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Abstract: We prove that consistency of the holographic dictionary implies a hallmark

prediction of the weak cosmic censorship conjecture: that in classical gravity, trapped

surfaces lie behind event horizons. In particular, the existence of a trapped surface

implies the existence of an event horizon, and that furthermore this event horizon

must be outside of the trapped surface. More precisely, we show that the formation

of event horizons outside of a strong gravity region is a direct consequence of causal

wedge inclusion, which is required by entanglement wedge reconstruction. We make

few assumptions beyond the absence of evaporating singularities in strictly classical

gravity. We comment on the implication that spacetimes with naked trapped surfaces

do not admit a holographic dual, note a possible application to holographic complexity,

and speculate on the dual CFT interpretation of a trapped surface.

ar
X

iv
:2

01
2.

11
44

5v
3 

 [
he

p-
th

] 
 2

0 
A

ug
 2

02
1

mailto:engeln@mit.edu
mailto:afolkest@mit.edu


Contents

1 Introduction 1

1.1 Assumptions and Conventions 6

2 Apparent Horizons in Holography 9

3 Apparent Horizons Lie Behind Event Horizons 11

4 Trapped Surfaces Lie Behind Event Horizons 14

5 Discussion 19

1 Introduction

Foundational results in modern gravitational physics, from black hole thermodynam-

ics [1–3] to topological censorship [4], often rely on the absence of strong gravity outside

of horizons, or more precisely the weak cosmic censorship conjecture [5]. Gedanken-

experiments that rely upon the formation of black holes from generic matter collapse

require an implicit assumption that matter typically coalesces into black holes and not

into naked singularities.

This assumption appears reasonable given the apparent absence of naked singu-

larities in observational data to date. The more precise statement of weak cosmic

censorship (which we shall henceforth refer to simply as “cosmic censorship”) is the

conjecture that the Einstein equation evolves generic regular initial data with certain

asymptotics to a complete asymptotic infinity I [6, 7]. In its initial formulation it

applied specifically to asymptotically flat initial data in four dimensions [5], but it

has been generalized to other dimensions and asymptotics when a suitable asymptotic

infinity I exists (see e.g. [8]).

Developments over the past decade have eroded confidence in the validity of this

statement at least in its more general form: counterexamples have been found in asymp-

totically AdS4 [9–13] and in higher dimensional asymptotically flat space [14–21]. Even

in four-dimensional asymptotically flat space, non-generic initial data can evolve to

form naked singularities [22–24]. While it is in principle possible that cosmic censor-

ship is in fact correct in four-dimensional asymptotically flat space (and for generic
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initial data), numerous extant violations in other settings suggest otherwise. Since re-

sults that rely on cosmic censorship are expected to be applicable in broad generality in

arbitrary dimensions and often for AdS and dS asymptotics, violations of cosmic cen-

sorship – generic or otherwise – are problematic in any setting where classical gravity

is expected to be valid.

It would be particularly unfortunate1 if such violations were to indicate that trapped

surfaces can lie outside of event horizons. In its current formulation, cosmic censorship

forbids the existence of trapped surfaces – i.e. surfaces from which light rays converge

in any direction due to gravitational lensing – outside of event horizons [25]. A large set

of theorems in classical gravity relies on this result (see [25, 26]). Numerical relativity

typically uses the detection of (marginally) trapped surfaces as an avatar for the event

horizon, whose location (and existence) can only be determined in infinite time. Must

we face the possibility that these results are all questionable?

Possibly not, at least in spacetimes that arise as classical limits of quantum gravity.

The recent discoveries of violations of cosmic censorship in AdS4 [9–13] have also been

found to violate the Weak Gravity Conjecture [27]; cosmic censorship is restored pre-

cisely when the theory is adjusted so as to satisfy this conjecture, which is hypothesized

to discriminate between spacetimes that do and do not admit valid UV completions.

The confluence of validity of the cosmic censorship and the weak gravity conjecture

has given rise to speculation that while classical General Relativity admits violations

of cosmic censorship, the classical spacetimes that result from a truncation of a valid

quantum theory of gravity do not [11, 13]: that is, that quantum gravity enforces cosmic

censorship on its strict classical limit.

Here we focus on trapped surfaces rather than the statement of cosmic censorship

in terms of initial data. The restriction of trapped surfaces to lie behind horizons is

one of the most valuable consequences of cosmic censorship, since as noted above, it is

a sine qua non for a number of results in General Relativity [26]. It is furthermore one

of relatively few consequences of cosmic censorship that can be formulated in terms

of the experience of a family of observers: a trapped surface outside of a horizon

can in principle be detected by an asymptotic family of observers in finite time (or

retarded time, in the asymptotically flat case). In fact, one could even go so far as

to argue that the absence of trapped surfaces outside of horizons is a large part of

the physical content of the weak cosmic censorship conjecture; namely that regions

of strong gravity (usually heralded by trapped surfaces) are hidden from asymptotic

observers. This statement also fortunately avoids any references to singularities, which

are notoriously hard to work with – see [28–32] and references therein for literature in

1Or fortunate, from a certain point of view.
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General Relativity attempting classify strengths and types of singularities2.

We aim to test the hypothesis that quantum gravity forces trapped surfaces behind

horizons: we use holography as a laboratory for the classical limit of quantum gravity

and ask whether some principle of the AdS/CFT correspondence implies that trapped

surfaces remain cloaked from the asymptotic boundary.

Concrete evidence in favor of such a conclusion was found recently in e.g. [34], which

used the holographic dictionary to prove the Penrose Inequality in AdS [35–37], a key

result implied by the combination of two oft-quoted but unproven conjectures: (1) that

trapped surfaces lie behind horizons, and (2) that black holes equilibrate. The proof

of [34] assumed neither (1) nor (2) but instead made use of the holographic entangle-

ment entropy proposal of Ryu-Takayanagi [38] and Hubeny-Rangamani-Takayanagi [39]

(HRT)

SvN[ρR] =
Area[XR]

4G~
, (1.1)

where ρR is the density matrix of the CFT state reduced to the region R and XR is

the minimal area stationary surface homologous to R.

