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Abstract

We study imbedded general hypersurfaces in spacetime i.e. hypersurfaces
whose timelike, spacelike or null character can change from point to point.Inhe-

rited geometrical structures on these hypersurfaces are defined by two distinct
methods: the first one, in which a rigging vector (a vector not tangent to the
hypersurface anywhere) induces the standard rigged connection; and the other
one, more adapted to physical aspects, where each observer in spacetime induces
a completely new type of connection that we call the rigged metric connection

which is volume preserving. The generalisation of the Gauss and Codazzi equa-
tions are also given. With the above machinery, we attack the problem of match-
ing two spacetimes across a general hypersurface. It is seen that the preliminary

junction conditions allowing for the correct definition of Einstein’s equations in
the distributional sense reduce to the requirement that the first fundamental
form of the hypersurface be continuous, because then, there exists a maximal C1

atlas in which the metric is continuous. The Bianchi identities are then proven
to hold in the distributional sense. Next, we find the proper junction conditions

which forbid the appearance of singular parts in the curvature. These are shown
equivalent to the existence of coordinate systems where the metric is C1. Fi-
nally, we derive the physical implications of the junction conditions: only six
independent discontinuities of the Riemann tensor are allowed. These are six
matter discontinuities at non-null points of the hypersurface. For null points,
the existence of two arbitrary discontinuities of the Weyl tensor (together with
four in the matter tensor) are also allowed. The classical results for timelike,
spacelike or null hypersurfaces are trivially recovered.

PACS numbers: 04.20.Cv, 02.40.+m.
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1 Introduction.

The purpose of this paper is twofold. First, we wish to find the possible geometrical
structures that general hypersurfaces inherit from the spacetime manifold. And second,
we study the application of these results to the matching of spacetimes across one of
those general hypersurfaces.

Here, general hypersurface means an imbedded three-dimensional manifold without
specifying anything about its timelike, spacelike or null character, which will also be
permitted to change from point to point. In principle, it might seem that general
hypersurfaces in the above sense are not very physical, given that physical particles
travel along timelike lines which will never become null, least of all spacelike. But
this is a very simplified naive view, and in fact general hypersurfaces are commonplace
in General Relativity. A few examples are: Gödel’s universe, where there are no
imbedded hypersurfaces without boundary which are spacelike everywhere [1]; the
apparent horizon of Vaidya’s radiating metric [2] (whenever the mass function becomes
a constant after a while); or even something as simple as the stationary limit surface
of Kerr’s vacuum solution [1], which is everywhere timelike except at points on the
axis where it is null and tangent to the horizon. The reader can also find his/her own
preferred examples.

The trouble with general hypersurfaces is that they inherit metrics from the space-
time (the first fundamental form) which can be, at some points, degenerate, and also
the signature is not constant. Therefore, they do not have an intrinsic inherited Rie-
mannian structure, and the usual metric connection cannot be defined in them. The
degeneracy of the first fundamental form appears also in null hypersurfaces, but for
general hypersurfaces we have the change of signature as an added problem. Imagine,
for example, a hypersurface which is spacelike in some open set, then changes to a null
hypersurface. In the spacelike part, we might be tempted to define the canonical Rie-
mannian structure defined by the non-degenerate first fundamental form, but then this
structure (the connection) blows up as we approach the region where the hypersurface
is null. For null hypersurfaces we do not have this problem, as the metric is degenerate
everywhere. Thus, we see that, even in the case of a general hypersurface with just one
single point of different signature, we cannot define the affine structure which would
be good enough for the hypersurface without that point.

The study of degenerate metrics has been addressed since long ago, but usually
keeping the signature (or the degeneracy) constant. The question is simply how to
define a good connection in general hypersurfaces which is somehow induced by the
affine structure of the whole manifold. The first references we are aware of are those of
Bortolotti [3],[4], where he studied absolutely specialized degenerate metrics, or in more
simple terms, metrics with non-zero eigenvectors with zero eigenvalue and vanishing
Lie derivative along these vectors. A little later, Hlavatý [5] defined canonical and
unique induced connections for general hypersurfaces in which the second fundamental

2



form is non-degenerate. This is also explained in the famous Schouten book [6], which
is an unavoidable reference for all these matters, and where the rigged connection we
define in Sect.3 is thoroughly studied. This type of rigged connection has also been used
later several times with different purposes (see, for example, [7],[8],[9],[10],[11],[12],[13]).
The paper by Bonnor [13] is specially interesting in the sense that there appears the
possible importance of using observers to define the rigged connections for the first
time. We shall elaborate on this idea in Sect.4, where we provide a completely new
way of inducing a connection onto general hypersurfaces. We call this new connection
the rigged metric connection, and we claim that it is physically reasonable. By means
of this connection, we shall also be able to define an induced volume element in the
hypersurface which is preserved by the rigged metric connection, something which was
not possible with the old rigged connections in general.

The second part of this paper deals with the junction conditions which must be
imposed when the matching hypersurface is a general one, where we apply the results
developed in the first part. As far as we know, this problem has not been considered
previously. The junction conditions for time- or space-like hypersurfaces are known
since the work of Darmois [14], Lichnerowicz [15] and O’Brien-Synge [17] and the rela-
tions between them were established by Bonnor & Vickers [18] (see also Bel & Hamoui
[19]). More recently, the junction conditions for null hypersurfaces have also been
studied by several authors [20], [21], and a unified treatment of the three types of hy-
persurfaces has been produced as well in [22],[23]. However, the problem of generalizing
the junction conditions to arbitrary hypersurfaces, which we carry out in Sect.5, is of
most interest in Gravitation. Consider, for example, the question of phase transitions
in the early universe, which can take place at spacelike regions, the information being
transmitted from there on by causal (null) signals. The resulting whole hypersurface
of discontinuous change is thus formed by a spacelike region and the boundary of its
causal future, which is null. Yet another example. Imagine that we wish to match the
Kerr vacuum solution to some interior spacetime and that the matching hypersurface
turns out to be, precisely, the stationary limit surface. In all these and other similar
cases, we need to know the proper junction conditions for general hypersurfaces.

Finally, in Sect.6 we complete our study by deducing the physical implications of
the junction conditions, that is, the allowable discontinuities in the matter contents
and in the pure gravitational field once a proper matching has been done. The conti-
nuity of the normal components of the energy-momentum tensor, usually called Israel’s
conditions, were known for the case of non-null hypersurfaces since the work by Israel
[24]. The generalization of these conditions to the case of null hypersurfaces appears
in the recent paper by Barrabs and Israel [22]. Here, we present in the last section
the generalization of these conditions to arbitrary matching hypersurfaces. We also
give the continuity properties of the general Riemann tensor and of the Weyl tensor,
the latter representing the pure gravitational field. To our knowledge, these conditions
were previously unknown, despite of its evident interest for problems involving shock
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gravitational waves, or even for traditional cases of timelike or spacelike matching hy-
persurfaces. In this last case, we prove that the possible Weyl discontinuities are forced
by those in the matter contents, the latter being the truly independent allowed dis-
continuities, while at null points of a general hypersurface arbitrary discontinuities not
related to the matter contents are possible in two of the ten independent components
of the Weyl tensor.

2 General Definitions and Basic Results.

We will consider throughout this paper an oriented four-dimensional Riemannian man-
ifold (V4, g), with signature +2, and a hypersurface defined in it. More strictly, let us
also have an orientable three-dimensional manifold Σ, and a C3 map Φ from this man-
ifold to V4

Φ : Σ → V4

ξ → Φ (ξ) ≡ x (ξ) ,

which is an imbedding [1] of Σ into V4. Locally, the hypersurface Φ (Σ) ∈ V4 can
be defined by a function F from V4 to the real numbers, IR, through the equation
F (x) = 0.

As usual, we can construct the pull-back of covariant tensors in V4 and the push-
forward of contravariant tensors in Σ. For any point p ∈ Σ, the imbedding Φ allows
us to write the differential map (or push-forward) from the tangent plane of Σ at p,
Tp (Σ), to the tangent plane of V4 at Φ (p), TΦ(p) (V4),

dΦ|p : Tp (Σ) → TΦ(p) (V4)

~V → dΦ|p

(

~V
)

,

which is of rank 3 at any p ∈ Σ, and its generalization to contravariant tensors of
any order in Σ. Similarly, the pull-back maps the dual tangent plane of V4 at Φ (p),
T ⋆

Φ(p) (V4), onto the dual tangent plane of Σ at p, T ⋆
p (Σ),

Φ⋆|p : T ⋆
Φ(p) (V4) → T ⋆

p (Σ)

ω → Φ⋆|p (ω) ,

and it is again of maximum rank. This map can also be extended to covariant tensors
of any order in the manifold V4.

Because of the rank of the push-forward, we have that dΦ|p (Tp (Σ)) is a three-
dimensional linear subspace of TΦ(p) (V4) and it is the tangent plane to the hypersurface
in Φ (p). We will denote this tangent plane at Φ (p) as TpΣ. Let us take a coordinate
system on Σ, {ξa} where a runs from 1 to 3, in a neighbourhood of a point p ∈ Σ,
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and a coordinate system on V4, {x
α} where α goes from 0 to 3, in a neighbourhood of

Φ (p) ∈ V4. The three vectors ∂
∂ξa

∣

∣

∣

p
constitute a basis for Tp (Σ) and the push-forward

maps them into three linearly independent vectors at Φ (p) which are a basis for the
tangent plane to the hypersurface. Therefore we can write

dΦ|p





∂

∂ξa

∣

∣

∣

∣

∣

p



 =
∂Φµ

∂ξa

∂

∂xµ

∣

∣

∣

∣

∣

Φ(p)

≡ eµ
a

∂

∂xµ

∣

∣

∣

∣

∣

Φ(p)

≡ ~ea|Φ(p) .

As vector fields, ~ea are defined only on the hypersurface Φ (Σ). Given that the map Φ
is an homeomorphism between Σ and Φ (Σ), we will from now on identify the points
p and Φ (p) and the sets Σ and Φ (Σ) in order to simplify the notation. We can
consider the orthogonal complement of the tangent plane TpΣ in the dual space T ⋆

p (V4),
which is obviously a one-dimensional linear subspace. This one-dimensional subspace
is generated by a non-zero one-form at p that we will denote by n|p, which is uniquely
defined up to a non-zero multiplicative factor σ (p), and is called the normal form of the
hypersurface or simply the normal to the hypersurface. We define the normal vector
to the hypersurface as the vector obtained by raising the index of n with the metric of
V4. As a consequence of its definition, n is only defined on Σ. In the coordinate basis
n = nµdxµ and we have n (~ea)|p = 0 or, in components, nµe

µ
a |p = 0.

The fact that V4 is a Riemannian manifold with metric tensor g allows us to define
uniquely a symmetric two-covariant tensor in Σ by using the pull-back. This symmetric
tensor Φ⋆ (g) will be called g and is the first fundamental form of the hypersurface. In
the basis {dξa} the components of g are gab = gαβeα

ae
β
b and of course it is defined only

on the hypersurface. There is also another two-covariant tensor K on Σ defined as
K = Φ⋆ (∇n), where n is any extension of the one-form field n outside the hypersurface.
The definition of K is independent of this extension, as is evident from the expression
of its components in a coordinate system

Kab = eµ
ae

ν
b∇µnν .

This tensor on Σ is obviously symmetric and is called the second fundamental form of
the hypersurface.

Using the canonical volume form η of V4 one can find an explicit expression of the
normal n in terms of the basis vectors of the tangent plane to the hypersurface. In
components we have

nµ = A−1ηµαβγe
α
1 e

β
2e

γ
3 , (1)

where A is an arbitrary scalar function on Σ, different from zero everywhere, which
reflects the freedom that exists in choosing the normal to the hypersurface. A simple
calculation shows that the norm of the normal form is

nµn
µ = −A−2 det

(

3g
)

, (2)
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where 3g is the determinant of the first fundamental form on the hypersurface. So we
can write the following very well known result.

