∇iαj +∇jαi, αi ≡
1
2N

2∇iα , (4.54)

and we finally obtain∫
Σ
ddx
√
γ N

(
Πij

TΠT,ij −
1

d− 1Π2
T

)
= − 2

d− 1

∫
Σ
ddx
√
γ∇i

(
Πij

Tαj
)
, (4.55)

which becomes a boundary term. Since ΠT vanishes at the boundary, the boundary term
vanishes.4 In a similar way, we can show that the cross terms involving Πij

TT and Πij
T vanish.

Recall that Πij
L does not appear since it vanishes at O(1) in perturbation theory by the first

order momentum constraint. This shows that Πij
T disappears from the integrated constraint.

4More precisely, we only need ΠT < O
(
r(d−4)/2) for the boundary term to vanish.
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Finally, the integrated Hamiltonian constraint takes the form

H
(2)
0 = −H∂ +

∫
Σ
ddx
√
γ NHbulk (4.56)

where
Hbulk = 2 ΠTT,ijΠ

ij
TT −

1
8 h

TTij(∆N + 2)hTT
ij +Hmatter (4.57)

and the explicit expression of H∂ is given in (4.7). The constraint H(2)
0 = 0 can be

understood as the equality of the ADM energy H∂ with a bulk energy defined as the second
term of (4.56). Here we see that this relationship follows naturally from the Hamiltonian
constraint.

5 Solving the constraints

We now describe how the constraints discussed in the previous section can be solved to
reveal a remarkable structure of correlations in gravitational wavefunctionals.

The analysis of section 4 immediately yields solutions to the first order constraints. We
find from the first order Hamiltonian constraint that

H(1)Ψ[h, φ] = 0⇒ hTΨ[h, φ] = 0 + O(κ) . (5.1)

This equation should be interpreted as telling us that the support of the wavefunctional
is negligible when the value of hT is parametrically larger than O(κ). The first order
momentum constraint tells us that

H(1)
i Ψ[h, φ] = 0⇒ δΨ[h, φ]

δhL
ij

= 0 + O(κ) . (5.2)

The interesting features in the solutions appear at the next order in perturbation theory,
and this is what we will focus on.

5.1 Integrated Hamiltonian constraint

We first describe how to solve the integrated Hamiltonian constraint (4.56). Here we look
for wavefunctionals ψE,{a}I [H∂ , h

TT, φ] with a specified dependence on hTT, φ and H∂ . The
reason it is possible to restrict to only these variables is that, as explained in section 4.4, the
other degrees of freedom all drop out of the integrated Hamiltonian constraint. Note that
H∂ corresponds to a single degree of freedom from hT

ij as can be seen from (4.35) and (4.7).
In section 5.2, we describe how the remaining dependence on hT

ij and hL
ij can be fixed in

the full wavefunctional.
We remind the reader that a factor of κ−1 is implicit in the definition of H∂ , which can

be seen in (4.7). Therefore, in perturbation theory, it is natural to think in terms of κH∂ .
The first order solutions to H(2)

0 = 0 all have a degenerate value of κH∂ = 0+O(κ) by virtue
of equation (5.1). To work out the solution at O(κ) is a standard problem in degenerate
perturbation theory. We need to look for solutions that diagonalize the “perturbation”
in (4.56), which is the bulk term.∫

Σ
ddx
√
γN Hbulk ψ

E,{a}
I [H∂ , h

TT, φ] = E ψ
E,{a}
I [H∂ , h

TT, φ] . (5.3)
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Here the eigenvalue of the integrated bulk term is E and the superscript {a} simply
reminds us that the eigenvalues of the bulk Hamiltonian operator are degenerate and the
wavefunctional is not completely specified by only a value of E. Then, the integrated
constraint implies that

H∂ ψ
E,{a}
I [H∂ , h

TT, φ] = E ψ
E,{a}
I [H∂ , h

TT, φ] . (5.4)

Since the integral Hbulk depends only on the propagating degrees of freedom hTT
ij and φ, as

explained in section 4.4, it is useful to introduce an auxiliary Hilbert space of wavefunctionals
that depend only on hTT

ij and φ. We will see that these states form a Fock space.
In this auxiliary space, equation (5.3) simply becomes∫

Σ
ddx
√
γN Hbulk ψ

E,{a}
F [hTT, φ] = E ψ

E,{a}
F [hTT, φ] . (5.5)

The equation above is the same as (5.3) except that the wavefunctional has no dependence
of H∂ .

We show below that this can be solved by taking a factorized basis of wavefunctionals
that depend, respectively, on only the transverse-traceless metric fluctuation and the matter
fluctuation.

ψ
E,{a}
F [hTT, φ] = ψg[hTT]ψm[φ] , (5.6)

where ∫
Σ
ddx
√
γN

[
2Πij

TTΠTT,ij −
1
8 h

TTij(∆N + 2)hTT
ij

]
ψg[hTT] = Eg ψg[hTT] , (5.7)∫

Σ
ddx
√
γN Hmatterψm[φ] = Em ψm[φ] , (5.8)

with E = Eg + Em. Solutions to (5.7) and (5.8) are also degenerate although we have
suppressed additional labels on the right hand side of (5.6) to lighten the notation.

In the subsections below, we describe, in some detail, the solutions to (5.7) and (5.8).
The eigenvalues E in (5.3) are obtained after introducing a normal ordering prescription to
regulate Hbulk. We specify this prescription below.

Here we note that once these solutions are found, the solution to the integrated
Hamiltonian constraint is simply

ψ
E,{a}
I [H∂ , h

TT, φ] = ψ
E,{a}
F [hTT, φ]⊗ |H∂ = E〉. (5.9)

Our choice of notation above emphasizes that the spectrum of H∂ , which is a single-degree
of freedom, is discrete.

Any linear combination of solutions of the form (5.9) is also a solution. The solution (5.9)
will be very important for our analysis since it shows how the Hamiltonian constraint, at
second order, correlates the energy of the dynamical degrees of freedom in the wavefunctional
to the value of H∂ , which is given by an integrated component of the metric.

We will see later that the constraints fully determine the physical state ΨE,{a}[h, φ].
The full wavefunctional is obtained by dressing the Fock state ψE,{a}F [hTT, φ] with the
appropriate hT

ij and hL
ij dependence, as will be explained in section 5.2.
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5.1.1 Graviton wavefunctionals

We will describe here the solutions of (5.7). From the integrand appearing in equation (5.7),
it is natural to consider a basis of transverse-traceless eigenfunctions h(n)

ij satisfying

−N2(∆N + 2)h(n)
ij = ω2

nh
(n)
ij . (5.10)

As shown in appendix B.1, this eigenvalue problem is equivalent to the standard quantization
of the graviton in global AdSd+1. We will take this basis to be normalized with respect to
the inner product

1
2

∫
Σ
ddx
√
γ N−1 h

(m)
ij h(n)ij = δmn . (5.11)

We then use the decomposition
hTT
ij =

∑
n

cnh
(n)
ij , (5.12)

and the variables cn can be written, using the orthogonality condition above as

cn = 1
2

∫
Σ
ddx
√
γ N−1hTT

ij h
(n)ij . (5.13)

Using the chain rule we see that

Πij
TT ψg[hTT] = − i

√
γ

δ

δhTT
ij

ψg[hTT] = − i

2N
∑
n

∂ψg[hTT]
∂cn

h(n)ij , (5.14)

so that we have

2
∫

Σ
ddx
√
γN Πij

TTΠTT,ijψg[hTT] = −1
2

∫
Σ
ddx
√
γN−1 ∑

n,m

∂2ψg[hTT]
∂cn∂cm

h(n)ijh
(m)
ij

= −
∑
n

∂2ψg[hTT]
∂c2

n

,

(5.15)

where we have again used the orthogonality relation (5.11).
Then equation (5.7) reduces to

∑
n

(
− ∂2

∂c2
n

+ 1
4c

2
nω

2
n

)
ψg[hTT] = Eg ψg[hTT] . (5.16)

We define the raising and lowering operators

A†n = 1
√
ωn

(
∂

∂cn
− 1

2ωncn
)
, An = − 1

√
ωn

(
∂

∂cn
+ 1

2ωncn
)
, [An, A†m] = δmn .

(5.17)
We also assume that Hbulk should be normal ordered so that all annihilation operators, An
are placed to the right of creation operators A†n. With this simplification the constraint
becomes ∑

n

ωnA
†
nAn ψg[hTT] = Egrav ψg[hTT] . (5.18)
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Our normal ordering prescription ensures that the energy vanishes for the vacuum, which is
defined as

An ψ0[hTT] = 0 , for all n . (5.19)

This is the vacuum wavefunctional for the transverse-traceless gravitons. It has the expression

ψ0[hTT] =N
∏
n

exp
(
−1

4ωnc
2
n

)
=N exp

(
−1

8

∫
Σ
ddx
√
γ hTTij

√
−(∆N+2)hTT

ij

)
(5.20)

up to a normalization constant N that we specify below. In the flat space limit, this
reproduces the results of [8] obtained using a similar method, or in [59] from a Euclidean
path integral.

The space of solutions is then a Fock space spanned by states of the form

ψg[hTT] = 1∏
i

√
di!

(A†n1)d1(A†n2)d2 . . . ψ0[hTT] , (5.21)

with energy
Eg =

∑
i

di ωni . (5.22)

We have written the wavefunctionals that appear in equation (5.21) in terms of the action
of operators on the vacuum wavefunctionals. But they can also be written, as usual, in
terms of Hermite polynomials. Note that the validity of perturbation theory requires that,
in the Fock space, (5.21) we restrict attention to states where ωni � 1

κ .
The natural measure on this space of wavefunctionals is simply

DhTT =
∏
n

dcn , (5.23)

and we choose the normalization constant N so that with respect to this measure the
wavefunctionals that appear in (5.21) are unit normalized

(ψg, ψg) ≡
∫
DhTTψg[hTT]ψg[hTT]∗ = 1 . (5.24)

Of course, wavefunctionals that differ by even a single value of di in equation (5.21) are
orthogonal.