Because the Penrose Inequality follows from the absence of trapped surfaces outside

of horizons together with black hole equilibration, it is a good omen in favor of cosmic

censorship; however, it falls well short of proving that trapped surfaces in fact must lie

behind horizons3.

In this article, we close this gap, thus proving a central consequence of cosmic

censorship: the holographic dictionary implies that trapped surfaces lie behind event

horizons. Our primary assumptions are (1) the HRT prescription, (2) that there exist

unitary operators on the boundary whose effect in the bulk propagates causally, and (3)

that singularities do not evaporate (a criterion that will be defined more rigorously in

the following section) in classical gravity without violations of the null energy condition.

Steps (1) and (2) together imply causal wedge inclusion [40, 41]: that the causal wedge

must lie inside of the entanglement wedge. This holographic ingredient is a key step in

our proof.

Before proceeding to the outline of the proof, let us briefly comment on quantum

corrections. When quantum gravity effects are taken into account and violations of

the null energy condition (Tabk
akb ≥ 0 for null ka) are permitted, there is of course

no expectation that the above formulation of cosmic censorship should remain valid;

it is, after all, a prediction about the behavior of classical general relativity. Indeed,

2For instance, as discussed in [33], a singularity like the Gregory-Laflamme instability would by

any nice definition be considered “weak” enough to be allowed by cosmic censorship. We thank R.

Emparan for discussions on this topic.
3And falls even shorter of proving cosmic censorship.
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evaporating black holes do have trapped surfaces outside of horizons (see e.g. [42]).

However, cosmic censorship is a statement about the classical theory; we are primarily

concerned with ascertaining whether the classical limit of quantum gravity features

trapped surfaces outside of event horizons. Within semiclassical gravity, however, these

results may be interpreted as statements about early stages of gravitational collapse.

Outline of the Proof: the proof has three ingredients: first, the HRT prescrip-

tion (1.1) combined with the fact that turning on local unitary operators in the dual

theory at I results in causally propagating bulk perturbations; second, a theorem

of [43] proving that an apparent horizon must lie between trapped surfaces and “nor-

mal” surfaces – surfaces in which ingoing light rays converge and outgoing light rays

expand; and third, the holographic description of apparent horizons [44, 45] (which is

not an additional ingredient but rather a construction that relies only on HRT).

First, we use the fact that SvN[ρ] is invariant under local unitary operations on

the boundary state ρ to argue that the HRT surface X of a connected component

of I cannot be timelike separated to any portion of I . This is a well-established

requirement often referred to as causal wedge inclusion [40, 41]: if X were timelike-

separated to I , then it would be possible for a local unitary CFT operator acting to

create a bulk signal propagating causally to X, which could modify its area; this is

illustrated in Fig. 1. Thus we would find that if X were timelike to any p ∈ I it would

be possible to modify SvN[ρ] via local unitaries acting on ρ.4

Next, the theorem of [43] guarantees that a certain type of apparent horizon always

lies between normal and trapped surfaces. We show that, given a trapped surface in

our setup, there are always normal surfaces outside of it, and that the type of apparent

horizon guaranteed by the theorem satisfies the refinement necessary for step three.

Finally, we use the holographic construction of a dual to this type of apparent

horizon [44, 45]. The construction instructs us to fix the spacetime and matter outside

of the apparent horizon – its so-called outer wedge – and modify the spacetime elsewhere

via a specific prescription. If naked singularities and Cauchy horizons develop as a result

of this prescription, we permit any extension beyond the Cauchy horizon consistent with

our relatively mild assumptions about General Relativity (here we operate under the

assumption that the boundary conditions are inherited by a top-down UV completion).

In this newly constructed spacetime, the HRT surface X is null-separated from the

apparent horizon as illustrated in Fig. 2. Since by step one there are no timelike

curves from the HRT surface to I , there can be no future-directed timelike curves

4Causal wedge inclusion can also be shown to follow from entanglement wedge nesting [46], which

states that if the size of a CFT subregion increases from R1 to R2 ⊃ R1, the part of the bulk that

could be reconstructed from R1 can also be reconstructed from R2.
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Figure 1. Example showing how causal connection between I and its HRT surface X can

be used to change SvN with a local unitary.

from the apparent horizon to I : we find that apparent horizons must lie outside

of I−[I ] in the coarse-grained spacetime; under the assumption that singularities do

not evaporate in classical spacetimes satisfying the null energy condition, we can then

deduce that apparent horizons must therefore also lie behind the event horizon in the

original spacetime.5 This immediately shows that naked singularities – should they

exist in holographic spacetimes – cannot incur trapped surfaces outside of horizons.

The contrapositive then yields the following statement: if a given spacetime has a

trapped surface outside of (or without a) horizon, it cannot be holographic; should we

adopt the perspective that AdSD≥3 spacetimes with a well-defined UV completion are

always holographic, this then becomes a potential swampland condition on the set of

spacetimes with valid UV completions.