Lemma 1 At a point p ∈ Σ the first fundamental form is degenerate if and only if the
normal vector is null at p.

We define the volume element 3-form on Σ, ηabc, by

η123 nα ≡ ηαβγδe
β
1e

γ
2e

δ
3 (3)

or, equivalently, ηabc = Aδabc where δabc is the standard alternating symbol of Levi-
Civita. Last expression shows that this volume element depends on the normalization
factor of nα and we see that fixing by any means the volume element on the hypersurface
is equivalent to choosing the normalization factor of the normal form. We define also
the contravariant volume element on Σ as ηabc ≡ A−1δabc in order to satisfy the usual
property in Riemannian manifolds: ηabcη

def = δ
def
abc where δ

def
abc is the Kronecker tensor.

Let p be any point in the hypersurface, the tangent vectors to the hypersurface
at p can be uniquely characterized as the vectors ~V ∈ TpΣ such that n|p

(

~V
)

= 0.

Therefore ~n · ~n|p = 0 is equivalent to ~n|p ∈ TpΣ, where ~n is the normal vector to the
hypersurface and the dot means scalar product with the metric in V4. For a point p

in the hypersurface we can consider the set of vectors in Tp (V4) that are orthogonal to
the tangent plane TpΣ. So we define

⊥ TpΣ ≡
{

~V ∈ Tp (V4) ; g
(

~V , ~Y
)

= 0 ∀ ~Y ∈ TpΣ
}

=<~np > .

This set is obviously a one-dimensional linear subspace of Tp (V4) and it is generated
by ~n|p. We have already seen that these two linear subspaces, TpΣ and ⊥ TpΣ, will
have non-zero vectors in common if and only if the normal vector at p is null. So we
can write the following

Lemma 2 <~np > ∩TpΣ =
{

~0
}

⇔ ~n · ~n|p 6= 0 ⇔ Tp (V4) =< ~n|p > ⊕TpΣ.

Here the second equivalence follows immediately from the first one because < ~n|p > is
one-dimensional and TpΣ is three-dimensional.

Let us now briefly recall the usual case of hypersurfaces whose normal vector is not
null at any point, i.e. ~n·~n 6= 0 everywhere on Σ and by continuity the sign of ~n·~n must be
constant on the whole hypersurface. By Lemma 1 we know that the first fundamental
form on the hypersurface is not degenerate and then Σ is a Riemannian manifold that,
in consequence, possesses a unique connection associated with the metric. We will
find explicitly this connection in a way that can be easily generalised to the case of
general hypersurfaces. We have at any point p ∈ Σ the decomposition of the tangent
plane Tp (V4) =< ~n|p > ⊕TpΣ and then any vector ~V ∈ Tp (V4) can be decomposed

uniquely into its parallel and its orthogonal part ~V = ~V⊥ + ~V‖ where the parallel
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component ~V‖ ∈ TpΣ and the orthogonal component ~V⊥ ∈< ~n|p >. As a consequence of
standard results in the theory of dual spaces we can decompose the dual tangent plane
as T ⋆

p (V4) =< n|p > ⊕A⊥
p , where < n|p > is the linear space orthogonal to TpΣ (in the

sense of dual spaces, not of the metric) which is obviously generated by the normal
one-form n, and A⊥

p is the 3-dimensional linear subspace orthogonal to < ~n|p > defined

as A⊥
p ≡

{

ω ∈ T ⋆
p (V4) ; ω

(

~n|p

)

= 0
}

. With this decomposition of the tangent plane

we can define a map T from the whole tangent plane Tp (V4) onto the tangent plane
to the hypersurface TpΣ by assigning to any vector in the tangent plane its component
parallel to the hypersurface

T : Tp (V4) → TpΣ

~A → ~A‖

This map is linear and has rank 3 at any point p ∈ Σ. Considering the definitions of the
pull-back and the normal form n we have that Ker(Φ⋆) =< n|p >. The decomposition
of the dual tangent plane at the point p and the fact that the the rank of the pull-back
is 3 allows us to establish that Φ⋆ is an isomorphism between A⊥

p and T ⋆
p Σ. Therefore

there exists an inverse map, that we will call Λ, from TpΣ onto A⊥
p which assigns to

any one-form on the hypersurface, Ω ∈ T ⋆
p Σ, the unique one-form on the manifold,

Λ (Ω) ∈ T ⋆
p (V4) with the properties Φ⋆ (Λ (Ω)) = Ω and [Λ (Ω)] (~n)|p = 0. These two

maps, T and Λ, can be respectively generalised to act on contravariant and covariant
tensors of any order.

From now on and for the sake of simplicity in the notation, we will use the same
symbol to denote a vector (or vector field) tangent to the hypersurface considered as
a vector in the manifold V4 or as a vector in the three-dimensional manifold Σ. Let us
then consider two vector fields ~X and ~Y defined on the hypersurface and tangent to
it everywhere, that is to say: ∀p ∈ Σ, ~X

∣

∣

∣

p
, ~Y

∣

∣

∣

p
∈ TpΣ. The vector field ∇ ~X

~Y is well

defined on the hypersurface in the sense that there is no need of extending ~X or ~Y

out of the hypersurface in order to calculate it. However, ∇ ~X
~Y can have, in general,

a non-zero orthogonal component. Discarding this orthogonal component we obtain
the operation ∇ ~X

~Y defined as ∇ ~X
~Y ≡ T

(

∇ ~X
~Y
)

≡
(

∇ ~X
~Y
)

‖
which is a covariant

derivative without torsion on the hypersurface. The standard proof of this result can
be found in [1],[6], and it is important to note that this proof makes use nowhere of
the fact that the vector field ~n is the normal to the hypersurface. However, this is the
key point in proving the second property of this connection, namely: ∇ is the unique
metric connection associated with the metric g of the hypersurface.

As a final remark regarding this metric connection, let us mention that a very
simple calculation shows [1],[6] that its Riemann tensor, Ra

bcd, verifies the two following
well-known relations called the Gauss equation :

edµR
µ
αβγe

α
ae

β
b eγ

c = R
f
abcgfd −

1

~n · ~n
KbdKca +

1

~n · ~n
KcdKba
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which is obviously independent on the normalization of n, and the Codazzi equation :

nµR
µ
αβγe

α
ae

β
b e

γ
c = ∇cKba −∇bKca −

1

2 (~n · ~n)
Kba∇c (~n · ~n) +

1

2 (~n · ~n )
Kca∇b (~n · ~n) .

With the usual normalization ~n · ~n = ±1, the last two terms of this equation vanish
and the Codazzi equation takes the standard, more simplified, form.

Let us now return to the case of general hypersurfaces and try to generalise the
previous construction. The main fact that has allowed us to define a covariant deriva-
tive on the hypersurface was the decomposition of the tangent plane Tp (V4) at any
point p ∈ Σ. In the general case, however, it is not true that the normal vector ~n

does not belong to the tangent plane TpΣ for every p, so we cannot follow exactly the
same steps as before. To avoid this difficulty, let us define a rigged hypersurface [6]
as a hypersurface Σ where we have taken a vector field which does not belong to the
tangent plane TpΣ anywhere. This vector field, ~ℓ , called the rigging, is defined only
on Σ and, obviously, it can be chosen in many different ways. The question now is to
find out the structure that the riggings induce on Σ and then try to fix one (or some)
of them with specially desirable properties.

Given a rigging ~ℓ , we can decompose the tangent plane at every point p ∈ Σ as
Tp (V4) =< ~ℓ

∣

∣

∣

p
> ⊕TpΣ and therefore, analogously as before, the dual tangent plane at

p is decomposed as T ⋆
p (V4) =< n|p > ⊕A

~ℓ
p, where A

~ℓ
p is the dual orthogonal to < ~ℓ

∣

∣

∣

p
>.

It is evident that A
~ℓ
p is a three-dimensional linear subspace of T ⋆

p (V4) which depends

on the particular choice of the rigging ~ℓ. As before, we can define the linear maps
T and Λ and its generalizations to tensors of any order. The decomposition written
above does not change if we multiply the rigging by a factor depending on the point of
the hypersurface and, due to the fact that n

(

~ℓ
)

must be different from zero, we can

always choose this factor such that n
(

~ℓ
)

= 1 everywhere on Σ. Then, the vector fields
{

~ℓ, ~ea

}

constitute a basis of the tangent planes to V4 at any point on Σ and the dual

basis is given by {n, ωa} satisfying

ℓαωa
α = 0, ωa

αeα
b = δa

b , nαeα
a = 0, nαℓα = 1 .

The pull-back and push-forward and the maps T and Λ can be made explicit when
considered in that basis as follows. First of all, let Ξ be an arbitrary covariant tensor
field in V4 whose components in the coordinate basis {dxα} are Ξα1···αq

. The pull-back
of this tensor is a covariant tensor on the hypersurface with components in the basis
{dξa}

[Φ⋆ (Ξ)]a1···aq
= Ξγ1···γq

eγ1

a1
eγ2

a2
· · · eγq

aq
.

Similarly, for an arbitrary contravariant tensor on the hypersurface, Υ, with compo-
nents Υa1···ar in the basis

{

∂
∂ξa

}

, the push-forward gives a contravariant tensor in V4
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with components in the coordinate basis
{

∂
∂xα

}

[dΦ (Υ)]γ1···γr = Υa1···areγ1

a1
eγ2

a2
· · · eγr

ar
.

The map T assigns to any contravariant tensor on V4, say Θ, with components Θγ1···γr

in the basis
{

∂
∂xα

}

a contravariant tensor on the hypersurface which, in the basis
{

∂
∂ξa

}

,
has the following components

[T (Θ)]a1···ar = Θγ1···γrωa1

γ1
ωa2

γ2
· · ·ωar

γr
.

Finally, for an arbitrary covariant tensor in the hypersurface, ∆, whose components in
the basis {dξa} are ∆a1···aq

, the map Λ produces a covariant tensor in the manifold V4

with components in the basis {dxα}

[Λ (∆)]γ1···γq
= ∆a1···aq

ωa1

γ1
ωa2

γ2
· · ·ωaq

γq
.

From these four expressions we observe the intrinsic definition of the pull-back and
push-forward, and the dependence of T and Λ on the rigging ~ℓ. Some particular cases
of these relations concerning the rigging and normal vectors and that we will use later
in this paper are

[T (~n)]a ≡ na = nαωa
α , [Φ⋆ (ℓ )]a ≡ ℓa = ℓαeα

a ,

[Φ⋆ (n)]a ≡ na = nαeα
a = 0 ,

[

T
(

~ℓ
)]a

≡ ℓa = ℓαωa
α = 0 , (4)

naℓa = 1 − (~n · ~n)
(

~ℓ · ~ℓ
)

, gabn
b = − (~n · ~n) ℓa .

Given an arbitrary tensor field in V4, defined at least on the hypersurface, we can
define another tensor field in V4, defined only on Σ, by transporting it first into the
hypersurface and then back towards the manifold. If the tensor, say W , has components
W β1···βr

γ1···γq
, the image tensor, denoted W̃ , will have components

W̃ β1···βr

γ1···γq
= W δ1···δr

ρ1···ρq
eρ1

a1
ωa1

γ1
eρ2

a2
ωa2

γ2
· · · eρq

aq
ωaq

γq
e

β1

b1
ωb1

δ1
e

β2

b2
ωb2

δ2
· · · eβr

br
ωbr

δr

as can be easily checked. The object P
γ
β ≡ eγ

aω
a
β appears here in a natural way. Using

the decomposition of the unit tensor δ
γ
β = ℓγnβ +e

γ
1ω

1
β +e

γ
2ω

2
β +e

γ
3ω

3
β we find the explicit

expression
P

γ
β ≡ eγ

aω
a
β = δ

γ
β − nβℓγ . (5)

The following properties show that P
γ
β is the projection tensor to the hypersurface

(with respect to the rigging)

P
γ
β eβ

a = eγ
a , P

γ
β ℓβ = 0, P

γ
β nγ = 0, P

γ
β ωa

γ = ωa
β , P

γ
β P

β
δ = P

γ
δ , P γ

γ = 3 .