5.1.2 Matter wavefunctionals

The matter part of the wavefunctional can be obtained in a similar way as for the transverse-
traceless gravitons. To illustrate this, we will consider a minimally coupled massive scalar
field. From (3.13), it follows that the canonical Hamiltonian is

Hmatter = 1
2

∫
Σ
ddx
√
γN

(
γ−1π2 − φ(∆N −m2)φ

)
,

where we have imposed a normalizable boundary condition at infinity for the scalar field to
remove a boundary term. The operator ∆N appearing here is the same as in (4.39).

We consider eigenfunctions φ(n) satisfying

−N2(∆N −m2)φ(n) = ω̃2
nφ

(n) , (5.25)
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normalized so that ∫
Σ
ddx
√
γN−1 φ(m)φ(n) = δmn . (5.26)

Using that
π(x) = −i δ

δφ(x) , (5.27)

we can perform the same analysis as for the graviton. We obtain a Fock space constructed
from the frequencies ω̃n.

We can check that the Wheeler-DeWitt analysis reproduces the correct frequencies by
considering the equation of motion in the full spacetime

(�̂−m2)φ = 0 , (5.28)

which becomes on the Cauchy slice,

−N−2∂2
t φ+ (∆N −m2)φ = 0 . (5.29)

In the same manner as for the graviton, this shows that ω̃n as defined in (5.25) are indeed
the frequencies obtained from (5.28).

In global AdSd+1 with normalizable boundary conditions, the resulting spectrum is [60]

ω̃n = ∆ + `+ 2n, n ∈ Z≥0 , (5.30)

where ` labels a spherical harmonic of Sd−1 with eigenvalue `(`+ d− 2) and the conformal
dimension is

∆ = 1
2
(
d+

√
d2 + 4m2

)
. (5.31)

In precise analogy with the analysis above, we expand the matter field as

φ =
∑
n

c̃nφ
(n). (5.32)

The equation (5.8) then reduces to

1
2
∑
n

(
− ∂2

∂c̃2
n

+ c̃2
nω

2
n

)
ψm[φ] = Emψm[φ] . (5.33)

We then define

Ã†n = 1√
2ω̃n

(
∂

∂c̃n
− ω̃nc̃n

)
, Ãn = − 1√

2ω̃n

(
∂

∂c̃n
+ ω̃nc̃n

)
, [Ãn, Ã†m] = δmn ,

(5.34)
and the vacuum wavefunctional, which is annihilated by all the Ãn operators is given by

ψ0[φ] = Ñ
∏
n

exp
(
−1

2 ω̃nc̃
2
n

)
= Ñ exp

(
−1

2

∫
Σ
ddx
√
γ φ
√
−(∆N −m2)φ

)
, (5.35)

where Ñ is a normalization constant. Once again, excited states can be obtained by acting
with creation operators:

ψm[φ] = 1∏√
di!

(A†n1)d1(A†n2)d2 . . . ψ0[φ] . (5.36)
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As above, we normal order the matter contribution to Hbulk so that the annihilation
operators An are placed to the right of the creation operators A†n. With this convention,
the energy is given by

Em =
∑
i

di ω̃ni . (5.37)

We remind the reader that, as in the case of graviton wavefunctionals, within perturbation
theory, we are restricted to states of the form (5.35) where ω̃ni � 1

κ . The natural measure
on this space of wavefunctionals is simply

Dφ =
∏
n

dc̃n , (5.38)

and we choose the normalization constant so that the wavefunctionals are unit normalized

(ψm, ψm) ≡
∫
Dφψm[φ]ψm[φ]∗ = 1 . (5.39)

As above, wavefunctionals that differ by even a single value of di in the expression (5.35)
are orthogonal.

The analysis of matter wavefunctionals completes our analysis of the auxiliary Fock
space. These wavefunctionals can be combined with the transverse-traceless graviton
wavefunctionals obtained above as displayed in (5.6). The resulting wavefunctional enters
the solution of the integrated Hamiltonian constraint displayed in (5.9).

5.2 Pointwise constraints

In the previous section, we have described how to solve the integrated Hamiltonian constraint.
However, the Hamiltonian and momentum constraints, displayed in (3.15), actually comprise
an infinite set of constraints — one for each spacetime point. In this section we will present
the leading order solution to these pointwise constraints. We will also describe a procedure
to obtain higher order solutions.

We show in section 6 that the main result of this paper — which is that wavefunctionals
that coincide near the boundary must also coincide in the bulk — does not require the
detailed form of the dependence of the wavefunctionals on hL and hT in the bulk. For
us, it is only important that the pointwise constraints can be used to uniquely lift a
solution of the integrated Hamiltonian constraint displayed in (5.9) to a solution of the full
constraints (3.15). So, in the bulk of this section, we focus on a procedure that makes it
evident that the pointwise constraints can be used to perturbatively fix the dependence of
the wavefunctional on the pointwise values of hT

ij and hL
ij . In the solution (5.9), it was only

the dependence on H∂ — which is the integral of a particular component of hT
ij — that was

fixed. Therefore our procedure leads to the following uplift.

ψ
E,{a}
I [H∂ , h

TT, φ] pointwise constraints−−−−−−−−−−−−−→ ΨE,{a}[h, φ] . (5.40)

In section 5.2.4 we then provide an indirect argument that leads to the same conclusion:
namely that the uplift (5.40) can be performed uniquely. The details, and checks of the
explicit solution itself are presented in appendix D.

– 25 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

5.2.1 Rewriting the pointwise constraints

We start by putting the pointwise Hamiltonian and momentum constraint in a convenient
form. In this section, we often display the dependence of the wavefunctional on the
individual components of the ADM decomposition of the metric fluctuation and momenta
using notation like Ψ[hTT, hT, hL, φ].

Hamiltonian constraint. First, consider the second order Hamiltonian constraint. From
expression (4.42) the Hamiltonian constraint is equivalent to

Dijhij(x)Ψ[hTT, hT, hL, φ] = κQ(x)Ψ[hTT, hT, hL, φ] , (5.41)

where we have defined the differential operator

Dij ≡ 1
2
(
∇i∇j − γij∇k∇k + (d− 1)γij

)
(5.42)

and Q is defined in (4.43).
As explained near (4.35), the l.h.s. of (5.41) only depends on hT since the operator Dij

annihilates the longitudinal and the transverse-traceless components. So we can also write
the equation above as

DijhT
ij(x)Ψ[hTT, hT, hL, φ] = κQ(x)Ψ[hTT, hT, hL, φ] , (5.43)

which can be rewritten as

hT
ij(x)Ψ[hTT, hT, hL, φ] = κ

∫
Σ
ddx′
√
γ′Gij(x, x′)Q(x′)Ψ[hTT, hT, hL, φ] , (5.44)

where the Green’s function Gij satisfies DijGij(x, x′) = 1√
γ δ(x, x

′) with boundary conditions
that it vanishes as x′ approaches the boundary. We emphasize that (5.44) is just an exact
rewriting of (5.43) and not really a solution.

The equation (5.44) may seem complicated. However, we can develop a perturbative
procedure to solve (5.44) as follows. The idea, as indicated originally by ADM [9] and
then elaborated in [8, 61, 62] is to think of the momentum Πij

T as a notion of “local” time.
Therefore we can think of the pointwise constraint (5.43) as telling us how initial data on a
slice “evolve” as we change time locally but keep the endpoints of the Cauchy slice fixed.

Thus, we must view Πij
T to be the “position” variable while hT

ij is the conjugate
momentum. This idea can be implemented by performing a partial Fourier transform of
the wavefunctional

Ψ[hTT,ΠT, h
L, φ] =

∫
DhT e−i

∫
Σ d

dx
√
γΠijTh

T
ijΨ[hTT, hT, hL, φ] (5.45)

and we will slightly abuse notation by also denoting this wavefunctional by Ψ. This allows
us to rewrite the constraint (5.44) as

i
√
γ

δ

δΠij
T(x)

Ψ[hTT,ΠT, h
L, φ] = κ

∫
Σ
ddx′
√
γ′Gij(x, x′)Q(x′)Ψ[hTT,ΠT, h

L, φ] . (5.46)
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Momentum constraint. We now rewrite the momentum constraint using a similar
procedure. We do not display all intermediate steps since the procedure used is almost
identical to the procedure used above.

We start with the form of the constraint as shown in equation (4.29). Then we note
that it can be written in the form

− i
√
γ

δ

δhL
ij(x)

Ψ[hTT,ΠT, h
L, φ] = κ

2

∫
Σ
ddx′
√
γ′G̃ijk(x, x′)Qk(x′)Ψ[hTT,ΠT, h

L, φ] .

(5.47)
Here the Green’s function G̃i is the solution to

∇iG̃ijk(x, x′) = 1
√
γ′
δd(x, x′)γjk (5.48)

with boundary conditions so that G̃ijk(x, x′) vanishes as x is taken to the boundary.
Note that in (5.46) the operator Q still involves both Πij

T and also hT
ij which should be

interpreted as i√
γ

δ

δΠijT
while acting on Ψ. Similarly in (5.47), the right hand side Qk still

involves hL
ij . So it may appear that we have not achieved much by recasting the pointwise

constraints in the form (5.46) and (5.47). Nevertheless we can take advantage of the factor
of κ that appears in (5.46) to develop an iterative procedure to solve this equation.

5.2.2 Leading order solutions

We start by considering the wavefunctionals described in section 4 that have a specified de-
pendence on hTT

ij and the matter field φ and are eigenfunctions of the energy with eigenvalue
E. We then specify that for the constant function Πij

T(x) = 0 and hL
ij(x) = 0 we have

Ψ[hTT,ΠT, h
L, φ]

∣∣∣
ΠijT =0,hL

ij=0
= ψ

E,{a}
F [hTT, φ] . (5.49)

We then truncate (5.46) and (5.47) by dropping occurrences of hT
ij and Πij

L

Q(0)(x) ≡ Q(x)
∣∣∣
hT
ij=0,ΠijL =0

; Q
(0)
i (x) ≡ Qi(x)

∣∣∣
hT
ij=0,ΠijL =0

. (5.50)

As hT
ij and Πij

L are O(κ) by the first order constraints, this corresponds to restricting to
the leading order.