Relation to Prior Work: As alluded to earlier, previous attempts to prove various

implications of the weak cosmic censorship conjecture have frequently encountered com-

plications related to classifying singularities [28–32]. By considering trapped surfaces

directly, and by defining evaporating singularities in terms of homology hypersurfaces

(see Definition 1), we are able to avoid this complication altogether. Additionally, since

cosmic censorship is known to be violated on a measure-zero set of the space of solu-

5Since, to our knowledge, known solutions with evaporating singularities – a concept that we will

make precise in Section 3 – arising from the evolution of initial data feature violations of the null energy

condition, we do not find this assumption to be particularly prohibitive. More generally, violations of

weak cosmic censorship are normally concerned with the formation of singularities rather than their

demise. This will be discussed at greater length in Section 5 .
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(a) (b)

Figure 2. (a) An apparent horizon µ (more precisely, a minimar surface) in a space-

time (M, g). (b) The same apparent horizon in its corresponding coarse-grained spacetime

(M [µ], g[µ]), where there HRT surface X with respect to I is null related to µ. The shaded

wedge outside µ is common to both spacetimes.

tions to the Einstein equations [22–24], a genericity assumption is necessary for there

to be any chance of the usual statement weak cosmic censorship to be true. The first

half of our proof requires no assumptions about any genericity condition, and proves

definitively that spacetimes with marginally trapped surfaces outside of horizons are

not holographic. The second part of the proof, that all trapped surfaces are also be-

hind horizons does assume a mild genericity condition and a technical assumption. We

expect that these assumptions likely can be relaxed.

1.1 Assumptions and Conventions

Assumptions: We will assume the null convergence condition, Rabk
akb ≥ 0 for all

null vectors ka as well as the HRT prescription for computing SvN (1.1) and entan-

glement wedge reconstruction. In particular, this means that we work strictly within

classical General Relativity. We further assume that our spacetime is time-orientable

and has no closed timelike curves. We further assume that in a maximal conformal ex-

tension (∂M, h) of I , I is both globally hyperbolic and geodesically complete; unless

explicitly noted otherwise, by I we will always mean a connected component of ∂M .

By contrast, ∂M will always denote the complete conformal boundary. We assume that

I is spatially compact.

Conventions: In describing domains of dependence that include the relevant portion

of the asymptotic boundary, we will include I in any Cauchy slices of these domains

of dependence, per standard conventions (see [47] for a definition).
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Figure 3. An illustration of the four null normals of a surface σ (here shown to be homologous

to I ) together with the corresponding null congruences.

1. Bulk: we assume that there are no closed causal curves and that J+(p) ∩ J−(q)

is compact in the conformal completion for each pair of points q, p. This is

typically referred to as the AdS version of global hyperbolicity; in a slight abuse

of notation, we shall simply refer to it as global hyperbolicity. We refer to the

past Cauchy horizon of D as ∂−D and the future Cauchy horizon as ∂+D. For a

set A ⊂M , the boundary of A is denoted ∂A. We take Â to be the closure of A

in the conformal completion M ∪ ∂M . If an intersection between a subset of M

and I is taken, it is always implicitly assumed that the closure in the conformal

completion is taken first. Examples of the sets described above are shown in

Fig. 4.

By a surface, we will always mean a spacelike (achronal) codimension-two embed-

ded submanifold (without boundary). A surface σ is said to be homologous to I

if there is an achronal homology hypersurface H between σ and C; i.e. if there is

an achronal hypersurface H such that (1) ∂H = σ ∪C where C is a Cauchy slice

of I and (2) H is compact in the conformal completion of (M, g). Any surface σ

(homologous to I or otherwise) has two linearly independent normals, which we

may pick to be null. We will denote the future-directed null normals ka and `a; if

σ is additionally homologous to I , then at least one of these null normals points

towards I – i.e. is “outwards-pointing”; we will name that vector ka.6 The four

null geodesic congruences obtained by firing null geodesics along ±ka and ±`a
from σ and terminating at conjugate points and geodesic intersections are de-

6If ∂M consists of multiple connected components I and σ is homologous to multiple components,

it is possible for both ka and `a to be outwards-pointing, and it will be either clear from context or

immaterial which one is which.
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noted N±k[σ] and N±`[σ]. See Fig. 3 for an illustration of these concepts. We will

generally be interested in the expansion of a null congruence in the na ∈ {`a, ka}
direction, defined as

θn = na∇a (ln Area[σ]) . (1.2)

A marginally trapped surface satisfies θk = 0 and θ` < 0 (whereas if θ` is uncon-

strained it is simply marginally outer trapped). A trapped surface has negative

expansion along both future expansions.

Finally, as described in the introduction, we will work with what we shall refer to

permissible extensions of a Cauchy horizon as an extension of a spacetime beyond

a Cauchy horizon that is consistent with General Relativity and all our global

assumptions listed above, together with one more condition: we assume that we

never extend spacetimes beyond the “holographic region”, should singularities

terminating CFT evolution arise (see discussion below). All other conventions

are as in [26].

2. Boundary: We use the letter C to refer to Cauchy slices of any maximal conformal

extension of I , and by i+ we mean future timelike infinity of M .7. Since the util-

ity of our proof is in the provision of a UV complete description of the gravitating

system via the CFT, we are also concerned with the evolution of the boundary

theory. That is, if at any point the CFT (in the large-N limit) becomes sick (e.g.

if the stress tensor becomes divergent [48], Hamiltonian becomes unbounded from

below, etc. [49]) in finite boundary time in a maximal conformal extension, we

must conclude that this similarly puts an end to bulk evolution. Thus if the CFT

evolution is well-defined (for N → ∞) only between two (potentially empty)

boundary time slices C− and C+ of the maximal conformal extension (∂M, h),

C+ being to the future of C−, then we excise J+[C+] and J−[C−] from (M, g).