Thus, W̃ is the complete projection to the hypersurface of W (with respect to the
rigging) in the sense that

ℓγiW̃ β1···βr

γ1···γq
= 0 ∀ i = 1 . . . q , nβj

W̃ β1···βr

γ1···γq
= 0 ∀ j = 1 . . . r .
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3 First Connection in a General Hypersurface: The

Rigged Connection.

In this section we generalize, to the case of general hypersurfaces, the results seen
in the previous section for non-null hypersurfaces. Let us consider then three vector
fields ~X, ~Y and ~Z on Σ, which are tangent everywhere to the hypersurface, and let us
construct the operator ∇ ~X

~Y ≡ T
(

∇ ~X
~Y
)

≡
(

∇ ~X
~Y
)

‖
where now the parallel part is

taken with respect to the decomposition of the tangent plane defined by the rigging
vector ~ℓ. We have again the following result [6]:

Theorem 1 For each rigging, the operation ∇ ~X
~Y is a torsion-free covariant derivative

on Σ.

The proof follows exactly the same steps than that of non-null hypersurfaces mentioned
above. Nevertheless, in this case we cannot prove that this connection is metric with
respect to the first fundamental form, as is obvious because we do not have in general
a canonical non-degenerate metric on the hypersurface.

We call this connection the rigged connection. Let us find now an explicit expression
for its Christoffel symbols in the coordinate basis ~ea. First of all we note that if we
decompose the covariant derivative ∇ ~X

~Y into its parallel part and ~ℓ-part and use the
definition of the second fundamental form we find

∇ ~X
~Y =

(

∇ ~X
~Y
)

‖
− K

(

~X, ~Y
)

~ℓ . (6)

But the Christoffel symbols are defined by ∇~ea
~eb = Γc

ba~ec and then from the definition
of the covariant derivative ∇ and the above expression we immediately get Γc

ba~ec =

∇~ea
~eb + K (~ea, ~eb) ~ℓ, and contracting now with ωc we obtain

Γc
ba = ωc

µe
ν
a∇νe

µ
b , Γc

ab = Γc
ba . (7)

We will now relate the Riemann tensors of V4 and of the hypersurface in order to
generalize the Gauss and Codazzi equations. Let us first recall that the definition of
the curvature tensor of any connection is [1]

R
(

~X, ~Y
)

~Z = ∇ ~X∇~Y
~Z −∇~Y ∇ ~X

~Z −∇[ ~X,~Y ]
~Z , (8)

but using repeatedly equation (6) we have

∇ ~X∇~Y
~Z = ∇ ~X

(

∇~Y
~Z − K

(

~Y , ~Z
)

~ℓ
)

= ∇ ~X∇~Y
~Z − K

(

~X,∇~Y
~Z
)

~ℓ −∇ ~X

(

K
(

~Y , ~Z
)

~ℓ
)

,

∇[ ~X,~Y ]
~Z = ∇[ ~X,~Y ]

~Z − K
([

~X, ~Y
]

, ~Z
)

~ℓ

10



so that putting all this into formula (8) we find

R
(

~X, ~Y
)

~Z = R
(

~X, ~Y
)

~Z − K
(

~X,∇~Y
~Z
)

~ℓ + K
(

~Y ,∇ ~X
~Z
)

~ℓ −∇ ~X

(

K
(

~Y , ~Z
)

~ℓ
)

+

+∇~Y

(

K
(

~X, ~Z
)

~ℓ
)

+ K
([

~X, ~Y
]

, ~Z
)

~ℓ . (9)

Contracting this expression with an arbitrary 1-form α ∈ A
~ℓ, so that α

(

~ℓ
)

= 0, we
find the desired generalization of Gauss equation

α
(

R
(

~X, ~Y
)

~Z
)

= α
(

R
(

~X, ~Y
)

~Z
)

− K
(

~Y , ~Z
)

α
(

∇ ~X
~ℓ
)

+ K
(

~X, ~Z
)

α
(

∇~Y
~ℓ
)

(10)

where there appears, in a natural way, a new 1-contravariant, 1-covariant tensor on Σ
defined by Ψ

(

α, ~X
)

≡ α
(

∇ ~X
~ℓ
)

or, in components [6]

Ψa
b = ωa

µeν
b∇νℓ

µ (11)

and thus, Gauss’ equation takes the form

ωd
αRα

βγδe
β
ae

γ
b e

δ
c = R

d

abc − KacΨ
d
b + KabΨ

d
c . (12)

Analogously, contracting (9) with the normal form n we get

n
(

R
(

~X, ~Y
)

~Z
)

= K
(

~Y ,∇ ~X
~Z
)

− K
(

~X,∇~Y
~Z
)

+ K
([

~X, ~Y
]

, ~Z
)

+

∇~Y

(

K
(

~X, ~Z
))

−∇ ~X

(

K
(

~Y , ~Z
))

− K
(

~Y , ~Z
)

n
(

∇ ~X
~ℓ
)

+ K
(

~X, ~Z
)

n
(

∇~Y
~ℓ
)

which can be simplified to the following expression, that we call Codazzi-1 equation,

nµR
µ
αβγe

α
ae

β
b e

γ
c = ∇cKba −∇bKca + Kbaϕc − Kcaϕb (13)

where again a one-form in Σ arises naturally: ϕ
(

~X
)

≡ n
(

∇ ~X
~ℓ
)

. Its components are

ϕa = nµeν
a∇νℓ

µ . (14)

From the Ricci identity (∇~ea
∇~eb

−∇~eb
∇~ea

) ℓµ = R
µ
αβγℓ

αeβ
ae

γ
b and contracting first with

the three forms ωc and second with the normal form n one can easily find the following
equations

ωc
µR

µ
αβγℓ

αeβ
ae

γ
b = ∇aΨ

c
b −∇bΨ

c
a + ϕbΨ

c
a − ϕaΨ

c
b , (15)

nµR
µ
αβγℓ

αeβ
ae

γ
b = ∇aϕb −∇bϕa + KcbΨ

c
a − KcaΨ

c
b (16)

which we call Codazzi-2 and Codazzi-3 equations, respectively.
We shall also write down another equation involving the one-form ℓ which is ob-

tained from the Ricci identity applied to that one-form and contracting later with the
tangent vectors ~ec. The equation reads

ℓµR
µ
αβγe

α
ae

β
b eγ

c = ∇cHab −∇bHac +
1

2
∂b

(

~ℓ · ~ℓ
)

Kac −
1

2
∂c

(

~ℓ · ~ℓ
)

Kab (17)

11



and obviously it is not independent of Codazzi-1 and Gauss equations. There appears,
however, a new tensor in the hypersurface, in general not symmetric, defined as

Hab = eµ
aeν

b∇µℓν (18)

which will play a central role in the discussion of the junction conditions in Sect.5.
Codazzi’s equations (13,15) and expression (17) collapse into the unique standard Co-
dazzi equation in the case of non-null hypersurfaces everywhere when the rigging is
chosen in the usual way as the normal vector to the hypersurface. The third Codazzi
equation vanishes identically in that case.

With the definitions we already have in Σ, we can easily derive the following for-
mulas for the directional derivatives of different objects along the vectors ~ea:

∇~ea
~eb = −Kab

~ℓ + Γc
ab~ec , (19)

∇~ea
n = −ϕan + Kabω

b , (20)

∇~ea
~ℓ = ϕa

~ℓ + Ψb
a~eb , (21)

∇~ea
ωb = −Ψb

an− Γb
acω

c . (22)

We established in the last section a way to relate tensors in the manifold V4 with tensors
in Σ. Now, by means of the previous equations, we are going to establish a general
relation between the covariant derivatives in the manifold and in the hypersurface. To
that aim, let Sµ1···µr

ν1···νq
be a tensor field in V4 defined at least on every point of Σ. By

means of the pull-back and the map T , one can assign to this tensor another tensor
field, defined in the hypersurface, with components

Sa1···ar

b1···bq
= ωa1

µ1
· · ·ωar

µr
eν1

b1
· · · e

νq

bq
Sµ1···µr

ν1···νq
. (23)

Then, it is not difficult to prove that the projection to the hypersurface of the covariant
derivative of Sµ1···µr

ν1···νq
is related to the covariant derivative of Sa1···ar

b1···bq
in the following form

ωa1

µ1
· · ·ωar

µr
eν1

b1
· · · e

νq

bq
eγ

c∇γS
µ1···µr

ν1···νq
= ∇cS

a1···ar

b1···bq
+

r
∑

i=1

S
a1···ai−1γai+1···ar

b1···bq
nγΨ

ai

c +

+
q
∑

j=1

Sa1···ar

b1···bj−1γbj+1···bq
ℓγKcbi

, (24)

where the mixed tensor S
a1···ai−1γai+1···ar

b1···bq
is the projection of the original tensor in the

surface on all its indexes except γ and analogously for Sa1···ar

b1···bj−1γbj+1···bq
. Immediate

consequences of this equation are

∇cgab + ℓbKca + ℓaKcb = 0 , (25)

∇cℓa = −
(

~ℓ · ~ℓ
)

Kca + gabΨ
b
c + ℓaϕc = −

(

~ℓ · ~ℓ
)

Kca + Hca . (26)

12



From the Riemann tensor of the rigged connection we can define, following the
usual notation of the Ricci calculus [6], the tensor fields

Rbd = R
a

bad (Ricci tensor), (27)

Vcd = R
a

acd . (28)

This last tensor is not identically zero because the connection in the hypersurface is
not metric in general. Keeping in mind that the torsion of the connection vanishes,
these tensors just defined and the Riemann tensor satisfy the following identities

1. R
a

bcd = −R
a

bdc .

2. R
a

bcd + R
a

cdb + R
a

dbc = 0 (First Bianchi identity).

3. Vcd = −Vdc .

4. Vcd = Rcd − Rdc .

5. ∇eR
a

bcd + ∇cR
a

bde + ∇dR
a

bec = 0 (Second Bianchi identity).

6. ∇aVbc + ∇bVca + ∇cVab = 0 ⇔ dV = 0 .

Last identity shows that the two-form V is closed and then, because of the Poincaré
Lemma, it is locally exact. Actually it is globally exact as the following result proves:

Proposition 1 The two-form V is, in fact, exact and it is related with ϕ defined above
by V = −dϕ .

Proof: The proof we present here of this result makes a main use of the Gauss and
Codazzi-3 equations. Contracting the first two indexes in the Gauss equation, we find
Vbc = R

a

abc = KacΨ
a
b − KabΨ

a
c + R

µ
αβγe

α
ae

β
b e

γ
c ω

a
µ and using now formula (5) we obtain

Vbc = KacΨ
a
b − KabΨ

a
c − nµR

µ
αβγℓ

αe
β
b eγ

c . Codazzi-3 equation leads us then to

Vbc = − (∂bϕc − ∂cϕb) ,

where we have used that the rigged connection is torsion-free, and the proof is complete.

On the other hand, the expression of the Riemann tensor in terms of the Christoffel
symbols V in terms of them:

Vbc = ∂bΓ
a
ac − ∂cΓ

a
ab ,

and this together with the previous expression involving Vbc suggests the definition of
the geometric object

Γc ≡ ϕc + Γa
ac

13



which verifies ∂bΓc − ∂cΓb = 0. We cannot say that Γc is a closed 1-form because Γc

is not a tensor. However, in each coordinate system of the hypersurface there is a
function φ such that, locally

Γc = ∂cφ .