Then the leading order wavefunctional solution satisfies

i
√
γ

δ

δΠij
T(x)

Ψ[hTT,ΠT,h
L,φ] =κ

∫
Σ
ddx′

√
γ′Gij(x,x′)Q(0)(x′)Ψ[hTT,ΠT,h

L,φ],

− i
√
γ

δ

δhL
ij(x)

Ψ[hTT,ΠT,h
L,φ] = κ

2

∫
Σ
ddx′

√
γ′ G̃ijk(x,x′)Q(0)

k (x′)Ψ[hTT,ΠT,h
L,φ] .

(5.51)

Note that, for consistency, we must adopt the same normal ordering prescription for Q(0)

and Q(0)
k that was adopted in section 5.1. This normal ordering prescription leads to the

subtraction of a position-dependent constant in (5.51).

– 27 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

These leading order equations can be solved by performing a change of variable for ΠT
ij

and hL
ij . It proves convenient to define a “time” variable t by the equation

ΠT
ij = Dijt . (5.52)

This is the generalization to AdS of the time variable used for example in [8, 9]. Note that
this is related to the variable α appearing in (4.52) by t = − 2

d−1Nα.
Differentiating with respect to t instead of ΠT simplifies the Hamiltonian constraint to[

− i
√
γ

δ

δt(x) − κQ
(0)(x)

]
Ψ[hTT,ΠT, h

L, φ] = 0 . (5.53)

Similarly, using εi instead of hL
ij allows to write the momentum constraint as[

− i
√
γ

δ

δεi(x) − κQ
(0)
i (x)

]
Ψ[hTT,ΠT, h

L, φ] = 0 . (5.54)

These equations are derived in appendix D. We can look for a solution of the form

Ψ[hTT,ΠT, h
L, φ] = exp(iκS)ψE,{a}F [hTT, φ] + O

(
κ2
)
, (5.55)

where the exponent S must satisfy

1
√
γ

δS
δt(x) = Q(0)(x), 1

√
γ

δS
δεi(x) = −Q(0)

i (x) . (5.56)

Remarkably, the solution can be found as it takes the simple form

S =
∫
ddx
√
γ

(
−2

3 t
(

Πij
TΠT

ij −
1

d− 1Π2
T

)
+ 2 t Πij

TTΠij
T +Q

(0)
0 t− εiHmatter

i

)
. (5.57)

It is proven in appendix D that this is indeed the solution. This relies on a non-trivial
permutation symmetry in the terms of S that are cubic and quadratic in t. We can confirm
that the approximation used in (5.50) is valid since we can explicitly check on the solution
that hTΨ, (hT)2Ψ,ΠLΨ and (ΠL)2Ψ are all subleading in κ.

By inverting the Fourier transform (5.45) we can also obtain wavefunctionals in the
original metric representation

ΨE,{a}[h, φ] =
∫
DΠT e

i
∫
ddx
√
γΠijTh

T
ijΨ[hTT,ΠT, h

L, φ] . (5.58)

We can see that the dependence on hT
ij is captured by an integral that is qualitatively similar

to the Airy function.

5.2.3 An iterative solution algorithm

We can obtain solutions to the pointwise constraints at higher order by using an iterative
procedure. At O

(
κ2) one must also account for the terms that involve hT

ij = i√
γ

δ

δΠijT
and

Πij
L = − i√

γ
δ

δhL
ij

on the right hand side of (5.46) and (5.47). But it is clear that to obtain
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the solution to O
(
κ2) one only needs to account for the action of these terms on the O(κ)

solution obtained through (5.51). In fact if one expands the wavefunctional in a power
series in κ then this pattern continues at higher order in perturbation theory: at each order
in perturbation theory, these operators act on the lower-order terms and produce a “source
term” on the right hand side of the first order differential equation (5.46) and (5.47).

Note that at higher orders it is not enough to keep only the terms involving hT in
Q but it is also necessary to include the other higher-order terms from the expansion of
the Hamiltonian constraint (4.32). But provided this is done, the procedure above can be
extended to higher order.

It is clear that to leading order in κ the dependence on Πij
T as one approaches the

boundary continuously goes over to the dependence obtained in the solutions of 4.4. However,
the solutions obtained there were very simple because Πij

T drops out from the integrated
constraint as described in (4.55). At a general bulk point this does not happen and
therefore (5.46) leads in general to a complicated set of coupled differential equations.

5.2.4 An indirect argument implying a bijection between solutions to the
pointwise and integrated constraints

The subsection above proposed an iterative algorithm to uniquely uplift a solution of the
integrated constraint to a solution of the full pointwise constraints and an explicit solution
to leading order. However, it is possible to argue indirectly, even without the help of the
explicit solution or the algorithm above, that there is a one-to-one map between solutions
of the integrated constraint and solutions of the full pointwise constraints.

This is because it is possible to obtain a description of the low-energy Hilbert space
of gravity coupled to matter by other means. One common procedure adopted is simply
to fix the gauge, which allows an identification of the independent degrees of freedom. As
expected, these degrees of freedom correspond to the transverse-traceless graviton and the
matter fields. Another equivalent procedure is to examine the set of all classical solutions
of the theory and then quantize them. Both procedures can be seen to lead to precisely the
Fock space described in section 5.1. The solutions that we have described here are also in
one-to-one correspondence with this Fock space. This implies that there are no additional
solutions that we have missed, and nor does our procedure yield any spurious solutions.

5.3 Inner product

To complete the definition of the canonical theory, we need to give the definition of the inner
product. The inner product has been the subject of some discussion in the literature [7].
Here we will propose a specific definition of the inner product at leading order in perturbation
theory and demonstrate its consistency.

Consider two solutions of the constraints that we denote by Ψ1 and Ψ2. We propose
that the inner product between these two solutions obtained above is defined as

(Ψ2,Ψ1) =
∫
DhTTDφΨ1[hTT,ΠT, h

L, φ] Ψ2[hTT,ΠT, h
L, φ]∗ , (5.59)

where ∗ refers to complex conjugation. Note that the integral is only over the propagating
degrees of freedom hTT and φ and is performed at fixed values of Πij

T and hL
ij .
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To see that this definition makes sense, we must show that the inner product doesn’t
depend on the value of hL

ij and Πij
T at which the wavefunctionals are evaluated. At leading

order in κ this follows directly from the “evolution” equations obeyed by the wavefunctionals
in these variables. In particular, by conjugating equation (5.51), we find that

− i
√
γ

δ

δΠij
T(x)

Ψ2[hTT,ΠT, h
L, φ]∗ = κ

∫
Σ
ddx′
√
γ′Gij(x, x′)Q(0)∗(x′)Ψ2[hTT,ΠT, h

L, φ]∗ .

(5.60)
Note that in the basis used above, Q(0)(x) is not a real operator due to the presence of cross
terms in its definition that mix, for instance, Πij

TT and Πij
T . But since Πij

T is realized, in the
basis used above, as −i δ

δΠijTT
complex conjugation of this operator introduces a negative

sign. Nevertheless, by integrating by parts, and using the identities

∫
DhTTDφΨ1

(
δ

δhTT
ij

Ψ∗2

)
= −

∫
DhTTDφ

(
δ

δhTT
ij

Ψ1

)
Ψ∗2 ,

∫
DhTTDφΨ1

(
δ2

δhTT
ij δh

TT
kl

Ψ∗2

)
=
∫
DhTTDφ

(
δ2

δhTT
ij δh

TT
kl

Ψ1

)
Ψ∗2 ,

(5.61)

we find that ∫
DhTTDφΨ1Q

(0)∗(x′)Ψ∗2 =
∫
DhTTDφ

(
Q(0)(x′)Ψ1

)
Ψ∗2 . (5.62)

In the sequence of equations above, we have suppressed the arguments of the wavefunctionals
for clarity.

Now, using the evolution equation we find that

i
√
γ

δ

δΠij
T(x)

(Ψ2,Ψ1)

=
∫

Σ
ddx′

∫
DhTTDφ

(
Q(0)(x′)Gij(x, x′)Ψ1Ψ∗2 −Ψ1Gij(x, x′)Q(0)∗(x′)Ψ∗2

)
= 0 .

(5.63)

Similarly, the second order momentum constraint (4.29) equates − i√
γ

δ
δhL
ij

with a self-adjoint
operator, which ensures that

− i
√
γ

δ

δhL
ij

(Ψ1,Ψ2) = 0 , (5.64)

and the inner product is independent of hL
ij .

This inner product reproduces the Fock space inner product if we use the natural measure

DhTT =
∏
n

dcn, Dφ =
∏
n

dc̃n . (5.65)

Then, using the above normalization, we find the simple result(
ΨE,{a},ΨE′,{a′}

)
= δE,E′δ{a},{a′} . (5.66)
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6 Holography of information

In previous sections we have analyzed the form of the Hamiltonian and momentum con-
straints. We have shown that these constraints force a certain component of the metric
fluctuation to have specific correlations with the excitations of the matter fields and
transverse-traceless gravitons. We will now show that these correlations are sufficient to
completely identify a state in the bulk from boundary correlators.

More precisely, we will establish the result.

Result. If two pure or mixed states of the theory coincide at the boundary of AdS for an
infinitesimal interval of time then they must coincide everywhere in the bulk.

An intuitive way to think of our strategy to establish this result is as follows. At the
boundary, we have available to us the boundary values of the metric and other matter fields.
Let us first consider pure states. Then the correlations that we have analyzed at length in
section 5 allow us to determine the energy of a state from the measurement of a certain
component of the metric at the boundary. The value of this component is suppressed by a
factor of κ but our analysis is already sufficient to reveal its nontrivial value.