This is because these regions are not encoded in the CFT state between C− and

C+, and so the spacetime without the excision is not completely encoded in the

CFT and thus not holographic.8 To facilitate terminology here, we define ĩ+ as

the futuremost endpoint of the CFT evolution. If the CFT evolution exists for

all time in the maximal conformal extension, then i+ = ĩ+; otherwise, if the CFT

evolution ends prematurely at some finite time, ĩ+ becomes the effective timelike

7Even though the commonly drawn conformal diagram of AdS does not show i+, it nonetheless

exists!
8An example of a scenario like this is Choptuik critical collapse in AdS [48], where the CFT stress

tensor becomes singular when the Cauchy horizon caused by the naked singularity reaches I . Any

potential extension of the spacetime to the future of this time is not holographically encoded in the

CFT.
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Figure 4. An example of an asymptotically AdS spacetime M with conformal boundary

∂M , and with set A ⊂ M marked. The boundaries of A, ∂A in M and ∂Â in M ∪ ∂M , are

highlighted. Furthermore, the past Cauchy horizon of D[A] = D[∂A] is illustrated.

infinity: any signals that travel from the bulk to the boundary and arrive in the

future of ĩ+ are non-holographic.

2 Apparent Horizons in Holography

As discussed in Section 1, an apparent horizon is intuitively the boundary to the very

strong gravity region on a given spatial slice; more precisely, it is the boundary between

normal and trapped surfaces on a spatial slice. In this article we will be concerned with

a slight refinement of apparent horizons called “minimar surfaces” [44].

A compact, connected surface µ is called a future minimar surface if it satisfies the

following:

1. µ is marginally trapped;

2. µ is homologous to I ;

3. µ is strictly stable, meaning there exists choice of ka and `a such that ka∇aθ` <

0 everywhere on µ (this effectively means that there exist untrapped surfaces

outside of µ and trapped surfaces inside µ);

4. µ is the surface of least area on at least one of its homology hypersurfaces.
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Figure 5. The coarse-grained spacetime construction of [44, 45]. The first panel shows

the outer wedge of a minimar µ. The coarse grained spacetime elsewhere is specified by a

piecewise null stationary initial data hypersurface N−k[µ] emanating in the −ka direction

from µ. It is possible to prescribe initial data on N−k[µ] so that there is an extremal X

surface on it. At this extremal surface, the spacetime is CPT reflected to generate a complete

Cauchy slice of (M [µ], g[µ]).

In analogy with the entanglement wedge, the “outer wedge ” of µ, denoted OW [µ], is

the domain of dependence of H. The absence of global hyperbolicity raises a potential

concern that the outer wedge is dependent on the choice of homology hypersurface. In

the subsequent section, we will prove that this concern is unfounded in the absence

of evaporating singularities. Finally, note that it is possible to define a past analogue

of a minimar by replacing ` → −k, k → −`. All of our results will be valid for this

time-reversed choice, but for brevity we will focus on future case. Consequently we

often refer to future minimars just as minimars.

Our results rely heavily on the primary construction of the dual to the apparent

horizon, which builds a spacetime in which the area of the HRT surface is identical to

the area of µ, and which agrees with (M, g) on OW [µ]. The construction is illustrated

and described in Fig. 5. Because the spacetime in question is generated by discarding

the region that was originally behind µ, it is often referred to as the coarse-grained

spacetime, denoted (M [µ], g[µ]). Here we include in (M [µ], g[µ]) both the Cauchy

development of the homology slice H and any permissible extension of the Cauchy

horizon. This means that (M [µ], g[µ]) is not necessarily globally hyperbolic, and so

some additional work, carried out in the proof of Lemma 1 and Theorem 1, is needed

to show that the extremal surface X on N−k[µ] about which we CPT reflect still is the

HRT surface of I in (M [µ], g[µ]).

For our purposes, the takeaway from this construction is that for any minimar

surface, there exists a spacetime (M [µ], g[µ]) in which µ is null-separated along −ka
from the HRT surface X of I . Furthermore, since the construction of (M [µ], g[µ])

makes no assumptions about global hyperbolicity [45], we are free to apply it in the
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context under consideration in this article.

3 Apparent Horizons Lie Behind Event Horizons

In this section, we argue that minimar surfaces must lie behind event horizons. The

proof hinges on the well-known requirement discussed in Section 1 that for consistency

of the proposal (1.1), the HRT surface of I must be spacelike- or null-separated to I .9

In modifying the area of the HRT surface, we would by the holographic prescription

also modify SvN[ρbdy]. Since the latter is invariant under local unitary operations,

we immediately arrive at a contradiction; thus HRT surfaces must lie behind event

horizons [41].

From this requirement of causal wedge inclusion, we will show that minimar surfaces

must also lie behind an event horizon in the original spacetime. To prove this second

step, it is critical that strictly classical GR satisfying the null convergence condition

admit no evaporating singularities. Let us now make this requirement precise:

Definition 1. An asymptotically AdS spacetime (M, g) is said to be devoid of evapo-

rating singularities if for every closed set K ⊂M , when ∂K̂ is a compact hypersurface

in the conformal completion then K̂ is compact in the conformal completion.

This property, by Lemma 8.2.1 of [26], ensures that no inextendible curves are

imprisoned in K̂, so that as we follow an inextendible geodesic in K they either leave

K through ∂K or go to the conformal boundary. In particular, this rules out geodesic

incompleteness between complete hypersurfaces that do not touch singularities. In the

special case where ∂K is the union of two achronal surfaces, then compactness of K̂

implies global hyperbolicity of K̂.

As explained in the introduction, we will assume that all strictly classical solutions

to GR that admit a UV completion in quantum gravity are devoid of evaporating sin-

gularities. We emphasize that this is a far weaker assumption than strong asymptotic

predictability [26], since spacetime can violate global hyperbolicity arbitrarily badly

near the asymptotic region owing to non-evaporating singularities. Our assumption

further means that no permissible extension of the Cauchy horizon results in an evap-

orating singularity in classical GR. See Fig. 6 for some examples.

From this, we prove that the choice of homology hypersurface is immaterial to the

definition of OW [µ]:

9Readers concerned about recent results involving quantum extremal surfaces [47] outside of hori-

zons [50] should defer their concern to Section 5, where we discuss quantum corrections and non-

standard boundary conditions.
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Figure 6. Sketched conformal diagrams of four spacetimes. The two left-most spacetimes

are neither globally hyperbolic nor strongly asymptotically predictable, but they are devoid

of evaporating singularities. The two right-most spacetimes contain evaporating singularities.