Until now we have not considered the transformation of the above defined objects
by choosing the rigging in another direction. Let us change the direction of the rigging
without changing the normalization of the normal form and maintaining the condition
nµℓµ = 1 everywhere. Under these assumptions, the most general change of the rigging
field is

ℓ
′µ = ℓµ + sµ (29)

where the vector sµ verifies sµnµ = 0 and therefore sµ = saeµ
a . This change of the

rigging induces the following transformation on the objects depending on it

ω′a = ωa − san,

Γ′a
bc = Γa

bc + saKbc ,

ϕ′
a = ϕa − sbKba , (30)

Ψ′a
b = Ψa

b − saϕb + sascKbc + ∇bs
a

and from these expressions we immediately obtain the following interesting result.

Proposition 2 The object Γc does not depend on the rigging.

In consequence, the function φ related with Γc as was explained above does not depend
on the direction of the rigging. Let us find now how the object Γc transforms under a
change of coordinates ξa = ξa (ξ′a) in Σ. If we call Aa

a′ = ∂ξa

∂ξ′a
the jacobian matrix of

this transformation, the transformation law for Γc is

Γa′ = Aa
a′Γa +

1

det (A)
∂a′ det (A)

Using now that in both coordinate systems Γc is the partial derivative of a function φ,
we can easily relate the function in a coordinate system with the function in the other
one by φ′ = φ + log (|det (A)|), or equivalently, eφ′

= |det (A)| eφ. Thus, for orientation
preserving coordinate changes, eφ transforms as a scalar density of weight +1 and
therefore, it may have something to do with the volume element in the hypersurface.
In fact, this relation is concreted as follows.

Proposition 3 Except for a multiplicative constant, the function eφ is the unique in-
dependent component of the volume form already defined in the hypersurface.

14



Proof: From definition (3) and using the normalization condition ℓµnµ = 1 we have

η123 = ℓαe
β
1e

γ
2e

δ
3ηαβγδ, expression that, despite of its appearance, does not depend on

the specific choice of ~ℓ. If we calculate now

∂a (η123) = eρ
a∇ρ

(

ℓαe
β
1e

γ
2e

γ
3ηαβγδ

)

= ηαβγδe
ρ
a∇ρ

(

ℓαe
β
1e

γ
2e

γ
3

)

and make use of formulas (19), (21) and the complete antisymmetry of ηαβγδ, we get

∂aη123 = ηαβγδ

[

ϕaℓ
αe

β
1e

γ
2e

δ
3 + Γ1

a1ℓ
αe

β
1e

γ
2e

δ
3 + Γ2

a2ℓ
αe

β
1e

γ
2e

δ
3+

Γ3
a3ℓ

αe
β
1e

γ
2e

δ
3

]

= η123 (ϕa + Γc
ac) = η123Γa (31)

so that being η123 positive everywhere we find η123 = Ceφ where C is a positive constant.

Let us change now the normalization factor of the normal form, without changing
the direction of the rigging vector ~ℓ anywhere. So, we put n′

µ = σnµ and if we want to
keep the volume form positive, the factor σ must be positive everywhere. The changes
induced by this transformation are

η′
123 =

1

σ
η123, K ′

ab = σKab, ~ℓ′ =
1

σ
~ℓ, Ψ′a

b =
1

σ
Ψa

b

ωa
µ and Γa

bc remain invariant, ϕ′
a = ϕa − ∂a log σ, Γ′

a = Γa − ∂a log σ. (32)

It is a well-known fact in differential geometry that in an affine manifold (that is,
with a linear connection) possessing a well-defined volume form η, the Stockes theorem
can be rewritten as a Gauss theorem

∫

U
∇µX

µη =
∫

∂U
Xµdσµ,

if and only if the connection is volume preserving, that is to say ∇η = 0. In the
previous formula U is an open neighbourhood in the manifold, Xµ is any vector field
defined at least on U and dσµ is the normal volume form defined on the boundary ∂U of
U . Of course, for all metric connections this is immediately true and the Gauss theorem
holds in the spacetime. In our case, however, we have defined in the hypersurface a
volume form and a connection that are not metric and then we are not sure that the
Gauss theorem holds in the hypersurface. Therefore, we want to ascertain under which
conditions the rigged connections in the hypersurface are volume preserving. To that
aim, let us calculate

∇aηbcd = ∂aηbcd − Γe
baηecd − Γe

caηbed − Γe
daηbce = ∂aηbcd − Γe

eaηbcd

where we have used the antisymmetry property of η. Making use here of formula (31)
we can write then

∇aηbcd = ϕaηbcd . (33)
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In the same way, it is easy to find the analogous expression for the contravariant volume
form:

∇aη
bcd = −ϕaη

bcd . (34)

Consequently, we have proven the following standard result.

Theorem 2 Given a normal form and a rigging vector, the necessary and sufficient
condition for the rigged connection to be volume preserving is that ϕ = 0.

The condition ϕ = 0 is called by Schouten [6] the second condition of normalization.
Looking now at the transformation formula (32) for ϕ, we see that the above

theorem can be improved if we allow for changes in the normalization of the normal
form (or the volume element). In this sense, it is immediate the following theorem.

Theorem 3 Given a rigging direction, the necessary and sufficient condition such that
there exists a normalization of the normal form (or equivalently a volume form in the
hypersurface) in which the rigged connection is volume preserving is that the 1-form
ϕ be exact. Moreover, this volume form, if it exists, is unique except for a constant
factor.

The question of whether or not there always exists a rigging and a normalization
factor of the normal form such that the rigged connection is volume preserving is a
little bit more complicated. In the case where the second fundamental form is not
degenerate (or even degenerate only once), the existence of such a connection can be
shown without difficulty. In other cases, however, that depends on some integrability
conditions involving both the manifold and hypersurface structures. In the next section
we present another type of connection in the hypersurface which is always volume
preserving.

4 Second Connection in a General Hypersurface:

The Rigged Metric Connection.

We are now going to develop a completely different method to define a connection in
the hypersurface. As before, we begin with a rigging vector field ~ℓ defined on every
point in Σ which verifies n

(

~ℓ
)

= 1. We have already studied Φ⋆(g) and we have shown
that the first fundamental form is degenerate if and only if the normal form is null.
We consider now the symmetric non-degenerate tensor gµν and its projection into the
hypersurface by means of the map T . Its components are

gab = gµνωa
µω

b
ν

16



and obviously they do depend on the rigging of the hypersurface. With this new tensor
in the hypersurface we can complete relations (4) with the following formulas

gabℓb = −
(

~ℓ · ~ℓ
)

na , gabgbc = δa
c − naℓc . (35)

Let us find a necessary and sufficient condition for this symmetric contravariant tensor
to be non-degenerate. First of all we establish the following lemma.

Lemma 3 The rigging vector ~ℓ can be expressed in the following form

ℓµ = −η123η
µνρλω1

νω
2
ρω

3
λ

Proof: The proportionality between ℓµ and the vector χµ ≡ ηµνρλω1
νω

2
ρω

3
λ follows from

the relation ωa
µχ

µ = 0 for every a, so we can write ℓµ = Bηµνρλω1
νω

2
ρω

3
λ for some factor

B. Using now that ℓµnµ = 1 and formula (1) we have

1 = nµℓ
µ =

B

η123

ηµβγδη
µνρλe

β
1e

γ
2e

δ
3ω

1
νω

2
ρω

3
λ = −

B

η123

and therefore B = −η123 , as we wanted to prove.

An easy calculation using the above expression for ~ℓ shows the following result

ℓαℓα = −(η123)
2 det

(

gab
)

(36)

which is similar to formula (2), and then, analogously to Lemma 1, we have:

Proposition 4 gab is degenerate in a point x ∈ Σ if and only if the rigging vector is
null at that point.

There is, though, an important difference between the uselfulness of this result and that
of the similar one for the normal form n. Whereas the normal form n is determined
by the hypersurface, the rigging vector ~ℓ can be chosen in many different ways and,
in particular, it can be taken non-null everywhere in Σ so that the tensor gab is non-
degenerate everywhere in the hypersurface. In this case, we have that the tensor gab

has an inverse, that we will call γab, satisfying gabγbc = δa
c . It is easy to see that this

tensor can be written

γab = gab −
1

(

~ℓ · ~ℓ
)ℓaℓb . (37)

Of course, there are many symmetric two-covariant tensors in the manifold such that
Φ⋆ applied to them gives γab, but we have already defined a privileged one among them,
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which we will call γµν , by demanding that ℓµγµν = 0 or, in other words, by applying Λ
to γab. This tensor is

γµν = gµν −
1

(

~ℓ · ~ℓ
)ℓµℓν (38)

from where we can guess a possible physical interpretation of this construction. The
form of the tensor (38) suggests that we can take the rigging vector as a timelike vector
in the manifold, or equivalently, as an observer, and then we define for every hypersur-
face in the manifold a non-degenerate two-covariant symmetric tensor by restricting
the metric in the canonical three-spaces of the observer to the hypersurface. The free-
dom in choosing the rigging is simply then the possibility of changing the observer in
spacetime. Thus, different riggings induce different tensors of type (37) in a given hy-
persurface, but this would just represent the fact that different observers would “see”
the same hypersurface with different metric properties. This possibility was in fact
suggested some years ago, in a somewhat different form and for a very particular case,
in [13].

From a mathematical point of view, however, the important thing is that we have de-
fined a symmetric two-covariant non-degenerate tensor in the hypersurface, and thereby
we have the unique metric connection associated to it, given by

Γ̃a
bc =

1

2
gad (∂bγdc + ∂cγdb − ∂dγbc) (39)

that we call the rigged metric connection.
Let us now try to relate the rigged connection and the rigged metric connection

defined by the same (non-null) rigging. Because of the relation ∇aγbc = ∂aγbc−Γe
baγec−

Γe
caγae, we can rewrite the formula defining Γ̃a

bc as

Γ̃a
bc =

1

2
gad

(

∇bγdc + ∇cγdb −∇dγbc

)

+ Γa
bc (40)

which makes explicit the following obvious statement:

Proposition 5 Given a rigging, the two connections Γ̃ and Γ coincide iff ∇dγbc = 0.

We are going to reexpress this result in a more interesting and useful form by using
expression (37) and expanding ∇aγbc. We only need to know the covariant derivatives
of gab and lc (formulas (25) and (26) ), as well as the differential of the norm of the

rigging, ∂c

(

~ℓ · ~ℓ
)

. This can be found staightforwardly from formula (21)

∂c

(

~ℓ · ~ℓ
)

= 2
(

~ℓ · ~ℓ
)

ϕc + 2Ψe
cℓe (41)

and putting all this together we easily find

∇dγbc = −
1

(

~ℓ · ~ℓ
)Ψe

d (γecℓb + γebℓc) .
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Theorem 4 Given a non-null rigging, the necessary and sufficient condition such that
the rigged connection Γ and the rigged metric connection Γ̃ coincide is that, for any
point p ∈ Σ, either Ψa

b |p = 0 or ℓa |p= 0.

Proof: The necessary and sufficient condition is that ∇aγbc = 0 or, what is the same,
Ψe

c (γeaℓb + γebℓa) = 0. But we know that if an object of type UaVb +UbVa vanishes then
necessarily Ua = 0 or Va = 0 . Applying this result to the previous expression, and
noting that the index c plays no role in this reasoning, we have Ψe

cγea = 0 or ℓa = 0,
and as the metric γab is not degenerate the theorem follows.