A determination of the energy is not sufficient to determine the state. Since a pure
state must be a superposition of energy eigenstates, the determination of the energy still
leaves us with an ambiguity of relative phases between different energy eigenstates and also
an ambiguity associated with degeneracies in energy eigenstates.

To resolve this ambiguity, we exploit the fact that energy eigenstates are necessarily
delocalized states. This is true just by virtue of the Heisenberg uncertainty principle. We
demonstrate that the ambiguity associated with degeneracy and the ambiguity associated
with the phases of eigenstates can be resolved by additional measurements of the metric and
matter fields near the boundary in an infinitesimal time interval. These latter measurements
are not suppressed by κ and involve just the O(1) fluctuations of the transverse-traceless
metric component and the matter fields. The end result is that correlations of the energy
and other observables near the boundary suffice to completely fix the form of the bulk state.

The extension of our result to mixed states is straightforward. A basis of density
matrices is obtained by combining a wavefunctional corresponding to one energy eigenstate
with the conjugate of a wavefunctional corresponding to another energy eigenstate. Let us
denote such a basis by ρE,E′,{a},{a′}[h, φ, h̃, φ̃] where E,E′ are the energy eigenvalues of the
wavefunctionals and {a}, {a′} are additional labels necessary since energy eigenstates can be
degenerate and, as usual, the density matrix has double the arguments of the wavefunctional.
Any density matrix can be written as a linear combination of such elementary density
matrices with certain coefficients. Two density matrices can only yield the same values for all
moments of the energy if these coefficients satisfy certain strong constraints. As in the case
of pure states, measurements of the energy are insufficient to fix these coefficients. However,
we show that correlators of additional dynamical fields uniquely fix these coefficients.

We now present a precise mathematical argument that realizes the intuition above. In
preparation for this argument, we first discuss the set of boundary observables and also the
set of valid mixed states in the theory before turning to the proof in section 6.3.
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6.1 Boundary observables

Let us briefly recapitulate the set of boundary observables. Recall that, as explained below
equation (3.15) boundary observables are automatically gauge invariant. The constraints
only impose the invariance of observables under small gauge transformations, and since
such transformations die off near the boundary, the constraints commute with boundary
observables.

One special boundary observable that will be required is the ADM Hamiltonian, H∂ ,
given in equation (4.7). In addition, we will require the boundary values of the metric and
also the matter fields in the theory. In order to adopt a compact notation, we denote such
local boundary operators collectively by

O(t,Ω); Ω ∈ Sd−1.

Note that these observables are naturally defined by a value of the boundary time, t, and
also a position on the boundary sphere.

For instance, consider the scalar field that we have discussed above with mass m. Then
a gauge-invariant boundary observable is obtained through

O(t,Ω) = lim
r→∞

r∆φ(r, t,Ω) , (6.1)

where we are using the coordinate system in (3.2) and ∆ is defined in (5.31). In our notation,
we assume that unlike H∂ (defined in equation (4.7)), no explicit factors of 1

κ are inserted
while taking the boundary limits of bulk operators. The reader should keep this distinction
between H∂ and the observables O(t,Ω) in mind for the analysis below.

We pause to address a subtlety associated with the limit described in equation (6.1). In
order to take the limit, the operator on the right hand side of equation (6.1), which is a bulk
operator, must be first made gauge invariant in the sense of equation (3.19). It can be seen
that there is no unique way to dress the bulk operator in order to make it gauge invariant.

A simple way to understand this lack of uniqueness is as follows. In this paper, we
have not invoked a specific gauge. But another way of obtaining approximately local bulk
operator is simply to choose a gauge. To every such gauge-fixed operator, there exists a
gauge-invariant representation of the operator that satisfies the constraints (3.19). But
different choices of gauge lead to different operators. This is why the symbol φ(r, t,Ω) does
not have a unique meaning unless its precise dressing is specified.

This lack of uniqueness changes some correlators at O(κ) [63]. Nevertheless, this issue
is not important for our analysis because we will use the operators shown in (6.1) only
within specific correlators. We will only need the fact that when we take the limit to the
boundary, the final operator commutes with the constraints and its correlators with other
local boundary operators at O(1) are independent of how the operators was dressed in the
intermediate step. The precise property used is stated precisely in equation (6.9) below and
also holds for gauge-fixed operators.

We have displayed a scalar field in (6.1) but a similar limit can be taken for observables
that contain the metric or other dynamical fields in the theory. In the case of observables
that depend on the metric, the only element of the ADM decomposition that is relevant
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at O(1) in such an observable is hTT. It is easiest to see this in the mixed representation
of (5.45), which can also be used for observables. Then the first order Hamiltonian and
momentum constraints tell us that such an observable must be independent of hL and ΠT
at O(1). Therefore, at O(1) such observables can only depend on hTT and ΠTT. To lighten
the notation, in the analysis below, O(t,Ω) can stand for an insertion of either the metric
or the insertion of a matter field.

6.2 Mixed states

In the previous sections, we have focused on pure states in the theory. It is a short step to
generalize this discussion to mixed states, and we do so now.

In section 5 we have obtained wavefunctionals that are annihilated by the constraints.
A basis of density matrices is obtained by combining them:

ρE,E
′,{a},{a′}[h, φ, h̃, φ̃] = Ψ(a′)

E′ [hij , φ]Ψ(a)
E [h̃ij , φ̃]∗ , (6.2)

where the wavefunctionals are normalized with respect to the inner product (5.59). Note
that the density matrix depends on two metric configurations, which we have denoted above
by hij and h̃ij , and two matter-field configurations, denoted above by φ and φ̃.

A general density matrix is a linear combination of elements of (6.2):

ρ[h, φ, h̃, φ̃] =
∑

E,E′,{a},{a′}
c(E,E′, {a}, {a′})ρE,E′,{a},{a′}[h, φ, h̃, φ̃] .

As usual, these density matrices satisfy the constraints that

c(E′, E, {a′}, {a}) = c(E,E′, {a}, {a′})∗ . (6.3)

Moreover, the eigenvalues of the density matrix must be positive and we additionally have∑
E,{a}

c(E,E, {a}, {a}) = 1 . (6.4)

We denote expectation values of an operator A in a density matrix using the notation 〈A〉ρ.
These expectation values are computed through

〈A〉ρ =
∑

E,E′,{a},{a′}
c(E,E′, {a}, {a′})

(
ΨE′,{a′}, AΨE,{a}

)
(6.5)

where the inner product is as defined in (5.59).

6.3 Proof of the main result

We are now in a position to prove the result above.
Let ρ1 and ρ2 be two density matrices of the form (6.2) with coefficients c1(E,E′,{a},{a′})

and c2(E,E′,{a},{a′}) respectively. We will now show that if the we have equality of the
expectation values

〈Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)Hm

∂ 〉ρ1 = 〈Hn
∂ O(t1,Ω1) . . .O(tq,Ωq)Hm

∂ 〉ρ2 (6.6)

for arbitrary values of n,m, q and for any ti ∈ [0, ε], we then have ρ1 = ρ2.
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First note that equation (6.6) implies that∑
E,E′

{a},{a′}

[
c1(E,E′, {a}, {a′})− c2(E,E′, {a}, {a′})

]
EnE′m 〈O(t1,Ω1) . . .O(tq,Ωq)〉ρE,E′,{a},{a′} = 0 .

(6.7)
Since this is true for arbitrary values of n,m it must be true that for each individual value
of E,E′∑
{a},{a′}

[
c1(E,E′, {a}, {a′})− c2(E,E′, {a}, {a′})

]
〈O(t1,Ω1) . . .O(tq,Ωq)〉ρE,E′,{a},{a′} = 0 ,

(6.8)
where the important difference with the previous equation is that (6.8) does not involve
any sum over E,E′.

We now note that the correlators that appear in (6.8) can be evaluated in the auxiliary
Fock space introduced in section 5.1. That is,

〈O(t1,Ω1) . . .O(tq,Ωq)〉ρE,E′,{a},{a′} =
(
ψ
E′,{a′}
F ,O(t1,Ω1) . . .O(tq,Ωq)ψE,{a}F

)
+ O(κ) .

(6.9)
Note that the correlator on the left hand side does not include H∂ and it only includes
operators of the form (6.1). The equation above then follows from the discussion of
section 6.1. Computing an ordinary matter correlator with the full wavefunctional is the
same at O(1) as computing the same correlator in the Fock space.

To complete the proof, we will use the analytic properties of the correlators that appear
on the r.h.s. of (6.9). By inserting a complete set of energy eigenstates in the auxiliary
Fock space, we find that(

ψ
E′,{a′}
F ,O(t1,Ω1) . . .O(tq,Ωq)ψE,{a}F

)
= ei(E

′t1−Etq)
∑

Ej ,{aj}
ei
∑q−1

i=1 Ei(ti+1−ti)

×
(
ψ
E′,{a′}
F ,O(0,Ω1)ψE1,{a1}

F

) (
ψ
E1,{a1}
F ,O(0,Ω2)ψE2,{a2}

F

) (
ψ
E2,{a2}
F ,O(0,Ω2)ψE3,{a3}

F

)
× . . .×

(
ψ
Eq−1,{aq−1}
F ,O(0,Ωq)ψE,{a}F

)
. (6.10)

We emphasize that the entire identity above is simply in the auxiliary Fock space, and
we have used completeness and the transformation properties of the operators under time
translations only in the Fock space. This correlator is clearly analytic when the variables

z1 = t1; z2 = t2 − t1; . . . ; zq = tq − tq−1 (6.11)

are continued in the upper half plane. This follows just from the positivity of energy in the
auxiliary Fock space. Note that in the correlator above the term in the exponent involving
E′t1 − Etq is outside the sum over energies and when the variables zi are extended in the
upper half plane each term in the exponential inside the sum picks up a factor that decays
exponentially with energy. Hence, if the correlator vanishes when ti ∈ [0, ε] it must also
vanish for ti ∈ [0, π] by the edge of the wedge theorem [64, 65].