Lemma 1. Let (M, g) be devoid of evaporating singularities. If H1 and H2 are two

homology hypersurfaces of a surface µ homologous to I , then D[H1] = D[H2].

Proof. To prove this, it is sufficient to show that every inextendible timelike curve

intersecting H1 also either intersects H2 or reaches the conformal boundary (since H1

includes a slice of I ). Assume first that H1∩H2 = ∅, and let C1 and C2 be the Cauchy

slices of I where they are anchored. By global hyperbolicity and spatial compactness

of I there is a compact subset I ⊂ I with ∂I = C1 ∪ C2. Then ∂K̂ ≡ I ∪ H1 ∪ H2

is a compact hypersurface in the conformal completion (see Fig. 7 for an illustration),

and the region K̂ bounded by ∂K̂ in the conformal completion is also compact.

Assume an inextendible timelike curve γ enters K through H1, and assume without

loss of generality that it enters K to the future. By compactness of K̂, γ must either

reach the conformal boundary or leave K to its future. It cannot leave K through H1

by global hyperbolicity of K. Thus if γ does not go to the conformal boundary, it

intersects H2.

In the case where H1 and H2 intersect we potentially get multiple compact regions

K̂1, K̂2, . . . bounded by H1 ∪H2 ∪ I, as shown in Fig. 7. Since the above argument will

apply to each region we again find that γ intersects H2 or reaches I.10

For the remaining of the paper, unless stated otherwise we will make our above

assumption that classical GR allows no evaporating singularities that satisfy the null

convergence condition.

10Here we are ignoring potential issues that could arise if the intersection is a dense measure zero

set; we assume that the domain of dependence of any one of these hypersurfaces is codimension-zero,

and thus that we can “wiggle” the hypersurface to avoid that scenario.
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Figure 7. Illustration of two homology slices, which by the lack of evaporating singularities,

must have the same outer wedge.

Theorem 1. Let µ be a future minimar surface in (M, g). Then µ lies behind the

future event horizon in (M, g).

Proof. Let Σtot be an initial data slice of the spacetime (M [µ], g[µ]) consisting ofN−k[µ],

H, and H̃.11 Within D[Σtot], we know that the extremal surface X[µ] constructed via

the above prescription is the minimal area extremal surface in D[Σtot]. If this remains

true for any permissible extension of the Cauchy horizon, then X[µ] must be the HRT

surface of (M [µ], g[µ]).

Suppose now that there is a permissible extension of the Cauchy horizon contain-

ing an extremal surface X ′ also homologous to I . Since the total CFT state on all

boundaries is pure, if X ′ were to be the HRT surface of I , then it would also be the

HRT surface of the complement Ĩ by complementary recovery of classical holographic

codes, and so it would have to be homologous to Ĩ . From the I and Ĩ homology

hypersurfaces of X ′ we construct the complete hypersurface Σ′tot as the union (see illus-

tration in Fig. 8). By the absence of evaporating singularities and the requirement that

homology hypersurfaces are compact in the conformal completion, the region between

Σtot and Σ′tot is globally hyperbolic. But this means that D[Σ′tot] = D[Σtot], and so

X ′ ⊂ D[Σtot]. This contradicts the assumption that X ′ lies in the extension beyond

the Cauchy horizon. Thus the proof that X[µ] is the HRT surface from the case where

(M [µ], g[µ]) is globally hyperbolic still applies, and so µ must be behind the horizon in

(M [µ], g[µ]).

Consider now the subset Z = J+[∂+OW [µ]]− J+[µ] of M [µ], which we can choose

so that it agrees with the corresponding subset of M (see Fig. 9 for an example). If

ĩ+ 6⊂ Z, then CFT evolution proceeds beyond I ∩Z, and D[Σtot]∪Z can be extended

further. However, a maximal extension of D[Σtot] ∪ Z must put I in causal contact

with µ, violating causal wedge inclusion, and so we conclude that ĩ+ ⊂ Z. Thus µ must

11Here Ã refers to the CPT conjugate of a quantity A ∈ OW [µ] in the coarse-grained spacetime.
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Figure 8. Illustration of a coarse grained spacetime extended beyond Cauchy horizons into

the dark gray regions. X ′ is an extremal surface that is a candidate HRT surface. Since X ′

must be homologous to both I and Ĩ , it will lie in D[Σtot]. µ must be spacelike to ĩ+ for

any choice of extension M [µ]−D[Σtot].

Figure 9. Example of a Cauchy extension Z of the outer wedge that is spacelike to µ. The

fine-grained spacetime M will induce a particular choice of Z. It is possible to choose the

coarse grained spacetime so that OW [µ] ∪ Z ⊂M [µ].

lie behind the horizon in OW [µ] ∪ Z, and by the absence of closed timelike curves this

must remain true when completing OW [µ] ∪ Z into M .

4 Trapped Surfaces Lie Behind Event Horizons

Having argued that minimar surfaces lie behind event horizons, we proceed to show the

main result of this article, that trapped surfaces lie behind event horizons. The idea

is simple: prove that between a trapped surface and the asymptotic boundary there

always exists at least one minimar surface. We will make use of the following theorem:
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Figure 10. Illustration of a compact spacelike hypersurface Σ with an inner boundary that

is outer trapped and an outer boundary that is outer untrapped. By Theorem 2 a marginally

outer trapped surface σ in Σ is guaranteed to exist.

Theorem 2 ([43, 51]). Let Σ be a compact spacelike hypersurface with an inner bound-

ary and an outer boundary. Assume that the inner boundary is outer trapped and that

the outer boundary is outer untrapped. Then Σ contains a smooth stable marginally

outer trapped surface σ.