From its definition, it is trivial that ℓc = 0 if and only if ~ℓ is proportional to the vec-
tor ~n (ℓa = 0 ⇔ ℓµe

µ
a = 0 ∀a ⇔ ℓα is proportional to nα). In the case of hypersurfaces

non-null everywhere we can choose the normal vector ~n as the rigging vector and then
we have ℓa = na = 0. With this choice of the rigging the two connections coincide, as is
obvious from its construction, giving the natural connection in the hypersurface. In the
general case, however, if there is some point where the hypersurface is null, we cannot
take the normal vector as the rigging and then ℓa 6= 0 for some a. So, in the general
case, the only possibility for having a rigging such that the two connections coincide
is that Ψa

b = 0. In consequence, we are now going to study under which conditions
one can choose a rigging such that Ψa

c = 0 everywhere in the hypersurface. Recalling
expression (21) we have that Ψa

b = 0 is equivalent to

eν
b∇νℓ

µ = ϕbℓ
µ (42)

and then contracting with vector ~ℓ we find

∂b

(

log

(

√

∣

∣

∣

~ℓ · ~ℓ
∣

∣

∣

))

= ϕb

so that a necessary condition for the equation (42) to hold is that ϕ be an exact 1-form.
We can now define a new vector field

~V ≡
~ℓ

√

∣

∣

∣

~ℓ · ~ℓ
∣

∣

∣

and it is very easy to check that if the vector ~ℓ verifies equation (42), then the vector
~V verifies

eν
b∇νV

µ = 0 (43)

and conversely, if ~V verifies equation (43) then any vector of the form ~ℓ ≡ σ~V verifies
equation (42), where σ is any non-vanishing function in the hypersurface. This last
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equation is written in normal form, and then we can study its integrability conditions
by the standard procedure. These integrability conditions are found to be

R
µ
σαβeα

c e
β
b V

σ = 0 (44)

When this relation is identically satisfied, that is to say when R
µ
σαβeα

c e
β
b = 0, then equa-

tion (43) has a general solution depending on three constant parameters (in principle
there are four constants that are the initial conditions V µ|p at some point p ∈ Σ, but
they are subject to the relation V µ · Vµ|p = ±1). If they are not identically verified,
we must go on with the integrability conditions, which are successively

e
ρ
d∇ρ

(

R
µ
σαβeα

c e
β
b

)

V σ = 0 (45)

eκ
f∇κ

(

e
ρ
d∇ρ

(

R
µ
σαβeα

c e
β
b

))

V σ = 0 (46)

eλ
g∇λ

(

eκ
f∇κ

(

e
ρ
d∇ρ

(

R
µ
σαβeα

c e
β
b

)))

V σ = 0 (47)

...

If the first equation in the row is verified identically (and the previous integrability
condition is not) then the general solution has as many arbitrary constants of inte-
gration as the number of solutions (if any) for V α of the equation (44) at any point
in the hypersurface. The following integration conditions must be understood in a
similar form. It is evident that the existence or not of a rigging whose two connections
coincide depends both on the form of the hypersurface and on the manifold in which
it is imbedded.

To end this section, we shall establish the relation between Γ̃a
ac and Γa

ac. Recalling

formula (36):
(

~ℓ · ~ℓ
)

= −(η123)
2 det

(

gab
)

= − (η123)2

det(γab)
and using the fact that Γ̃a

ac =

∂c

(

log
(√

|det (γab)|
))

we find

Γ̃a
ac = Γa

ac + ϕc −
1

2
∂c

(

log
(

|~ℓ · ~ℓ |
))

= Γc −
1

2
∂c

(

log
(

|~ℓ · ~ℓ |
))

(48)

which is the desired relation. These formulas lead us to the following proposition.

Proposition 6 The volume preserving connection Γ̃ is such that Γ̃a
ac = Γc when

(

~ℓ · ~ℓ
)

is chosen to be constant in the hypersurface.

Therefore, the rigged metric connections have some advantages like being always
volume preserving and the fact that each one fixes a unique volume element in the
hypersurface. They are also good connections from the physical point of view because,
as explained above, they can be interpreted as connections associated with observers
in space-time. Nevertheless, the geometrical meaning of the rigged metric connections
is obscure, contrarily to what happens with the rigged connections which are defined
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simply by decomposing the tangent spaces and then projecting to the hypersurface
(with respect to the rigging). In any case, both constructions provide a geometrical
structure to general hypersurfaces imbedded in spacetime, and they will also allow us to
define the proper junction conditions in general relativity for arbitrary hypersurfaces
of discontinuity, regardless of its time-, space- or light-like character, which can also
vary from point to point. This is the subject of the next section.

5 Junction Conditions.

Consider now two C3 spacetimes V + and V −, each of them with boundary Σ+ and Σ−

and C2 metrics g+ and g−. Assume further that there is a C3 diffeomorphism from
Σ− to Σ+. This is the typical situation in General Relativity where the glueing of
two spacetimes by means of identification of points on the boundaries is considered in
order to study their possible posterior matching. However, as pointed out by Clarke
and Dray [21], the mere identification of points in Σ+ and Σ− does not by itself give a
well defined geometry in the sense that one should also specify how the tangent spaces
are to be identified. To clarify this, let us define V4, the whole spacetime, as the disjoint
union of V + and V − with diffeomorphically related points in Σ+ and Σ− identified.
On the complementary of Σ± in V4 we have the metric g given by g+ in V + and g− in
V −. The main result proven by Clarke and Dray reads as follows.

Theorem 5 Under the above assumptions, there exists a unique C1 atlas on V4 which
induces the given C3 structures on V + and V − and such that g admits a continuous
extension to the whole V4 (and which is maximal with respect to these properties) if and
only if Σ+ and Σ− are isometrical with respect to their first fundamental forms inherited
from V + and V −; that is to say, if and only if their respective first fundamental forms
g + and g − agree.

To be precise, Clarke and Dray proved this theorem under the added assumption that
the signatures of g + and g − are constant. This assumption is superfluous, though, and
their proof can be easily generalized to arbitrary hypersurfaces in which the signature
can change from point to point.

The above theorem is of great importance, because if one wishes to define Ein-
stein’s equations, even in the distributional sense, it is necessary that the metric of the
spacetime be, at least, continuous. Thus, if we consider the whole spacetime V4 and
denote simply by Σ the image of Σ+ or Σ− in it, the necessary and sufficient condition
such that the glued spacetime V4 has well-defined Einstein’s equations for the metric g

is that, in a given coordinate system of Σ, the first fundamental form of Σ calculated
from V + coincide with the first fundamental form of Σ calculated from V −:

g + = g − . (49)
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We call relations (49) the preliminary junction conditions. In a practical problem, these
conditions work as follows. We are given two imbeddings x

µ
± = x

µ
± (ξa) of Σ, where

x
µ
± are local coordinates for V ±, respectively, and ξa are intrinsic coordinates for Σ.

Therefore, we also have the vectors tangent to Σ: ~ea
±. But if the preliminary junction

conditions hold, then we have in the coordinate system {ξa}

g+
ab = g−

ab

or, equivalently, the scalar products of the vectors ~ea
± coincide from V + and V −. There

only remains to choose the riggings ~ℓ± such that {~ℓ±, ~ea
±} are both bases with the same

orientation satisfying

ℓ+
a = ℓ−a (ℓ · ℓ)+ = (ℓ · ℓ)−

and then identify the bases in the tangent spaces {~ℓ+, ~ea
+} ≡ {~ℓ−, ~ea

−} ≡ {~ℓ, ~ea} by
definition dropping the ±. In the resulting spacetime, and due to the above theorem,
there exists a unique structure with coordinate systems such that the metric g of V4

is continuous, hence, the components ℓµ and eµ
a in these coordinate systems are well

defined.
From now on, we assume that the preliminary junction conditions hold such that

the above construction has been carried out and the whole spacetime (V4, g) has a hy-
persurface Σ splitting the manifold into the two open sets V − and V +, whose boundary
is Σ, and such that the metric tensor g is continuous on the whole manifold and at
least of type C2 in both V − and V +. We shall also assume that the derivatives up
to second order of this tensor field have a well-defined limit on the hypersurface of
separation Σ coming from both V − and V +. We will not restrict the type of the hy-
persurface in any way whatsoever and, consequently, we will use the theory of general
hypersurfaces developed above. Our aim is to obtain the curvature tensors of such a
spacetime and thereby to find the necessary and sufficient junction conditions which
forbid the existence of singular parts in the curvature (sometimes these singular parts
are called surface layers or impulsive gravitational waves). The natural way to study
this sort of problems is by using the theory of tensor distributions on manifolds. For a
brief summary and for notations used from here on, see the appendix in this paper.

First of all, we write the step on Σ of the derivative of a function f . It is not difficult
to see that, for every vector ~V tangent to the hypersurface, we have

V µ [∂µf ] = V µ∂µ [f ]

and therefore, using the basis {n, ωa} of the dual tangent plane, we obtain

[∂µf ] = Anµ + ωa
µ∂a [f ] (50)

where A is a scalar function on Σ defined by A ≡ ℓµ [∂µf ]. Obviously, A depends on
the rigging, but formula (50) does not. Thus, when the function f is continuous across
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Σ, A is independent of the rigging. This is what happens with the metric tensor itself,
and from the previous equation it follows that

[∂βgλρ] = ζλρnβ (51)

where ζλρ is a two-covariant symmetric tensor field defined on the hypersurface Σ and
independent of the rigging. Using this formula it is immediate to find

[

Γα
βγ

]

=
1

2

(

ζα
λ nβ + ζα

β nλ − nαζβλ

)

, (52)

and substituting this in formula (115) of the appendix, we get

Rα
βλµ = (1 − θ) · R−α

βλµ + θ · R+α

βλµ + δ · Hα
βλµ (53)

where Hα
βλµ is a tensor called the singular part of the Riemann tensor distribution and

is defined only on the hypersurface as follows

Hα
βλµ ≡ nλ

[

Γα
βµ

]

− nµ

[

Γα
βλ

]

=
1

2

{

nα (ζβλnµ − ζβµnλ) + nβ

(

ζα
µ nλ − ζα

λ nµ

)}

. (54)

Of course, this tensor has the algebraic properties of a Riemann tensor. For the Ricci
tensor distribution, the analogous relation is

Rβµ = (1 − θ) · R−
βµ + θ · R+

βµ + δ · Hβµ (55)

where we have introduced its singular part

Hβµ ≡ Hα
βαµ =

1

2
(nαζαβnµ + nαζαµnβ − nαnαζβµ − ζα

αnβnµ) (56)

which is a symmetric tensor defined only at points of Σ. With regard to the scalar
curvature distribution, we also have

R = (1 − θ) · R+ + θ · R− + δ · H (57)

where its singular part, defined only on the hypersurface, is given by

H ≡ gβµ
∣

∣

∣

Σ
Hβµ = nαnβζαβ − nαnαζ

β
β . (58)

Finally, it is interesting to find a similar expression for the Einstein tensor distribution,
because of its close relation with the matter contents of the spacetime. Using the
previous formulas, the definition Gβµ = Rβµ − 1

2
gβµR allows us to write

Gβµ = (1 − θ) · G−
βµ + θ · G+

βµ + δ · τβµ (59)
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where we have defined a new symmetric tensor on Σ as

τβµ ≡ Hβµ −
1

2
gβµ|Σ H =

1

2
{nαζαβnµ + nαζαµnβ − nαnαζβµ − ζα

αnβnµ

− gβµ|Σ

(

nαnρζαρ − nαnαζρ
ρ

)}

. (60)

Contracting the last expression with the normal vector to the hypersurface nµ we find
that

τβµnµ = 0 . (61)

Using the projection tensor P α
β , we can decompose the tensor ζβµ, defined at every

point of the hypersurface, into its tangent part (with respect to the rigging vector ~ℓ )
and its rigged part as

ζβµ = ζ
~ℓ
βµ + ζ

~ℓ
βnµ + ζ

~ℓ
µnβ + ζ

~ℓnβnµ (62)

where we have defined

ζ
~ℓ
βµ ≡ P λ

β P α
µ ζλα , ζ

~ℓ
β ≡ ℓλP

ρ
β ζλρ , ζ

~ℓ ≡ ℓλℓµζλµ . (63)

Here, the first two objects are tangent to the rigged hypersurface in the sense that
they are orthogonal to the rigging vector. Therefore, they are isomorphically related
with tensors defined in the hypersurface through the maps Φ⋆ and Λ of section 2. The
important point now is that substituting the decomposition (62) of ζ in expression (54)
we find

Hαβλµ =
1

2

{

nα

(

ζ
~ℓ
βλnµ − ζ

~ℓ
βµnλ

)

+ nβ

(

ζ
~ℓ
αµnλ − ζ

~ℓ
αλnµ

)}

(64)

so that only the tangent part ζ
~ℓ
βµ of ζβµ appears in the singular part of the Riemann

tensor distribution.
Next, we shall find an intrinsic expression for ζ

~ℓ
βµ depending only on the tensor Hab.