But, in the Fock space, the individual creation and annihilation operators can be
obtained by integrating O(ti) in a band of size π. This follows from the discrete frequencies
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for the excitations found in section 5.1.1 and 5.1.2. So the algebra of operators for all
ti ∈ [0, π] provides a complete basis for the algebra of all operators in the Fock space.
Therefore the correlator in equation (6.8) vanishes for all ti ∈ [0, π] if and only if c1 = c2.

This proves our assertion.

Comments on the proof. We would like to comment on some subtle aspects of the
proof above.

1. Note that the correlator (6.6) involves high powers of H∂ . Nevertheless, our perturba-
tive solution can be used to reliably compute these correlators. This can be seen by
rewriting the expression for the integrated constraint after Fourier transforming the
wavefunctional as was done in section 5.2. The constraint then takes the form

i

2κ

∫
∂Σ
dd−1Ωni(N∇j −∇jN)(δki δ`j − γk`γij)

1
√
γ

δ

δΠk`
T

Ψ[hTT,ΠT, h
L, φ]

=
∫

Σ
ddx
√
γN HbulkΨ[hTT,ΠT, h

L, φ] + O
(
hT
ij

)
+ O(κ)

(6.12)

where we have explicitly also displayed the O
(
hT
ij

)
and higher-order terms that were

dropped in the analysis of section 4.4. Now one of the key simplifications that we
found in section 4.4 was that Πij

T drops out of the integrated expression for Hbulk.
Consequently we were able to examine wavefunctionals that satisfied∫

Σ
ddx
√
γN HbulkΨ[hTT,ΠT, h

L, φ] = EΨ[hTT,ΠT, h
L, φ] . (6.13)

We can then move to new variables

Π̃ij
T = κΠij

T , h̃T
ij = i

√
γ

δ

δΠ̃ij
T

= 1
κ
hT
ij , (6.14)

so that the equation above takes the form

i

2

∫
∂Σ
dd−1Ωni(N∇j −∇jN)(δki δ`j − γk`γij)

1
√
γ

δ

δΠ̃k`
T

Ψ[hTT, Π̃T, h
L, φ]

= EΨ[hTT, Π̃T, h
L, φ] + κO

(
h̃T
ij

)
+ O(κ) .

(6.15)

Note that the factor of κ has disappeared on the l.h.s. above, and an additional factor
of κ has appeared in front of the functional derivatives with respect to Π̃ij

T on the
second line of the r.h.s. This entire equation clearly has a smooth limit as κ→ 0 and
this allows us to conclude that repeated applications of H∂ produce a simple result:[

i

2

∫
∂Σ
dd−1Ωni(N∇j −∇jN)(δki δ`j − γk`γij)

1
√
γ

δ

δΠ̃k`
T

]n
Ψ[hTT, Π̃T, h

L, φ]

= En Ψ[hTT, Π̃T, h
L, φ] + O(κ) .

(6.16)

This is precisely what we have used above.

– 35 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
9

2. Our perturbative analysis in section 4 and section 5 assumes that the states under
consideration do not have energies that scale parametrically with O

(
1
κ

)
so that there

are no factors of κ that we need to keep track of except for the ones that appear
explicitly in perturbation theory. But the proof above requires somewhat more
stringent conditions on the energies. This can be seen by examining the passage from
equation (6.7) to equation (6.8). If we denote the number of energy levels below a
given energy E by D(E) then this passage is valid provided we can take n,m in (6.6)
to satisfy n,m > D(E). Since we are limited to using n,m < O

(
1
κ

)
, the proof above

holds provided the states that enter (6.6) satisfy D(E) < O
(

1
κ

)
in AdS units. We

remind the reader that log(D(E)) can grow no faster than E on thermodynamic
grounds and the linear bound is saturated by the Hagedorn behaviour of string-theory.

This limitation should not be surprising. When D(E) = O
(

1
κ

)
, the expected difference

in the value of any observable between two typical state is suppressed by a factor
of O(

√
κ). (See [39] or section 2.4 of [2]) Therefore even if one were to consider all

correlators, including bulk correlators, it would still be necessary to measure these
correlators to highers order in κ in order to differentiate two typical states.

We emphasize that this limitation does not mean that the result above fails to hold
for high-energy states. The arguments of [1] arrive at the same result with no such
limitation. So our observation simply implies that we need to refine our proof for
high-energy states.

3. We note that the proof above can also be rewritten using the projector on the vacuum
as was done in [1] or by replacing powers of H∂ with projectors onto eigenstates of H∂ .
Indeed, from a physical perspective, projective measurements are more natural than
correlators as was explained in [3]. We have provided a proof using the correlators
of (6.6) only to keep our argument simple and explicit.

4. In the proof above we have utilized a small time band in order to make the assertion
below (6.11) rigorous. We expect that it should be possible to trade this infinitesimal
time band for an infinitesimal “thickness” in the bulk. If so, the result above can also
be stated as “if two states coincide near the boundary at a single instant of time, they
must coincide everywhere in the bulk.” However, to make this rigorous requires some
delicate analysis since, in an intermediate step, it will be necessary to construct bulk
operators that commute with the constraints.

5. The products of operators that appear in (6.6) are not necessarily Hermitian. However,
the expectation value we need can always be obtained by combining the expectation
values of Hermitian observables. We first write each product of operators, A in (6.6)
as A = X + iY where X and Y are Hermitian. We then have 〈A〉 = 〈X〉+ i〈Y 〉. For
further discussion of a “physical protocol” that can be used to extract information
about the state, by combining a boundary unitary operation with a measurement of
the energy, we refer the reader to [3].
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6. The proof above takes advantage of the infrared cutoff provided by global AdS. Since
the spectrum of energies is discrete, a finite set of powers of H∂ in (6.6) are sufficient
to make the passage to (6.8). This means that the method of proof presented here
must be refined before it can be applied to asymptotically flat space where there is no
infrared cutoff.

We note that the result one should aim for in asymptotically flat space is clear. In [1]
it was shown, using operator-theoretic techniques, that two states of massless particles
that coincide in a small retarded-time band near the past boundary of I+ (or a
small advanced-time band near the future boundary of I−) must be identical. We
expect that a refinement of the techniques developed here, to account for the infrared
subtleties of flat space, will lead to the same result.

7 Discussion

Summary of results. In this paper, we have explicitly shown that a careful analysis of
the solutions of the gravitational constraints leads to a perturbative proof of the principle
of holography of information: any wavefunctional that satisfies the gravitational constraints
in AdS is determined uniquely by its boundary values over an infinitesimal interval of time.
As we reviewed in section 3, these constraints can be obtained from the straightforward
canonical quantization of gravity. In the canonical formalism, states of the theory are
represented as wavefunctionals of the metric and matter degrees of freedom. The requirement
that these wavefunctionals yield the same amplitude for configurations that are related by
diffeomorphisms of a spatial slice leads to the momentum constraint; requiring the same
amplitude for configurations related by diffeomorphisms that move points in time leads to
the Hamiltonian constraint, which is also called the Wheeler-DeWitt equation. The precise
form of these constraints can be found in equations (3.10) and (3.11).

In section 4, we expanded these constraints up to second order in the metric fluctuation.
An important tool introduced in section 4 was the ADM decomposition presented in
equation (4.9). This decomposition has previously been used in flat space; our results show
that when suitably generalized it is also a very useful decomposition in curved space.

In section 5, we analyzed solutions to the perturbative Hamiltonian constraint. We first
considered the equation obtained by integrating the Hamiltonian constraint over an entire
Cauchy slice. This procedure greatly simplifies the constraint. We were able to obtain
explicit solutions to the integrated constraint: these solutions are just dressed versions of
wavefunctionals in an auxiliary Fock space that describe the matter excitations and the
transverse-traceless metric excitations. We also showed how the pointwise Hamiltonian
constraint can be solved through an iterative procedure.

In section 6, we showed that these wavefunctionals obey the remarkable property
that their boundary values for an infinitesimal interval of time determine their behavior
everywhere in the bulk. This result follows from the solutions that we obtained in sections 4
and 5. It sheds light, in a precise and explicit setting, on how and why gravitational theories
are holographic.
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Natural extensions. It is instructive to see what our analysis gives in the case of AdS3.
There are no nontrivial propagating gravitons in AdS3 but it is still meaningful to define
a boundary Hamiltonian that measures the total energy of the state. So we see that the
present formalism can be applied to AdS3. It would be interesting to go further and recast
the Brown-Henneaux analysis [66] in the language of wavefunctionals.

This work was focused on global AdSd+1 but the analysis can also be performed for
subregions of AdS. In particular, it appears straightforward to extend our analysis to
the Rindler wedge of a spherical region [67] and also perhaps to more general entangle-
ment wedges. This promises to shed light on subregion duality and entanglement wedge
reconstruction and we hope to return to this problem in the near future.

Future work. The analysis in this paper has been perturbative. In [1], it was shown
that with weak assumptions on the Hilbert space and the nature of boundary observables,
theories of gravity must be holographic even nonperturbatively. The analysis of [1] used
operator algebra techniques. It would be very interesting if the perturbative analysis of this
paper could be generalized to show that, even nonperturbatively, solutions of the WDW
equation that coincide on the boundary must coincide everywhere in the bulk. Although
the nonperturbative WDW equation may seem formidable, the results of [1] suggest that
obtaining such a result might be possible.

In this paper, we have been agnostic to the matter content of the theory and its
interactions. However, it is well known, from the AdS/CFT literature, that not all low-
energy effective theories can be consistently extended to obtain a UV-complete theory of
quantum gravity in AdS. It would be very interesting to understand whether and how these
constraints enter possible extensions of our analysis.

The results of our paper again illustrate the dramatic difference between the storage of
quantum information in quantum gravity compared to quantum field theories. In ordinary
quantum field theories, it is possible to find states that differ inside a bounded region but
are identical outside that region; such states localize information in the interior of some
region. The existence of such states corresponds to the “split property” of ordinary quantum
field theories where the Hilbert space factorizes into a factor associated with the interior of
the region and another factor associated with the exterior. In classical theories of gravity,
configurations that differ inside a ball but coincide outside it can be constructed. For this
reason, it has often been assumed that split states should also exist in quantum gravity.
But our results show that this seemingly innocuous assumption is false.