The quantities described in this theorem are illustrated in Fig. 10. In fact, we will use

a stronger version of the above theorem that describes how σ evolves with an evolving

family of spatial slices. We will assume a generic condition on trapped surfaces which

is frequently used in classical gravity proofs involved marginally trapped surfaces (see

e.g. [52, 53]: Rabn
anb+σabσ

ab > 0, where σab is the shear tensor and na is the generator

of a null congruence fired orthogonally from the trapped surface. This condition ensures

that every leaf in a spacelike hypersurface foliated by marginally outer trapped surfaces

is strictly stable [52]. Note that in the following we will only require this condition inside

of the outer wedge.

Combining now Theorem 2.1, 3.1 and 6.4 of [54] with the assumption of genericity

and its implication of strict stability [52], we have the following:12

Theorem 3 ([54]). Let Σ be a spacelike hypersurface and let ∂Σ consist of two discon-

nected components σ1 and σ2. Assume further that one of these components, σ1 is outer

trapped, while the other σ2 is outer untrapped. Then the boundary of the outer trapped

region on Σ, denoted σt, is (1) a smooth, strictly stable, marginally outer trapped surface

12The theorem is only proven for D = 4 – we will assume it holds for D ≥ 3, which appears likely

given that Theorem 2 has been proven for 3 ≤ D ≤ 8 [51].
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homologous to σ2. Furthermore, if a spacetime region admits a foliation {Σt} by such

hypersurfaces, then the union H =
⋃
t∈[0,T ] σt is a piecewise smooth spacelike manifold

with a finite number of connected components.

To apply Theorem 3 to prove that trapped surfaces lie behind event horizon, we

need σt to also be (1) marginally trapped and (2) homologous to I . To achieve these

conditions, we require the implementation of a mild assumption about the past of

trapped surfaces (θ` < 0, θk < 0). Since cosmic censorship is primarily concerned with

the future of trapped surfaces, these assumptions do not heavily constrain our results.

Definition 2. We call a surface σ past well-behaved if it is homologous to I and (1)

C[σ] = ∂−OW [σ] ∩I is a Cauchy slice of I and (2) ∂−OW [σ] ⊂ D for some interior

of a domain of dependence D.13

With this in place we prove a lemma essential for our main result:

Lemma 2. Let τ be a past well-behaved trapped surface in a generic spacetime (M, g).

Then there exists a spacelike manifold H[τ ] in OW [τ ] which is foliated by past well-

behaved strictly stable marginally outer trapped surfaces homologous I .

Proof. Pick a smooth one-parameter family of non-intersecting spatial slices Σt for

t ∈ [0, T ] that are all contained in D ∩OW [τ ], where D is the interior of the domain of

dependence containing ∂−OW [τ ]. Pick the hypersurfaces Σt so that they are anchored

on Cauchy slices Ct of the conformal boundary, and pick the inner boundaries of Σt so

they are either sufficiently close to τ or lying on Nk[τ ], so that they are also trapped.

By AdS asymptotics and global hyperbolicity in D, we can always choose the family so

that each Σt has an untrapped surface near I . Theorem 3 now guarantees the existence

of a set H which is the union of smooth spacelike manifolds foliated by smooth strictly

stable marginally outer trapped surfaces µt homologous to Ct (and thus I ), together

with surfaces where H jumps. See Fig. 11. Since we choose our foliation so H ⊂ D,

the µt are also past well-behaved. Hence, any of the connected components of H, after

removing jump surfaces, satisfies all of our claimed properties of H[µ].

To find our main result, all that is missing is that at least one of the marginally

outer trapped surfaces from the previous lemma is also inner trapped. By the past

well-behaved assumption, these surfaces cannot be inner untrapped (so-called “anti-

normal”). If the spacetime were spherically symmetric we would now be done: by

past well-behavedness we can fire a spherically symmetric past horizon from I that

13This is morally equivalent to demanding the existence of an open set O around σ that can be

covered by surfaces that also fulfill requirement (1).
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Figure 11. An example of the construction of the manifold H[τ ] outside a past well-behaved

trapped surface τ . Σt is a one-parameter family of spatial slices, and both H(0,t2) and H(t2,T )

are spacelike manifolds foliated by marginally outer trapped surfaces. H[τ ] can be taken to

be either.

hits µt. Choosing Σt (and thus µt) to respect the spherical symmetry, µt would be

contained in the horizon, and so θ`[µt] < 0, where strict inequality is guaranteed by

our genericity condition. In the absence of spherical symmetry, this becomes harder

to prove. We nevertheless find it to be a reasonable assumption for the following two

reasons: (1) there is a continuously large amount of freedom in µt given that the choice

of foliation Σt is arbitrary. (2) By past well-behavedness we can fire a one-parameter

family of horizons from the boundary in D and pick each Σt to lie arbitrarily close to a

member of this family of horizons. Thus we can construct an H[µ] where every leaf lies

arbitrarily close to a strictly inner trapped surface (strictness follows from genericity).

In fact, if we were allowed to use Theorem 3 directly on null foliations with a measure

zero set of non-differentiable points, then we could redo the proof of Lemma 2 with Σt

chosen to be future horizons, which would yield a proof that θ`[µt] < 0 as well. With

these justifications in mind, we will simply assume that a past-well behaved τ has at

least one choice of H[τ ] containing an inner trapped leaf µt. In light of the guaranteed

existence of H[τ ] by Lemma 2, this can be considered as an addition to the definition

of being past well-behaved.

Finally, we can show our main result.