To that end, let us recall that its definition is Hab = eν
ae

µ
b∇νℓµ and, consequently, being

the connection discontinuous across Σ, Hab will be different when coming from V + or
from V −. Although this object is defined only in the hypersurface and then it cannot
be continuous nor discontinuous, we will denote by [Hab] the difference at each point
in Σ of Hab defined with the connection of V + and Hab defined with the connection of
V −.1 Making use of (52) this difference tensor becomes

[Hab] = −ℓµ [Γµ
σν ] e

ν
ae

σ
b = −

1

2
ℓµ (ζµ

σnν + ζµ
ν nσ − nµζσν) eν

ae
σ
b =

1

2
ζσνe

ν
ae

σ
b (65)

1For other intrinsic objects of the hypersurface we will use also the brackets to denote the difference
between the objects defined form V + and V −. Abusing the language, we will name ‘continuous’ such
objects with vanishing difference.
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where we have taken into account that the rigging form ℓµ, the tangent vectors eµ
a and

eν
a∂νe

µ
b have the same value from V − or V +. Note that [Hab] is symmetric despite

the fact that Hab itself is not. [Hab] is uniquely related, through the map Λ, with
a symmetric two-covariant tensor field in the manifold defined only at points on the
hypersurface. This tensor, which we will denote as before with the same symbol [Hµν ],
is

[Hµν ] =
1

2
ζσρP

σ
µ P ρ

ν =
1

2
ζ

~ℓ
µν

and, of course, it satisfies

[Hµν ] ℓ
µ = 0. (66)

Therefore, we obtain for the singular part of the Riemann tensor distribution

Hα
βλµ = nα (− [Hβµ] nλ + [Hβλ] nµ) + nβ

(

− [Hα
λ ] nµ +

[

Hα
µ

]

nλ

)

(67)

and this expression allows us to prove the following fundamental theorem

Theorem 6 The singular part of the Riemann tensor distribution vanishes if and only
if [Hµν ] = 0, or equivalently, iff [Hab] = 0.

Proof:
[⇒] If [Hαβ ] = 0 then from the previous formula Hα

βλµ = 0.
[⇐] Suppose now that Hα

βλµ = 0. Contracting then (67) with ℓβℓλ and making use of

(66) we obtain 0 = ℓβℓλHα
βλµ =

[

Hα
µ

]

and the theorem follows.

From now on, we shall refer to [Hµν ] = 0 as the junction conditions. These condi-
tions assure that all the curvature (or matter) tensors have, at most, finite discontinu-
ities across Σ. Furthermore, when the junction conditions are satisfied we get from (51)
and (62) a structure for the discontinuities of the first derivatives of the metric tensor
which allows us to perform a C1 change of coordinates such that the metric becomes
C1, in accordance with the minimal differentiability requirements of Lichnerowicz [15].

In order to see this, let us note that under C1 change of coordinates, xα′

= xα′

(

xβ
)

the discontinuity of the partial derivative of the jacobian matrix of the transformation
reads

[

∂

∂xµ′

(

∂xα

∂xα′

)]

= nµ′nα′Bα (68)

where Bα is a vector defined on the hypersurface. Hence it is easy to check from the
transformation law for the discontinuities of the first derivatives of the metric that if we
choose a coordinate change satisfying Bα = −

(

ζ
~ℓ
α + 1

2
ζ

~ℓnα

)

then the metric becomes

C1 in the new coordinates.
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Similar results can be proven for the singular parts of the Ricci tensor, the scalar
curvature and the Einstein tensor distributions. The expressions for these singular
parts come directly from (67) and read, respectively

Hβµ = − (~n · ~n) [Hβµ] + nα [Hαβ ]nµ + nα [Hαµ]nβ − [Hα
α] nβnµ , (69)

H = −2 (~n · ~n) [Hα
α] + 2nαnβ [Hαβ ] , (70)

τβµ = − (~n · ~n) [Hβµ] + nα [Hαβ ]nµ + nα [Hαµ]nβ − [Hα
α] nβnµ

− gβµ|Σ (− (~n · ~n) [Hα
α] + nαnν [Hαν ]) . (71)

Summarizing, we have the following general theorem.

Theorem 7 1. At a point x ∈ Σ where the hypersurface is not null, the singular
part of the Ricci tensor distribution vanishes if and only if [Hβµ] = 0, hence, iff
the singular part of the Riemann tensor distribution vanishes.

2. At a point x ∈ Σ where the hypersurface is null, the singular part of the Ricci
tensor distribution vanishes if and only if nα [Hαβ] = 0 and [Hα

α] = 0.

3. The singular part of the energy-momentum tensor distribution vanishes if and
only if so does the singular part of the Ricci tensor distribution.

4. The singular part of the curvature scalar distributon vanishes if and only if
(~n · ~n) [Hα

α] = [Hβµ]nβnµ.

Proof: For the first two assertions, if Hβµ = 0 then we can contract equation (69) with
ℓβ and ℓµ to obtain [Hα

α] = 0, and contracting now the same equation only with ℓβ

and using this last result we have nα [Hαµ] = 0. Thus, Hβµ = − (~n · ~n) [Hβµ] = 0 so
that the direct part of the theorem follows. The converse is trivial from equation (69)
itself. The third assertion is then immediate from the definition τβµ = Hβµ−

1
2

gβµ|Σ H .
Finally, the last part is a simple consequence of equation (70).

We see from this theorem that, at points where Σ is not null, the vanishing of the
matter singular part is equivalent to the vanishing of the full Riemann singular part,
whereas at points where Σ is null this is not the case.

The above theorems seem to depend on the rigging vector ~ℓ, even though we have
not chosen this vector field on the hypersurface. Therefore, it would be very interesting
to see that the results do not depend, in fact, on the rigging vector ~ℓ. This can be
established straightforwardly.

Theorem 8 The condition [Hαβ ] = 0 is invariant under arbitrary changes of the rig-

ging vector ~ℓ.
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Proof: Let us consider another rigging ~ℓ′. Its difference tensor [H′
αβ] is, of course

[H′
αβ] =

1

2
P ′µ

αP ′ν
βζµν

where P ′µ
α = δµ

α − ℓ′µnα is the projection tensor associated to the rigging ~ℓ′. Using now
the decomposition (62) of ζµν and the fact that P ′α

µ is a projector to the hypersurface
in the sense that P ′α

µnα = 0, we obtain

[H′
αβ] =

1

2
P ′µ

αP ′ν
βζ

~ℓ
µν = P ′µ

αP ′ν
β [Hµν ]

This equation shows that if [Hµν ] = 0 then [H′
µν ] = 0, and vice versa due to the

symmetric role played by ~ℓ and ~ℓ′ in this reasoning.

Let us study now what is the difference of the objects in the hypersurface, like
Ψa

b , ϕa, Γ̃a
bc, Γa

bc or Kab, when calculated from V + or V −. It is very easy from their
definitions to find the following results

[Ψa
b ] =

1

2
gaceµ

c e
ν
b ζµν = gaceµ

c e
ν
b [Hµν ] = gac [Hcb] , (72)

[ϕa] =
1

2
nbe

µ
b e

ν
aζµν = nbe

µ
b e

ν
a [Hµν ] = nb [Hba] , (73)

[Kab] =
1

2
(~n · ~n) eµ

ae
ν
b ζµν = (~n · ~n) eµ

ae
ν
b [Hµν ] = (~n · ~n) [Hab] , (74)

[Γa
bc] = −

1

2
nae

µ
b e

ν
c ζµν = −nae

µ
b e

ν
c [Hµν ] = −na [Hbc] , (75)

[

Γ̃a
bc

]

= 0 . (76)

From (76) we learn that the rigged metric connection is always, and for any rigging,
continuous. In this sense, the rigged metric connection is more intrinsic for general
hypersurfaces than the rigged connection. Consequence of this, (or directly of equations
(75) and (73)), is that Γc has always the same definitions from both sides of the
hypersurface, as is trivial from its expression Γc = ∂c log (η123). The rigged connection,
as we can see from (75), is discontinuous in general unless either we have already
matched properly such that the junction conditions hold or in the case of non-null
hypersurfaces when the rigging is chosen canonically as the normal vector (in which
case we have na = 0).

With regard to the second fundamental form, from (74) we have the standard and
very well-known result (see, for instance, [24],[21], [22]):

Theorem 9 At any point x ∈ Σ where the hypersurface is non-null, the necessary and
sufficient condition for the singular part of the Riemann tensor to vanish is that the
second fundamental form be continuous across the hypersurface.
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On the other hand, the second fundamental form is always continuous at any point
x ∈ Σ where the hypersurface is null.

This theorem has its counterpart in the case of general hypersurfaces, but we must use
the tensor Ψa

b instead of the second fundamental form, and also we have to choose a
non-null rigging. The precise statement, which follows directly from equation (72) and
proposition 4, is

Theorem 10 At any point x ∈ Σ, the necessary and sufficient condition for the sin-
gular part of the Riemann tensor to vanish is that the tensor Ψa

b , constructed with any
non-null rigging, be the same defined from the region V + and from the region V −.

Next, we are going to show that the second Bianchi identity holds in the distri-
butional sense independently of whether or not the junction conditions are satisfied
(of course, the preliminary junction conditions and a C3 differentiability for g± are
both assumed). To prove it, we do not have to extend any object in the hypersurface
outside from it, but we need to know the covariant derivative of the Riemann tensor
distribution. Although in the general case we cannot define the covariant derivative
of arbitrary distributions because the connection symbols are discontinuous across the
hypersurface, for the Riemann distribution this can be done without problems at once.
This is due to the fact that the Riemann distribution components are able to act on
the following set of test functions: those with a well-defined restriction to the hyper-
surface and such that they are just locally integrable both in the spacetime and in the
hypersurface. From definition (109) we can find after some simple calculations

〈

∇µR
α
βγδ, Y

〉

=
∫

V +

∇µR
+α

βγδY η +
∫

V −

∇µR
−α

βγδY η +
∫

Σ
nµ

[

Rα
βγδ

]

Y dσ +

+
∫

Σ

{(

−Hα
σγδΓ

σ
βµ − Hα

βσδΓ
σ
γµ − Hα

βγσΓσ
δµ + Hν

βγδΓ
α
νµ − Hα

βγδΓ
ρ
µρ

)

Y − Hα
βγδ∂µY

}

dσ .(77)

From here it follows that we must know the discontinuity of the Riemann tensor across
the hypersurface. Equation (50) applied to the Christoffel symbols gives

[

∂γΓ
α
βδ

]

= nγA
α
βδ + ωa

γ∂a

[

Γα
βδ

]

,

while the discontinuity
[

Γα
γρΓ

ρ
βδ

]

is easily found to be

[

Γα
γρΓ

ρ
βδ

]

= Γα
γρ

∣

∣

∣

Σ

[

Γρ
βδ

]

+
[

Γα
γρ

]

Γρ
βδ

∣

∣

∣

Σ
.

Thus, we explicitly have (77) in terms of known objects and we can evaluate

∇µRα
βγδ + ∇γR

α
βδµ + ∇δR

α
βµγ . (78)
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After a long but straightforward calculation involving a decomposition of the partial
derivative of the test function ∂µY = nµℓ

ν∂νY + ωa
µ∂aY , a careful integration by parts

and using the fact that

nµH
α
βγδ + nγH

α
βδµ + nδH

α
βµγ = 0

as follows from the explicit expression (54) of Hα
βγδ, together with the Bianchi identities

for the Riemann tensors in V + and V −, we find that expression (78) applied to a test
function Y produces the following result
∫

Σ

{[

Γα
βδ

] (

ωa
µ∂anγ − ωa

γ∂anµ + nγ(∂aω
a
µ + ωa

µΓa) − nµ(∂aω
a
γ + ωa

γΓa)
)

− Γν
µνH

α
βγδ + c.t.