It is described in [2] how this incorrect assumption plays a key role, both in Hawking’s
formulation of the information paradox and also in its various refinements (see also [68, 69]).
More interestingly, the idea that black hole radiation should obey a “Page curve” also
relies implicitly on the same incorrect assumption of factorization. By focusing on this
assumption, it was recently shown in [70] that the paradigm of “islands” [71] that has been
used to derive this Page curve is applicable only to theories of massive gravity and does not
apply to standard theories with long-range gravity.

This paper shows how the impossibility of localizing information in a bounded region
in gravity is directly related to the structure of valid wavefunctionals in the theory. We
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hope that a study of the solutions that we have found will help to shed further light on this
remarkable property of quantum gravity.

Acknowledgments

Research at ICTS-TIFR is supported by the Government of India through the Department
of Atomic Energy project RTI4001. S.R. is partially supported by a Swarnajayanti fellowship
DST/SJF/PSA-02/2016-17 of the Department of Science and Technology. We are very
grateful to Kyriakos Papadodimas for collaboration in the early stages of this work. We are
grateful to Tuneer Chakraborty, Joydeep Chakravarty, Hao Geng, Andreas Karch, Alok
Laddha, Ruchira Mishra, Priyadarshi Paul, Carlos Perez-Pardavila, Siddharth Prabhu, Lisa
Randall, Marcos Riojas, Sanjit Shashi and Pushkal Shrivastava for several useful discussions.

A Split states in QED

In this appendix, we show that ordinary gauge theories localize information much like
ordinary quantum field theories, and very differently from gravity. To illustrate this, we
will solve the constraint of a U(1) gauge theory coupled to matter and construct explicit
wavefunctionals that are identical outside a bounded region but differ inside. Such states
are called “split states” and the argument provided in the main text of the paper shows
that split states do not exist in theories of quantum gravity. A useful reference for the
analysis of wavefunctionals in QED and ordinary quantum field theories is [72]. An analysis
of the canonical quantization of QED can also be found in appendix B of [73]. We caution
the reader that some of the conventions below differ from those of [73] by terms involving
N and the determinant of the spatial metric.

A.1 Action and constraints

We work about the fixed global AdS background

ds2 = −N2dt2 +N−2dr2 + r2dΩ2
d−1 , (A.1)

where N is the same as (4.5). We emphasize that in this appendix, we are not considering
a theory with dynamical gravity and so the metric (A.1) is exact. We continue to use the
d+ 1 notation of the main text for covariant derivatives.

The action of QED takes the form,

S = −1
4

∫
dtddx

√
γN F̂µνF̂

µν + Smatter . (A.2)

Note that we have included the interactions of the gauge field and the matter in the term
denoted as Smatter above. The details of this action will not be important except for a few
features that we mention below. But for the purpose of illustration, we consider a charged
scalar field with the action,

Smatter = −1
2

∫
dd+1x

√
γN (Dµφ)∗Dµφ , (A.3)

where Dµ = ∂µ + iAµ is the gauge covariant derivative with the coupling constant set to 1.
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As there is no kinetic term for the A0 field, we immediately obtain a primary constraint

Πt
em = 0 , (A.4)

whereas the canonical momentum for the spatial part of the gauge field is

Πi
em = 1

√
γ

δS

δȦi
= −NF̂ ti (A.5)

which is just the electric field. This is similar to the primary constraints (3.7) in gravity.
Imposing that this constraint is preserved under time evolution leads to a secondary
constraint. This is the pointwise Gauss law

∇iΠi
em = ρ , (A.6)

where ρ is the charge density of the matter. The left hand side of (A.6) is reminiscent of the
momentum constraint in gravity since it is linear in the canonical momentum. However, the
momentum constraint in gravity couples the metric and its canonical momentum whereas
we see that (A.6) has no such nonlinear terms. This will allow us to present a general
solution to this constraint.

For the action (A.3), the momentum conjugate to the scalar field is

Πφ = 1
√
γ

δS

δφ̇
= 1

2N (φ̇∗ − iAtφ∗); Πφ∗ = 1
√
γ

δS

δφ̇∗
= 1

2N (φ̇+ iAtφ) , (A.7)

and in terms of the canonical variables, we have

ρ = i(φΠφ − φ∗Πφ∗) . (A.8)

But the details of the matter sector will be unimportant in the analysis below and we will
only use the fact that, in the classical canonical theory, the Poisson bracket between the
charge density at two distinct points, x and x′, on the same spatial slice vanishes:

{ρ(x), ρ(x′)}PB = 0 . (A.9)

In the quantum theory, the states of the theory are described by wavefunctionals of the
gauge field and matter fields. The primary constraint (A.4) tells us that wavefunctionals,
and observables that commute with the constraints, are independent of A0. Therefore these
wavefunctionals ψ[A, φ] depend on only the spatial components of the gauge field. The
momentum operator is realized as

Πi
em = − i

√
γ

δ

δAi
. (A.10)

The secondary constraint then implies that[
∇iΠi

em − ρ
]
ψ[A, φ] = 0 . (A.11)

Since we will exclusively consider wavefunctionals that satisfy the constraints the Pois-
son brackets (A.9) are directly promoted to commutators in the quantum theory. Therefore
we have

[ρ(x), ρ(x′)] = 0 , (A.12)

at any two points x, x′ on the same spatial slice. This property will be utilized below.
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A.2 Solution to the constraints

Since the constraints in electromagnetism are simple, it is possible to write down an exact
solution to the constraints. As in the main text, it is convenient to decompose the gauge
field into a longitudinal and a transverse part

Ai = AL
i +AT

i (A.13)

which satisfy
∇iAT

i = 0, AL
i = ∇iχ , (A.14)

for some χ that vanishes asymptotically. The momentum can be similarly decomposed as

Πi
em = Πi

em,T + Πi
em,L (A.15)

and by a simple extension of the argument near equation (4.22) we find that

Πi
em,T = − i

√
γ

δ

δAT
i

; Πi
em,L = − i

√
γ

δ

δAL
i

. (A.16)

The constraint (A.11) correlates the part of the wavefunctional that depends on AL with the
part that depends on the charge density, leaving the part that depends on AT unconstrained.
A solution to the constraints is given by

ψ[A, φ] = exp
[
i

∫
Σ
ddx
√
γ

∫
Σ
ddx′

√
γ′AL

i (x)∇iG(x, x′)ρ(x′)
]
ψA[AT]ψφ[φ] (A.17)

where ψφ and ψA are arbitrary functionals and the Green’s function G(x, x′) satisfies

∇i∇iG(x, x′) = 1
√
γ
δ(d)(x, x′) . (A.18)

Since the spatial slice is just Euclidean AdSd, the Green’s function can be written as [74, 75]

G(x, x′) = 2−∆̃

∆̃
Γ(∆̃)

π
∆̃
2 Γ( ∆̃

2 )
ξ∆̃

2F1
(

∆̃
2 ,

∆̃
2 + 1; ∆̃

2 + 1; ξ2
)

(A.19)

where ∆̃ = d − 1 and ξ(x, x′) = (cosh d(x, x′))−1 and d(x, x′) is the geodesic distance
between x and x′. In our coordinates, we have explicitly

ξ(x, x′) =
√

1 + r2
√

1 + (r′)2 + rr′ e · e′ , (A.20)

where e, e′ are unit vectors in Rd parameterizing Sd−1.
Note that (A.17) is not a factorized solution since the ρ in the exponent of the right

hand side acts as an operator on ψφ and this forces correlations between the matter fields
and the longitudinal part of the gauge field.
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A.3 Split states in QED

Although the solution obtained above is not factorized, it is still possible to find split states.
A simple example is obtained by taking two wavefunctionals ψ(1)

φ [φ] and ψ(2)
φ [φ] that are

both eigenfunctions of the charge operator ρ:

ρψ
(1)
φ [φ] = ρ1ψ

(1)
φ [φ], ρ ψ

(2)
φ [φ] = ρ2ψ

(2)
φ [φ] . (A.21)

Consider the case where the eigenfunctions ρ1 and ρ2 are both spherically symmetric, vanish
outside a ball of finite radius BR centered at r = 0 but differ inside the ball. The fact
that states of the form (A.21) exist relies crucially on the fact that the charge density can
be specified independently at each point in space by (A.12) and also on the fact that for
ordinary matter fields it is possible to construct split wavefunctionals that agree outside a
bounded region but differ inside [65].

If we impose the condition that∫
BR

ddx
√
γ ρ1 =

∫
BR

ddx
√
γ ρ2 , (A.22)

then we see that the wavefunctionals

ψ(1)[A, φ] = exp
[
i

∫
Σ
ddx
√
γ

∫
Σ
ddx′

√
γ′AL

i (x)∇iG(x, x′)ρ(x′)
]
ψA[AT]ψ(1)

φ [φ] (A.23)

and

ψ(2)[A, φ] = exp
[
i

∫
Σ
ddx
√
γ

∫
Σ
ddx′

√
γ′AL

i (x)∇iG(x, x′)ρ(x′)
]
ψA[AT]ψ(2)

φ [φ] (A.24)

solve the constraints for an arbitrary choice of ψA[AT], are identical outside BR but differ
inside. Note that we have used the fact that the electric field produced by ρ1 and ρ2, which
enters in the exponents above, agrees outside BR by spherical symmetry and equality of
the total charge but differs inside.