Theorem 4. Let τ be a trapped surface. If τ is past well-behaved or has a trapped

surface in its outer wedge which is past well behaved, then no future causal curves from

τ can reach I . In particular, τ lies behind an event horizon.
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Proof. By Lemma 2 we know there is a past well-behaved surface µ in OW [τ ] satisfying

the minimar conditions (1)–(3). We now show that for a surface satisfying past well-

behavedness, only properties (1)–(3) of a minimar are needed for the coarse grained

spacetime to exist and having the required property that the extremal surface X on

N−k[µ] is the HRT surface of I . That is, the requirement of minimality of µ on a

homology slice can be exchanged for past well-behavedness, and Theorem 1 still applies

to µ.

Existence of the coarse grained spacetime is immediate, since that only relies on

properties (1)–(3), as shown in [45]. What remains is to show that X is HRT. The

crucial piece used for proving this in [45] was that X is contained in a Cauchy surface

of the coarse grained spacetime in which it is minimal. We now show that there is

such a Cauchy surface S in the coarse grained spacetime even if we do not assume

minimality of µ on a homology slice.

Let Σ be the Cauchy surface of the coarse grained spacetime formed by union of the

homology slice of µ with respect to I , its CPT conjugate, and N−k[µ]. Let us for now

work in the maximal Cauchy development D[Σ], currently refraining from extending

possible Cauchy horizons.

By past well-behavedness in the original spacetime, ∂−OW [µ] is contained in a

globally hyperbolic set there, and there are no singularities in a small neighbourhood

around it. Since the coarse grained spacetime of µ shares the same data on ∂−OW [µ],

any potential singularity in the coarse grained spacetime has to be finitely separated

from ∂−OW [µ].14 Thus, C[µ] is contained in the interior of D[Σ]. Generically, C[µ] will

have kinks. Deform C[µ] slightly to the past into the Cauchy surface Cε to smooth

out the kinks, and consider the past horizon H = ∂I+[Cε] ∩ J−[Σ] and its intersection

with the stationary null congruence, denoted µε = H ∩N−k[µ]. See Fig. 12. We know

that if µε is nonempty, it must lie between X and µ on N−k[µ], since X is not causally

separated from I . But since µ ⊂ I+[Cε], we know that µε is nonempty and in fact

a complete slice of N−k[µ], since otherwise a generator of N−k[µ] going from X to µ

would be a causal curve that enters I+[Cε] without intersecting ∂I+[Cε].

We now take S to be piecewise null Cauchy slice given by the union of H, H̃ and

the part of N−k[µ] between µε and its CPT conjugate. Since H is a future horizon it

has θ` < 0, and since it ends on N−k[µ], where every slice has the same area as µ, we get

that any surface σ contained in H has Area[σ] ≥ Area[µε] = Area[X]. Clearly this also

holds true for N−k[µ] and H̃, and thus for the whole of S. Hence, we have constructed a

Cauchy slice S of D[Σ] on which X is minimal. Even though S does not intersect OW [µ]

14We have not ruled out that there is a stress tensor shock along ∂−OW [µ], but this would not ruin

global hyperbolicity.
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Figure 12. Construction of Cauchy surface S on which X is minimal in the globally hyper-

bolic region of the coarse grained spacetime D[Σ].

or µ, the proof from [45] that X is the HRT surface carries through. Furthermore, we

are now free to add any permissible extension of the Cauchy horizon, and the absence

of evaporating singularities guarantees that X remains that HRT surface, as shown in

the proof of Theorem 1. But now Theorem 1 guarantees that µ lies behind the future

event horizon of I , and since µ ⊂ OW [τ ], τ lies behind the event horizon as well.

A simple corollary of our main result follows; we will relax our assumption that

classical GR is devoid of evaporating singularities now:

Corollary 1. If there exists a past well behaved trapped surface τ in a classical asymp-

totically AdS spacetime (M, g) satisfying the null convergence condition, then at least

one of the following holds:

1. (M, g) has an event horizon, and τ lies behind it;

2. Classical GR admits solutions with evaporating singularities (in particular, there

exist solutions with OW [τ ] and evaporating singularities);

3. (M, g) has no holographic dual.

5 Discussion

We have shown from the holographic dictionary that trapped surfaces, hallmarks of

strong gravity, must be cloaked from the asymptotic boundary by event horizons.

This proof comes at the heels of the holographic derivation of the Penrose Inequality
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in [34]; both results constitute strong evidence in favor of validity of a version of weak

cosmic censorship in gravitational theories whose UV completion is well-described by

AdS/CFT, even though the conjecture might be false in gravitational theories without

such a UV completion. That is, these derivations suggest that there may be a formu-

lation of weak cosmic censorship that is enforced by quantum gravity in the classical

regime (which may not be valid as a statement about gravitational theories that do not

exist as classical limits to quantum gravity). It is thus tempting to speculate that the

location of trapped surfaces may serve as a “swampland” criterion of sorts [55]. We will

not subscribe to such an interpretation here, but rather discuss the precise implications

of our results in holography.

Before we do so, however, let us briefly comment on the assumption that evaporat-

ing singularities are absent in classical GR. This may seem like an odd assumption to

make given that the actual singularity region is not described by the classical theory.

However, the absence of of evaporating singularities is a constraint on the predictions

of the classical theory: regardless of whether we expect quantum corrections to be im-

portant in that regime, we may still ask what purely classical gravity would predict.

This does not, however, preclude an investigation of the location of quantum trapped

surfaces [56] and quantum cosmic censorship in (perturbative) quantum gravity where

the null energy condition is violated; that is indeed a natural next step.15

Typicality of Black Holes: The proof that trapped surfaces imply the existence of

event horizons pairs nicely with the Penrose singularity theorem [57], which states that

trapped surfaces imply the existence of singularities, and so singularities are at least as

typical as trapped surfaces. For an asymptotic observer dreaming of immortality, the

Penrose singularity theorem can be a foreboding omen.16 However, our result should

provide some relief to the observer, since it shows that event horizons are just as typical,

in the sense that every time the Penrose theorem is invoked to deduce the existence of a

singularity in a holographic theory, we can also deduce the existence of an event horizon

hiding this singularity. Since a black hole usually is defined by the existence of an event

horizon, our result shows that black holes are as typical as trapped surfaces. Black holes

always appear whenever gravity gets strong enough to focus both ingoing and outgoing

lightrays. This is especially reassuring given the prevalence of gedankenexperiments

(in holography and beyond!) whose conclusions are reliant upon the formation of event

horizons as a direct consequence of typical gravitational collapse.