}

dσ

where c.t. represents the two other terms obtained from the one shown by permuting
ciclically the indexes µ, γ and δ. Taking into account the formulas of previous sections,
it is not difficult to see that

ωa
µ∂anγ − ωa

γ∂anµ + nγ(∂aω
a
µ + ωa

µΓa) − nµ(∂aω
a
γ + ωa

γΓa) = nγΓ
ν
µν − nµΓν

γν

and recalling again expression (54) we arrive then to the Bianchi identities

∇µRα
βγδ + ∇γR

α
βδµ + ∇δR

α
βµγ = 0. (79)

Of course, from this we also have

∇µG
µν = 0 ,

so that, when the metric is continuous, the energy-momentum tensor distribution is
conserved in the distributional sense.

6 Physical Implications of the Junction Conditions.

Let us now assume that we have made a proper matching between spacetimes such that
the singular part of the Riemann tensor distribution vanishes or, equivalently, for every
rigging vector field ~ℓ we have [Hµν ] = 0. Our aim is to find the allowable discontinuities
of the Riemann tensor, that is to say, we want to know which physical components
of the curvature, i.e. of the Einstein tensor (matter contents) and the Weyl tensor
(pure gravitational field), can have discontinuities across the hypersurface. Given that
[Hµν ] = 0, we get from formulas (72-75) above that

[Ψa
b ] = 0 , [ϕc] = 0 , [Kab] = 0 , [Γa

bc] = 0

and therefore the covariant derivative ∇ in the hypersurface has the same definition
coming from V + or V −. Using now the Gauss equation (12) and the three Codazzi
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equations (13,15,16) we immediately find

[

ωd
αRα

βγδe
β
ae

γ
b e

δ
c

]

= 0 ,
[

nµR
µ
αβγe

α
ae

β
b eγ

c

]

= 0 ,
[

ωc
µR

µ
αβγℓ

αeβ
ae

γ
b

]

= 0 ,
[

nµR
µ
αβγℓ

αeβ
ae

γ
b

]

= 0 .

Noting that {n, ωc} and
{

~ℓ, ~ea

}

are bases of their respective tangent spaces, we have

Theorem 11 If the junction conditions [Hµν ] = 0 are satisfied, then

[

R
µ
αβγ

]

eβ
ae

γ
b = 0 . (80)

These are fourteen independent relations so that fourteen out of the twenty components
of the Riemann tensor must be continuous. Thus, only six independent discontinuities
in the curvature are allowed.

We can rewrite equations (80) in several different forms. First of all, given three
independent vectors ~ea and their normal one-form n, it is a general result for an object
(V ) with two covariant antisymmetric indexes that

(V )λµe
λ
ae

µ
b = 0 ⇔ nσ(V )λµ + nλ(V )µσ + nµ(V )σλ = 0

where we have written (V ) because this object can have more than two indexes. There-
fore the continuity conditions for the Riemann tensor can be rewritten as

nσ

[

Rα
βλµ

]

+ nλ

[

Rα
βµσ

]

+ nµ

[

Rα
βσλ

]

= 0 . (81)

It is a known result that (81) is still equivalent to the existence of a symmetric two-
covariant tensor Bµν such that

[Rαβλµ] = nαnλBβµ − nλnβBαµ − nµnαBβλ + nµnβBαλ, (82)

where Bλµ is a tensor field defined at the hypersurface and unique up to a transforma-
tion of the type

B′
λµ = Bλµ + Xλnµ + nλXµ

with Xλ an arbitrary one-form. The ten independent components of Bλµ minus the
four gauge freedoms Xλ give the six arbitrary possible discontinuities of the Riemann
tensor. Direct consequences of (81) are the following

nσ

[

Rσ
βλµ

]

= nλ [Rβµ] − nµ [Rβλ] , (83)

nσ

[

Rσ
βλµ

]

eλ
a = −nµ [Rβλ] e

λ
a (84)
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where we have not lost any information. In other words, equations (80), (81), (82),
(83) and (84) are, all of them, equivalent to each other.

We are now ready to study which of the six allowable curvature discontinuities are
matter discontinuities or pure gravitational (Weyl) ones. Contracting indexes β and µ

in equation (83) we get

nσ [Rσλ] =
1

2
nλ [R] (85)

or, what is the same,

nσ [Gσλ] = 0 (86)

where, of course, Gσλ is the Einstein tensor of the manifold. These relations were
known in the case of non-null junction hypersurfaces as the Israel conditions [24].
This equation tells us that four components of the Einstein tensor cannot have any
discontinuities across the junction hypersurface. In order to see which are the remaining
ten continuous components of the curvature, we use the decomposition of the Riemann
tensor in terms of the Weyl tensor, Ricci tensor and scalar curvature

Rα
βλµ = Cα

βλµ +
1

2

(

Rα
λgβµ − Rα

µgβλ + δα
λRβµ − δα

µRβλ

)

−
1

6
R
(

δα
λgβµ − δα

µgβλ

)

(87)

and then we can rewrite equations (83) and (84), respectively, in the the following form

nσ

[

Cσ
βλµ

]

=
1

12
[R] (gβλnµ − gβµnλ) +

1

2
(nλ [Rβµ] − nµ [Rβλ]) , (88)

nσ

[

Cσ
βλµ

]

eλ
a =

1

12
nµe

λ
a ([R] gβλ − 6 [Rβλ]) (89)

where we have used (85). Despite of this, these two relations are again fully equivalent
to the general condition (80). From the last equation it is immediate that

nσ

[

Cσ
βλµ

]

eλ
ae

µ
b = 0 (90)

and this equation contains five independent relations so that these five out of the ten
components of the Weyl tensor must be continuous across the hypersurface. We have
hitherto decomposed the fourteen conditions on the Riemann tensor into four on the
Einstein tensor (or Ricci tensor) and five on the Weyl tensor. We will complete these
relations by identifying the possible discontinuities of the Riemann tensor and writing
down all the components of the Ricci and Weyl tensors in terms of these discontinuities.
From formula (82) it is clear that the independent discontinuities of the Riemann tensor
are

ℓαeβ
aℓλe

µ
b [Rαβλµ] = eβ

ae
µ
b Bβµ ≡ Bab, (91)
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where obviously Bab are independent of the gauge freedom of Bαβ and are the six
independent allowed discontinuities in the Riemann tensor. The discontinuities of the
Ricci and Weyl tensor can be straightforwardly written in terms of these quantities
using equation (82) and the decomposition (87) as

[R] = 2 (~n · ~n) gabBab − 2nanbBab (92)

ℓαℓβ [Rαβ ] = gabBab (93)

ℓαe
β
b [Rαβ ] = −naBab (94)

eα
ae

β
b [Rαβ ] = (~n · ~n) Bab (95)

ℓαeβ
aℓλe

µ
b [Cαβλµ] =

2 − (~n · ~n)
(

~ℓ · ~ℓ
)

2
Bab −

1

2
nc (Bcbℓa + Bcaℓb) −

ℓaℓb

3

(

(~n · ~n) gcdBcd

−ncndBcd

)

− gab







~ℓ · ~ℓ

3
ncndBcd +

3 − 2 (~n · ~n)
(

~ℓ · ~ℓ
)

6
gcdBcd







(96)

ℓαe
β
b e

λ
c e

µ
d [Cαβλµ] =

1

2
na (Bacgbd − Badgbc) +

~n · ~n

2
(Bbcℓd − Bbdℓc)

+
1

3

(

(~n · ~n) gefBef − nenfBef

)

(gbdℓc − gbcℓd) (97)

eα
ae

β
b e

λ
c e

µ
d [Cαβλµ] =

~n · ~n

2
(Badgbc − Bacgbd + Bbcgad − Bbdgac)

+
1

3

(

(~n · ~n) gefBef − nenfBef

)

(gacgbd − gadgbc) . (98)

These equations contain both the Israel conditions (86) and the relations concerning
only the Weyl tensor (90) and include all the the information about the continuities
of the Riemann tensor. The question now is to rewrite these equations in terms of six
components of the Weyl or Ricci tensor which can be arbitrarily discontinous across the
hypersurface. For an everywhere non-degenerate hypersurface these components can
be chosen as the tangent part of the Ricci or Einstein tensor, as is clear from relation
(95), but for a general hypersurface those are not arbitrary because they must tend to
zero in the singular points where the hypersurface is degenerate. A suitable set of six
independent components whose discontinuities are arbitrary everywhere in a general
hypersurface is

ℓαℓβ [Rαβ ] −
~ℓ · ~ℓ

3
[R] ≡ Ω , ℓαeβ

aℓ
λe

µ
b [Cαβλµ] ≡ Sab. (99)

The six components ℓαe
β
b ℓλeµ

c [Cαβλµ] satisfy the relation

gabSab ≡ gabℓαe
β
b ℓλeµ

c [Cαβλµ] = 0,

consequence of the fact that the Weyl tensor is traceless. So the components written
above constitute really a set of six independent quantities.
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From equation (96) it is clear that Bab can be written in terms of these components

when (~n · ~n)
(

~ℓ · ~ℓ
)

6= 2.

Bab =
2

2 − (~n · ~n)
(

~ℓ · ~ℓ
)

(

Sab + ncScbℓa + ncScaℓb +
1

2
gabΩ

)

. (100)

This is not a restriction because this is a condition only on the rigging but not on the
point type of the hypersurface. We can always choose a rigging vector ~ℓ that satisfies
the above inequality. Thus, in terms of the quantities (99) the fourteen continuity
relations are

[R] =
6

2 − (~n · ~n)
(

~ℓ · ~ℓ
)

(

−2nendSed + (~n · ~n)Ω
)

(101)

ℓαℓβ [Rαβ ] =

(

2 + (~n · ~n)
(

~ℓ · ~ℓ
))

Ω − 4
(

~ℓ · ~ℓ
)

nendSed

2 − (~n · ~n)
(

~ℓ · ~ℓ
) (102)

ℓαeβ
c [Rαβ ] = −2nbSbc +

ℓc

2 − (~n · ~n)
(

~ℓ · ~ℓ
)

(

(~n · ~n) Ω − 2nendSed

)

(103)

eα
ae

β
b [Rαβ ] =

~n · ~n

2 − (~n · ~n)
(

~ℓ · ~ℓ
) (2Sab + 2 (neSebℓa + neSeaℓb) + gabΩ)(104)

ℓαeβ
aeλ

b e
µ
c [Cαβλµ] =

(

gacn
dSbd − gabn

dSdc

)

−
ndneSde (gacℓb − gabℓc)

2 − (~n · ~n)
(

~ℓ · ~ℓ
)

+
(~n · ~n)

{

ℓa

(

ℓcn
dSdb − ℓbn

dSdc

)

− (ℓbSac − ℓcSab)
}

2 − (~n · ~n)
(

~ℓ · ~ℓ
) (105)

eα
ae

β
b eλ

c e
µ
d [Cαβλµ] =

~n · ~n

2 − (~n · ~n)
(

~ℓ · ~ℓ
) {gbcSad − gbdSac + gadSbc − gacSbd

+neSea (ℓdgbc − ℓcgbd) + neSeb (ℓcgad − ℓdgac)

+neSed (ℓagbc − ℓbgac) + neSec (ℓbgad − ℓagbc)}

+
2nenfSef

2 − (~n · ~n)
(

~ℓ · ~ℓ
) (gadgbc − gacgbd) . (106)

Several interesting considerations can be made at the sight of these equations about
the behaviour of the discontinuities of the Ricci and Weyl tensors across the junction
hypersurface of two properly matched spacetimes, but as they are self-evident from the
equations we will not discuss them unless for the most important ones. We write them
down in the form of

Theorem 12 If the junction conditions are verified on the matching hypersurface, the
following properties about the discontinuities of the Riemann tensor hold:
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1. The four normal components (86) of the energy-momentum tensor are necessarily
continuous across the hypersurface (Israel conditions).