Another example of a split state is obtained by simply taking two wavefunctionals
ψ(1)[AL, AT] and ψ(2)[AL, AT] that are eigenstates of Πem,L with different eigenvalues

∇iΠi
em,L ψ

(1)[AL, AT] = ρ1 ψ
(1)[AL, AT]; ∇iΠi

em,L ψ
(2)[AL, AT] = ρ2 ψ

(2)[AL, AT] .
(A.25)

Unlike the example above, ρ1 and ρ2 do not need to be spherically symmetric in this case but
we again demand that they differ inside a ball BR but agree outside. We can then simply
choose two matter wavefunctionals that satisfy (A.21) and we see that the wavefunctionals

ψ(1)[AL, AT]ψ(1)[φ] and ψ(2)[AL, AT]ψ(2)[φ] (A.26)

differ inside BR but agree outside.

A.4 Difference between QED and gravity

From a technical perspective what allows us to construct split states in QED is the
relation (A.12). Unlike the charge density, the energy density cannot be independently
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specified at each spacetime point. This is because the commutator of the stress tensor with
itself leads to the so-called Schwinger terms [76]. For example, in a lattice regularization,
the stress tensor at one lattice point does not commute with the stress tensor at adjacent
lattice points.

The significance of this difference can be seen by considering the global AdS vacuum.
Here the specification of the total energy completely fixes the state in the bulk and so it is
clear that once the integral of the stress tensor has been specified and set to vanish, there
is no freedom to specify it arbitrarily in different parts of space. In contrast, specifying the
integral of the charge density leaves an infinite ambiguity in the local charge density.

There is a more physical way to understand the difference between gravity and non-
gravitational gauge theories. In gravity, the “charge” is the energy but, by the Heisenberg
uncertainty principle, an excitation with a fixed total energy must be delocalized. There is
no similar principle for excitations of the electric charges or other gauge charges. This is
why it is possible to find split states in ordinary gauge theories, which localize information
much like other local quantum field theories, but impossible to find split states in gravity.

B Graviton modes in global AdS

We verify here that the eigenvalue problem (5.10) coming from the Wheeler-DeWitt equation
corresponds to graviton modes in AdSd+1. We then provide an explicit solution and compute
the frequencies ωn in global AdS4.

B.1 Graviton eigenvalue problem

To relate graviton modes to the analysis of section 5.1.1, we should write the linearized
Einstein equation in global AdSd+1 in terms of d-dimensional quantities on the slice Σ. We
use hats for spacetime quantities to distinguish them from slice quantities. The background
metric is taken to be

ds2 = γ̂µνdx
µdxν = −N2dt2 + γijdx

idxj (B.1)

and the perturbation is

ĥµνdx
µdxν = ĥttdt

2 + 2ĥtidtdxi + hijdx
idxj , (B.2)

which we take to be transverse and traceless

∇̂µĥµν = 0 , ĥ µ
µ = 0 . (B.3)

This is known as the generalized de Donder gauge.
The linearized equation of motion can be obtained by expanding the Einstein-Hilbert

action to quadratic order [77]

S = 1
16πG

∫
dtddx

√
−ĝ (R̂− 2Λ) . (B.4)

This leads to the linearized equation

(�̂ + 2)ĥµν = 0 . (B.5)
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To write this in terms of slice quantities, we use that the non-zero Christoffel symbols of
the background are

Γ̂itt = N∂iN, Γ̂tit = N−1∂iN, Γ̂kij = Γkij , (B.6)

and a tedious but straightforward computation gives

(�̂ + 2)ĥij = −N−2∂2
t hij + (∆N + 2)hij , (B.7)

where the Laplace-type operator ∆N defined in (4.39) appears. The equations (�̂+2)ĥti = 0
can be used to fix the components ĥti and one can check that (�̂ + 2)ĥtt = 0 is then
automatically satisfied.

The frequencies ωn of the graviton modes can be defined by the eigenvalue equation
i∂th

(n)
ij = ωnh

(n)
ij , and we see that (B.7) indeed reduces to (5.10).

B.2 Graviton spectrum in AdS4

For completeness, we give here a derivation of the graviton frequencies ωn in the case of
global AdS4. The background metric is

ds2 = gµνdx
µdxν = −(1 + r2)dt2 + dr2

1 + r2 + r2(dθ2 + sin2θ dφ2) . (B.8)

An efficient method to obtain the graviton spectrum in AdS4 is to make use of the Teukolsky
equation [78]. We start by defining a Newman-Penrose tetrad [79] which here takes the
form

l = 1
1 + r2∂t + ∂r , n = 1

2(∂t − (1 + r2)∂r) , (B.9)

m = 1√
2r

(
∂θ + i

sin θ∂φ
)
, m̄ = 1√

2r

(
∂θ −

i

sin θ∂φ
)
, (B.10)

and satisfies
gµν = −lµnν − lνnµ +mµm̄ν + m̄µmν . (B.11)

It consists of null vectors which are all orthogonal to each other except for l · n = −1 and
m · m̄ = 1.

The Teukolsky equation can be written for any type D spacetime using the Newman-
Penrose formalism. For global AdS4, it takes the form

0 = r2

1+r2∂
2
t Ψη−r2(1+r2)∂2

rΨη−2(1+2η)∂rΨη+η
4r

1+r2∂tΨη−
1

sin2θ
∂2
φΨη

− 1
sinθ∂θ(sinθ ∂θΨη)−4iη cosθ

sin2θ
∂φΨη−2

(
3r2(3+2η)+2+η− 2

sin2θ

)
Ψη

(B.12)

where η = ±1 corresponds to the two polarizations.5

We can consider a separated ansatz

Ψη(t, r, θ, φ) = e−iωt+imφRη(r)Sη(θ) , (B.13)
5This equation can also be obtained by taking the M = a = 0 limit of the Kerr-AdS analysis of [80].
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and the master equation reduces to two coupled ODEs. The equation for S(θ) can be
written using the variable x = cos θ as

∂x((1− x2)∂xS) +
(
λ+ s− (m+ sx)2

1− x2

)
S = 0 (B.14)

and corresponds to spin-weighted spherical harmonics of spin s [81, 82]. It is well-known
that the corresponding eigenvalues are

λ = `(`+ 1)− s(s+ 1) , ` = |s|, |s|+ 1, |s|+ 2, . . . (B.15)

with azimuthal number degeneracies m = −`,−`+ 1, . . . , `− 1, `. The eigenvalue λ enters
in the radial equation which takes the form

0 = R′′(r) + 2(1 + 2η)(1 + 2r2)
r(1 + r2) R′(r) (B.16)

+ 1
r2(1 + r2)2

(
(1 + r2)(4 + 2η + 6r2(3 + 2η)− `(`+ 1)) + ω2r2 + 4iηωr

)
R(r) .

For each polarization η = ±1, the solutions are given in terms of hypergeometric func-
tions. Imposing regularity at the origin r = 0 selects one of the two solutions. Imposing
normalizability at r =∞ makes the spectrum discrete, with frequencies

ω`,n = `+ n+ 1 , n ∈ Z≥0 , (B.17)

for each polarization. For fixed ` and n, the degeneracy of ω`,n is 2(2`+ 1) coming from the
two polarizations and the 2`+ 1 values of the azimuthal quantum number m.

C Gravitational energy in AdS

In this appendix, we compare the boundary Hamiltonian (4.7) with various expressions for
the gravitational energy in AdS.

C.1 Hawking-Horowitz prescription

A formula of the gravitational energy in AdS was obtained in [83]. For linearized perturbation,
this takes the form

HHH
∂ = 1

2κ

∫
∂Σ
dd−1ΩNni∇j(hij − hγij) . (C.1)

This was derived assuming in the gauge hij |∂Σ = 0. It is easy to see that (4.7) reduces
to (C.1) under this gauge condition.

C.2 Holographic energy

In the context of AdS/CFT, a notion of holographic energy was defined in [49]. To compare,
we will write (4.7) in Fefferman-Graham (FG) gauge. We define a new radial coordinate ρ
in which the global AdSd+1 metric (B.8) takes the form

γ̂µνdx
µdxν = −(4ρ2 + 1)2

16ρ2 dt2 + dρ2

ρ2 + (4ρ2 − 1)2

16ρ2 dΩd−1 (C.2)
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and we assume that the perturbation satisfies ĥρµ = 0. The prescription of [49] was written
in terms of ĥ00 but [49] also showed that the trace of the perturbation γ̂µν ĥµν was fixed in
terms of a dimension-dependent number. Therefore, in order to compare our expression
with [49] it is permissible to replace γijhij with ĥ00 up to a constant that only shifts the
zero-point of the energy.

With this substitution, the expression (4.7) for the energy gives

H∂ = 1
2κ lim

ρ→∞
ρd−2

∫
dd−1Ω (−ρ ∂ρĥ00 + 2ĥ00). (C.3)

In a large ρ expansion, a normalizable perturbation behaves as

ĥ00(t, ρ,Ω) = ρ2−dĥ
(d−2)
00 (t,Ω) + . . . (C.4)

up to subleading terms. This gives

H∂ = d

2κ

∫
dd−1Ωh

(d−2)
00 , (C.5)

which matches the holographic energy of [49].

C.3 Iyer-Wald energy

In the covariant phase space formalism [84], the energy is given by the boundary integral of
the (d− 1)-form

χξ(ĥ) = 1
2κεµν

(
ĥµρ∇̂ρξν −

1
2 ĥ

ρ
ρ ∇̂µξν + ξρ∇̂ν ĥµρ − ξν∇̂ρĥµρ + ξν∇̂µĥ ρ

ρ

)
, (C.6)

where ξ = ∂t and using the notation of [85]. Evaluating this on the slice Σ gives

χξ(ĥ) = 1
2κεit

(
ĥiρ∇̂ρξt−ĥtρ∇̂ρξi−

1
2 ĥ

ρ
ρ (∇̂iξt−∇̂tξi)+∇̂tĥit−∇̂iĥtt−∇̂ρĥiρ+∇̂iĥ ρ

ρ

)
.