15NE thanks R. Bousso and M. Tomasevic for extensive conversations on this.
16Indeed, as Wald describes it [7], the formation of naked singularities would be a potential mecha-

nism for a mad scientist to destroy the universe.
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Trapped Surfaces, Horizons, and Complexity: In general, knowledge of the

spacetime geometry at finite time is insufficient to locate event horizons: the latter

are teleological with respect to I . Our result provides a time-local constraint on the

existence and location of event horizons from the behavior of trapped surfaces, whose

location (and existence) can be ascertained in the neighborhood of a single moment

of time. This suggests a potential application to the work starting with [58–60] on

the connection between the event horizon and maximal chaos and fast scrambling in

holography. Should particular moment-of-time data in the CFT be sufficient to deduce

the existence of a trapped surface, this data must be also be sufficient to detect such

signatures of event horizons, although the converse is false. This raises an interest-

ing question: if trapped surfaces are a time-local guarantee for the existence of event

horizons, what is the CFT dual of a trapped surface?

Some work has already been done in this direction: in [44, 45], it was conjectured

that the coarse-grained spacetime associated to an apparent horizon µ is dual to a

CFT quantum state ρcoarse that preserves all correlators of “simple CFT operators”

with simple sources turned on:

Tr[ρOsimple] = Tr [ρcoarseOsimple] , (5.1)

where by simple operators we mean CFT operators with support in I ∩ OW [µ] that

result in causal propagation in the bulk, and we have suppressed the sources (and ρ

is the original state). On the other hand, the expectation value of highly complex

operators is allowed to differ between the two states. Consistent with expectations

about complexity of operators localized to the deep black hole interior [61, 62], operators

localized in the spacetime behind µ should not be simply reconstructible with access

to I ∩OW [µ]. In particular, the simple entropy proposal, if correct, would imply that

correlation functions of a small number of the local CFT primaries of HKLL [63–65]

restricted to OW [µ]∩I should not contain the information about the spacetime behind

the associated minimar surface µ. Our results serve as an important consistency check

to this: if a trapped surface could be in the causal wedge of I , then there would – by

Theorem 3 – be a minimar surface in the causal wedge; but then parts of the region

behind µ would be reconstructible from simple operators in I ∩ OW [µ] by HKLL, in

contradiction with the expectation that only complex operators are sensitive to the

physics behind µ.

Thus, since trapped surfaces are generally behind minimar surfaces, trapped sur-

faces appear to be a robust time-local signal of bulk physics that cannot be recon-

structed from the CFT with “simple experiments” (under assumption of the simple

entropy proposal). In fact, via the simple entropy conjecture, there are protocols that

employ simple operators that allow reconstruction of physics outside of minimars but
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inside horizons (see also upcoming work [66]). We could speculate that minimars (and

their associated holographic screens [53, 67]) are the boundary inside of which simple

reconstruction methods break down; since we have shown that these surfaces are not

found in the asymptotic region, our results are suggestive of a time-local separation

between simple and complex physics in the bulk not dissimilar from the one presented

in [62].17

This is of course in harmony with the proposed relation between operator CFT

complexity and bulk depth in [68–70]. In upcoming work [71], we give a precise covari-

ant description in which regions deeper in the black hole are of higher complexity than

their shallower counterparts.

Quantum Corrections and Black Hole Evaporation: In purely classical gravity,

the assumption of the absence of evaporating singularities is quite reasonable: to our

knowledge, known examples of evaporating singularities always involve some violation

of the null energy condition. Thus our statement should really be viewed as a predic-

tion of quantum gravity on the behavior of strictly classical GR with matter that is

consistent with holography. What about quantum corrections?

Once quantum backreaction is included – in particular, once black holes can evap-

orate – it is possible for trapped surfaces to lie outside of event horizons. Interestingly,

however, this effect appears at later times in the evaporation process (see e.g.[42]). Thus

it is tempting to speculate that even in the perturbative quantum gravity regime, at

times t much smaller than the Page time, the classical GR result remains valid: trapped

surfaces lie behind the event horizon. We emphasize that this is purely speculative:

our derivation does not apply in such a setting since the event horizon is teleological

and takes into account the entire evaporation process.

Might we expect a quantum version of our statement to be valid? That is, do

quantum trapped surfaces [56] lie behind event horizons? In [50], quantum extremal

surfaces [47] “outside” of the horizon were found; in this case the existence of non-

standard boundary conditions at the AdS boundary were crucial. Interestingly, the

quantum focusing conjecture [72] in this case nevertheless enforces the absence of causal

communication between the quantum extremal surface and I . These complications

illustrate the subtleties that must be accounted for in formulating a quantum version

of our proof, in which evaporating singularities can no longer be ignored: the absence

of causal communication from quantum trapped surfaces to I is not equivalent to the

17The reader may prima facie suspect a contradiction here: our results apply to the nearest

marginally trapped surface, whereas the Python’s lunch conjecture applies to the nearest extremal

surface. The difference lies in having access to the entire boundary as opposed to just OW [µ]∩I .This

tension will be discussed more explicitly in [66].
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absence of quantum trapped surfaces in the causal wedge. This suggests that the correct

generalization may actually involve an understanding of whether communication can

occur in practice rather than whether or not it is forbidden by causal structure.
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