(C.7)
This can be simplified using

∇̂tξt = Γ̂ttt = 0, ∇̂iξi = Γ̂iit = 0, (C.8)

∇̂tξi = Γ̂itt = 1
2γ

ij∂j(N2), ∇̂iξt = Γ̂tit = 1
2N2∂i(N

2) , (C.9)

and we obtain

χξ(ĥ) = 1
2κεi

(
∇jN(hij − hγij)−N∇j(hij − hγij)

)
, (C.10)

using the relation between the volume forms ε̂it = Nεi. This shows that the Iyer-Wald
energy matches (4.7):

H∂ =
∫
∂Σ
χξ(ĥ) . (C.11)

In fact, the integrated Hamiltonian constraint (4.56) can be viewed as the quantization of a
classical equation which can be expressed in this formalism. For linearized AdS spacetimes,
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this was detailed in [85, 86]. The result is that the tt component of Einstein’s equation
gives an identity ∫

∂Σ
χξ(h) =

∫
Σ

(ωgrav(h,Lξh) + ωφ(φ,Lξφ)) , (C.12)

for linearized on-shell perturbations. The l.h.s. is the energy H∂ as shown above. The
r.h.s. involves the symplectic forms ωgrav and ωφ associated to gravity and matter and
corresponds to a “bulk energy” known as the Hollands-Wald canonical energy [87].

D Leading order solutions

We derive here the leading order solutions to the pointwise Hamiltonian and momentum
constraints presented in equation (5.55) and equation (5.57).

D.1 Hamiltonian constraint

As explained in section 5.2, the second order Hamiltonian constraint takes the form

DijhT
ij = κQ(0), (D.1)

where Dij is defined in (5.42) and Q(0) is the truncation to leading order of Q which can be
written

Q(0) = 2
(

Πij
TΠT

ij −
1

d− 1Π2
T

)
+ 4ΠTT

ij Πij
T +Q

(0)
0 (D.2)

where we have isolated the part with no ΠT:

Q
(0)
0 = 2Πij

TTΠTT
ij −

1
8h

ij(∆N + 2)hij + 1
4
(
2hij∇i∇khjk +∇ihij∇khjk

)
+ 1

4N
−1∇iLi +Hmatter .

(D.3)

It is convenient to define the time variable t by the equation

ΠT
ij = Dijt , (D.4)

which is explicitly
ΠT
ij = 1

2
(
∇i∇jt− γij∇k∇kt + (d− 1)γijt

)
. (D.5)

This is the generalization to AdS of the time variable used in [8, 9]. Taking the trace we
see that

γijΠT
ij = d− 1

2 (−∆ + d)t , (D.6)

so the relation with α in (4.52) is:

t = − 2
d− 1Nα . (D.7)

An identity that will prove important is

Nαij = ∇iαj +∇jαi (D.8)
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where we have
αi = 1

2N
2∇iα = − 1

(d− 1)(N∇it−∇iNt) . (D.9)

This allows us to solve the Hamiltonian constraint at leading order. We have

δΨ =
∫
ddx

δΨ
δΠij

T(x)
δΠij

T(x)

= i

∫
ddx
√
γDijhT

ijΨ δt
(D.10)

using (D.4) and integration by parts. Hence,

− i
√
γ

δΨ
δt

= DijhT
ij , (D.11)

and the constraint can be written(
− i
√
γ

δ

δt − κQ
(0)
)

Ψ = 0 . (D.12)

We can write the solution in the form

Ψ[t, hTT, hL, φ] = exp (iκP) Ψ0[hTT, hL, φ] + O
(
κ2
)
, (D.13)

where P needs to satisfy
1
√
γ

δP
δt(x) = Q(0) . (D.14)

The solution can be found and takes a remarkably simple form:

P =
∫
ddx
√
γ

(
−2

3 t
(

Πij
TΠT

ij −
1

d− 1Π2
T

)
+ 2 t Πij

TTΠij
T + tQ(0)

0

)
. (D.15)

The first term is cubic in t and the second term is quadratic in t. We will now check that
differentiating these terms with respect to t gives (D.2).

Cubic term. Let’s consider the cubic term, allowing each entries to be different:

P(3)[t1, t2, t3] = 2
3

∫
ddx
√
γ t1

(
Πij

T [t2]ΠT
ij [t3]− 1

d− 1ΠT[t2]ΠT[t3]
)
. (D.16)

We want to show that

1
√
γ

δ

δtP
(3)[t, t, t] = 2

(
Πij

TΠT
ij −

1
d− 1Π2

T

)
. (D.17)

Since the derivative with respect to t1 gives one third of the r.h.s., we just need P(3)[t1, t2, t3]
to be invariant under permutation of its arguments. As P(3)[t1, t2, t3] is manifestly invariant
under t2 ↔ t3, we just need to show that it’s also invariant under t1 ↔ t3.

First, we note that the combination gives

Πij
TΠT

ij −
1

d− 1Π2
T = − 1

d− 1ΠT
ijα

ij , (D.18)
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so that we have

P(3)[t1, t2, t3] = − 2
3(d− 1)

∫
ddx
√
γ t1 Πij

T [t2]αij [t3] . (D.19)

We now use the identity (D.8) and integration by parts:

P(3)[t1, t2, t3] = − 4
3(d− 1)

∫
ddx
√
γ N−1 t1 Πij

T [t2]∇iαj [t3]

= 4
3(d− 1)2

∫
ddx
√
γ N−1 t1 Πij

T [t2]∇i(N∇jt3 −∇jNt3)

= 4
3(d− 1)2

∫
ddx
√
γΠij

T [t2] (−∇it1∇jt3 − γijt1t3) .

(D.20)

This is manifestly symmetric under t1 ↔ t3. Hence, P(3)[t1, t2, t3] is invariant under
permutation of its arguments and (D.17) is satisfied.

Quadratic term. Similarly, we introduce the quantity

P(2)[t1, t2] = 2
∫
ddx
√
γ t1 Πij

TTΠij
T [t2] . (D.21)

We want to show that
1
√
γ

δ

δtP
(2)[t, t] = 4 Πij

TTΠT
ij . (D.22)

This would follow if P(2)[t1, t2] is invariant under t1 ↔ t2. We can write

P(2)[t1, t2] = 2
∫
ddx
√
γ t1 Πij

TTDijt2,

= −
∫
ddx
√
γΠij

TT(∇i t1∇jt2 − γij∇k t1∇kt2) ,
(D.23)

which is manifestly invariant under t1 ↔ t2.
This shows that (D.15) is indeed the solution.

D.2 Momentum constraint

The leading order constraint is

2
κ
γij∇kΠjk

L = Q
(0)
i . (D.24)

What plays the role of t here is the vector εi defined as

hL
ij = ∇iεj +∇jεi . (D.25)

We then have

δΨ =
∫
ddx

δΨ
δhL

ij(x)
δhL

ij(x)

= −2i
∫
ddx
√
γ∇iΠij

L Ψ δεj ,

(D.26)
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which allows to write the momentum constraint as(
− i
√
γ

δ

δεi
− κQ(0)

i

)
Ψ[h, φ] = 0 , (D.27)

where Q(0)
i is the leading order truncation of Qi which takes the form

Q
(0)
i = (∇ihjk − 2∇khij)(Πjk

T + Πjk
TT) +Hmatter

i . (D.28)

This can be written in terms of εi as

Q
(0)
i =

(
2(Rk`ijε` −∇k∇jεi) +∇ihTT

jk − 2∇khTT
ij

)
(Πjk

T + Πjk
TT) +Hmatter

i . (D.29)

To properly define this operator, we should adopt the same normal ordering prescription as
in section 5.1.

As above, we can write the solution as

Ψ[hTT, hT, hL, φ] = exp (iκR) Ψ0[hTT, hT, φ] + O
(
κ2
)
, (D.30)

where Ψ0 is an arbitrary functional. We need to have

1
√
γ

δ

δεi
R = −Q(0)

i . (D.31)

The solution can be found explicitly to be

R = −
∫
ddx
√
γ
(
Rijk`ε

iε` − εi∇k∇jεi + εi∇ihTT
jk − 2εi∇khTT

ij )(Πjk
T + Πjk

TT) + εiHmatter
i

)
.

(D.32)
As above, we can prove that this is a solution by showing that the term quadratic in εi is
symmetric in its two entries. This follows from integration by parts.

D.3 Solutions to both constraints

We have presented above general perturbative solutions of the Hamiltonian and momentum
constraint independently. Here, we will give solutions to both constraints.

The solutions found above must be compatible with each other. This implies that the
“interaction” part of P and R, involving products of t and εi must be exactly the same. We
will use below the subscript “int” to denote this part. It is a rather non-trivial consistency
check to verify this.

From the solution of the Hamiltonian constraint, we have

Pint = 1
2

∫
ddx
√
γ∇iM it (D.33)

using the results of section 4.4. In particular, M i is defined in (4.46). From the momentum
constraint, this term is

Rint = −
∫
ddx
√
γ
(
2(Rk`ijε` −∇k∇jεi) +∇ihTT

jk − 2∇khTT
ij

)
Πjk

T

=
∫
ddx
√
γ Djk

(
2(Rk`ijε` −∇k∇jεi) +∇ihTT

jk − 2∇khTT
ij

)
t

(D.34)
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using integration by parts. Consistency of our solutions then requires that Pint = Rint
which is explicitly

Djk
(
Rijk`ε

iε` +∇kεi∇jεi + εi∇ihTT
jk − 2εi∇khTT

ij

)
= 1

2∇iM
i . (D.35)

This is a rather non-trivial identity since the l.h.s. comes from the expansion of the momen-
tum constraint while the r.h.s. comes from the expansion of the Hamiltonian constraint. We
have checked that this identity indeed holds, see the associated Mathematica notebook [57].

Finally, we can write the leading order solution to both constraints as

Ψ[ΠT, hTT, hL, φ] = exp(iκS)ψ[hTT, φ] + O
(
κ2
)
, (D.36)

where ψ is an arbitrary functional and

S =
∫
ddx
√
γ

(
−2

3 t
(

Πij
TΠT

ij −
1

d− 1Π2
T

)
+ 2 t Πij

TTΠij
T +Q

(0)
0 t− εiHmatter

i

)
, (D.37)

with Q(0)
0 given in (D.3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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