2. The five components (90) of the Weyl tensor are continuous across the matching
hypersurface.

3. A suitable set of six independent allowable discontinuities of the Ricci and Weyl
tensors for general hypersurfaces which change in character is given by (99).

4. At any point x ∈ Σ where the matching hypersurface is non-null the six indepen-
dent allowable discontinuities can be chosen as arbitrary matter discontinuities
given by [Tµνe

µ
ae

ν
b ].

5. For null points the tangent part of the Ricci tensor must be continuous (see (95))
across the hypersurface. Moreover, four of the six independent allowable discon-
tinuities can be chosen as matter discontinuities given by [ℓµRµν ] and the other
two arbitrary discontinuities are given by the spinorial component [Ψ4] in any
null tetrad with ~n as the first real null vector.

6. Near the singular points of the hypersurface the tangent components of the Ricci
tensor must tend to zero at least as the first power of the norm of the normal
vector (see (95)).

To end this section we consider the question if there exists any differential equation
governing the evolution of the arbitrary discontinuities of the Riemann tensor. The
Bianchi identities, which are true both in V + and V − imply obviously that

[∇ρRαβλµ + ∇λRαβµρ + ∇µRαβρλ] = 0. (107)

Due to the general formula (50), the discontinuity of the covariant derivative of the
Riemann tensor can be written

[∇ρRαβλµ] = nρtαβλµ + ωa
ρ (eσ

a∇σ [Rαβλµ]) ,

where tαβλµ is an arbitrary tensor on the hypersurface with the symmetries of a Rie-
mann tensor. Substituting in the second term of this relation the equation for the
discontinuity of the Riemann tensor (82) and using some of the relations written down
in a previous section it can be proven that the Bianchi discontinuity relation (107) is
completely equivalent to the relation

tαβλµeλ
b e

µ
d =

1

2
(KadBbc − KcdBba − KabBdc + KcbBda)

(

ωa
αωc

β − ωa
βωc

α

)

+
(

∇bBad −∇dBab − 2ϕbBad + 2ϕdBab

) (

nαωa
β − nβω

a
α

)

. (108)
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As before, these are fourteen relations for the twenty independent components of tαβλµ,
so there appear six new arbitrary independent discontinuities in ∇ρRαβλµ. The other
six relations contained in the Bianchi identities are identically verified for the deriva-
tives of the discontinuity of the Riemann tensor and do not involve the tensor tαβλµ.
Thus the Bianchi discontinuity relations do not provide us with any evolution equa-
tion for the discontinuity of the Riemann tensor. However, we see from (108) that the
discontinuities in the first derivatives of the Riemann tensor (apart from the six new
arbitrary ones) involve not only the discontinuities Bab of the Riemann tensor itself and
its first derivatives, but also intrinsic properties of the matching hypersurface, namely,
the second fundamental form and the one-form ϕ.
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8 Appendix.

In order to define tensor distributions (see, for instance [20],[16]) it is necessary to
construct the set D(V4) of test tensor fields, that is, the set of C∞ tensor fields of any
order with compact support in the manifold. We denote by Dq

p the subset of p-covariant
q-contravariant tensor fields with compact support. Then, p-covariant q-contravariant
tensor distributions χq

p are defined as linear and continuous functionals from Dp
q to the

real numbers, that is to say

χq
p : Dp

q → IR

Y p
q → χq

p

(

Y p
q

)

≡
〈

χq
p, Y

p
q

〉

.

The sum of two tensor distributions of the same type and the product of a tensor
distribution by a real number can be defined in the usual way. With these definitions
the space of tensor distributions of a given type constitutes a vector space. Given any
locally integrable p-covariant q-contravariant tensor field T q

p in an oriented manifold, we
can define a p-covariant q-contravariant tensor distribution associated to it as follows

T q
p : Dp

q → IR

Y p
q →

〈

T q
p, Y

p
q

〉

≡
∫

V4

(T, Y )η

where (T, Y ) means tensor contraction on all indexes in the natural order. As Y is in
Dp

q , its contraction with T is a locally integrable scalar function with compact support
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in the manifold and therefore the above integral is well-defined. We will repeatedly use
the convention of distinguishing between a tensor field and the distribution it defines
by using an underline as before. As is seen in the last formula the tensor distribution
associated to a tensor field can act not only on C∞ tensor fields with compact support
but also on continuous ones. We will consider the action of a tensor distribution always
that this action can be defined.

The components of a tensor distribution χ in a coordinate system are scalar distri-
butions χ

α1···αq

β1···βp
defined by

〈

χ
α1···αq

β1···βp
, Y
〉

≡

〈

χq
p, Y dxα1 ⊗ · · · ⊗ dxαp ⊗

∂

∂xβ1
⊗ · · · ⊗

∂

∂xβq

〉

where Y is a function with compact support. With this definition it is not difficult to
prove the following expression

〈

χq
p, Y

p
q

〉

=
〈

χ
α1···αq

β1···βp
, Y β1···βp

α1···αq

〉

.

The contraction of some indexes of a tensor distribution can be defined as the tensor
distribution whose components in a coordinate system are those obtained by contract-
ing the desired indexes of its components. This definition is seen to be well defined
and independent of the coordinate system. Moreover, the tensor product of a tensor
distribution χq

p by a tensor field T r
s can be defined, (in general, only when this tensor

field is C∞ but, as we have already discussed, also in more general cases sometimes),
as the (p+s)-covariant (q+r)-contravariant tensor distribution acting as follows

〈

T r
s ⊗ χq

p, Y
s+p
r+q

〉

≡
〈

χq
p, (T, Y )p

q

〉

where (T, Y )p
q is the element of Dp

q obtained by contracting T with the first indexes of
Y in order.

We are now going to define covariant derivatives of tensor distributions. To that
aim, we have to consider Riemannian manifolds (or at least with a linear connection
satisfying Gauss theorem) such that the Christoffe, symbols are, in principle, C∞ in
each coordinate system. The definition of covariant derivative of a tensor distribution
generalizes the concept of covariant derivative of tensor fields in the sense that for
tensor distributions coming from a tensor field it gives the tensor distributiC∞ tensor
fields of any order with compact support in the manifold. We denote by Dq

p the subset
of p-covariant q-contravariant tensor fields with compact support. Then, p-covariant
q-contravariant tensor distributions χq

p are defined as linear and continuous functionals
from Dp

q to the real numbers, that is to say

χq
p : Dp

q → IR

Y p
q → χq

p

(

Y p
q

)

≡
〈

χq
p, Y

p
q

〉

.
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The sum of two tensor distributions of the same type and the product of a tensor
distribution by a real number can be defined in the usual way. With these definitions
the space of tensor distributions of a given type constitutes a vector space. Given any
locally integrable p-covariant q-contravariant tensor field T q

p in an oriented manifold, we
can define a p-covariant q-contravariant tensor distribution associated to it as follows

T q
p : Dp

q → IR

Y p
q →

〈

T q
p, Y

p
q

〉

≡
∫

V4

(T, Y )η

where (T, Y ) means tensor contraction on all indexes in the natural order. As Y is in
Dp

q , its contraction with T is a locally integrable scalar function with compact support
in the manifold and therefore the above integral is well-defined. We will repeatedly use
the convention of distinguishing between a tensor field and the distribution it defines
by using an underline as before. As is seen in the last formula the tensor distribution
associated to a tensor field can act not only on C∞ tensor fields with compact support
but also on continuous ones. We will consider the action of a tensor distribution always
that this action can be defined.

The components of a tensor distribution χ in a coordinate system are scalar distri-
butions χ

α1···αq

β1···βp
defined by

〈

χ
α1···αq

β1···βp
, Y
〉

≡

〈

χq
p, Y dxα1 ⊗ · · · ⊗ dxαp ⊗

∂

∂xβ1
⊗ · · · ⊗

∂

∂xβq

〉

where Y is a function with compact support. With this definition it is not difficult to
prove the following expression

〈

χq
p, Y

p
q

〉

=
〈

χ
α1···αq

β1···βp
, Y β1···βp

α1···αq

〉

.

The contraction of some indexes of a tensor distribution can be defined as the tensor
distribution whose components in a coordinate system are those obtained by contract-
ing the desired indexes of its components. This definition is seen to be well defined
and independent of the coordinate system. Moreover, the tensor product of a tensor
distribution χq

p by a tensor field T r
s can be defined, (in general, only when this tensor

field is C∞ but, as we have already discussed, also in more general cases sometimes),
as the (p+s)-covariant (q+r)-contravariant tensor distribution acting as follows

〈

T r
s ⊗ χq

p, Y
s+p
r+q

〉

≡
〈

χq
p, (T, Y )p

q

〉

where (T, Y )p
q is the element of Dp

q obtained by contracting T with the first indexes of
Y in order.

We are now going to define covariant derivatives of tensor distributions. To that
aim, we have to consider Riemannian manifolds (or at least with a linear connection
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satisfying Gauss theorem) such that the Christoffel symbols are, in principle, C∞ in
each coordinate system. The definition of covariant derivative of a tensor distribution
generalizes the concept of covariant derivative of tensor fields in the sense that for tensor
distributions coming from a tensor field it gives the tensor distribution associated to
the usual covariant derivative of the tensor field. This definition is

〈

∇χq
p, Y

p+1
q

〉

≡ −
〈

χq
p, (DY )p

q

〉

where (DY )α1···αp

β1···βq
= ∇µY

µα1···αp

β1···βq
. With this definition, the components of the covariant

derivative are the scalar distributions acting as

〈

∇µχ
α1···αq

β1···βp
, Y
〉

= −
〈

χ
α1···αq

β1···βp
, ∂µY + Γρ

ρµY
〉

−
p
∑

i=1

〈

χ
α1···αq

β1···βi−1ρβi+1···βp
, Γρ

βiµ
Y
〉

+
q
∑

j=1

〈

χ
α1···αj−1ραj+1···αq

β1···βp
, Γαj

ρµY
〉

. (109)

In the case of a scalar distribution χ we have therefore

〈∇µχ, Y 〉 ≡ 〈∂µχ, Y 〉 = −
〈

χ, ∂µY + Γρ
ρµY

〉

The last relations are written in the case of a Riemannian (or at least linear) manifold
but they also hold in the case of n-dimensional manifolds possessing a C1 volume form
η by substituting Γρ

ρµ for Γα defined as

∂µηβ1···βn
≡ Γµηβ1···βn

.

From now on, we will restrict ourselves to the case studied in chapter 3 whenever the
preliminary junction conditions are satisfied, i.e. a spacetime V4 with a hypersurface Σ
such that the metric tensor is continuous but not differentiable across this hypersurface.
Thus, the Christoffel symbols do not exist at points of Σ but they do everywhere outside
this hypersurface. First of all we will define the so-called step Heaviside function of Σ
by

θ : V4 → IR

θ =











1 in V +

a in Σ
0 in V −

(110)

where a is an arbitrary real number. This function is locally integrable and therefore
it defines a scalar distribution θ in the natural way:

〈θ, Y 〉 =
∫

V +

Y η
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The distribution θ does not depend on the value of the function θ on the hypersurface,
and therefore we will not fix this value at the moment.

In the case under consideration, the object Γµ given above does not exist at the
hypersurface but, in fact, this is not an obstacle to define the partial derivative of
some scalar distributions. In particular, let us consider a scalar function f which is
discontinuous across Σ but differentiable in V + and V −, and such that f and its first
derivatives have definite limits on Σ coming from both V + and V −. If we call f+

its restriction to V + and analogously for f−, it is trivial to see that the distribution
associated to that function, which exists because f is locally integrable, is

f = f+ · θ + f− · (1 − θ) .

The partial derivative of this scalar distribution exists despite the discontinuity of Γµ

across Σ. Integrating by parts in V + and V − we find

〈

∇f, ~Y
〉

=
∫

V +

Y µ∂µf+η +
∫

V −

Y µ∂µf−η +
∫

Σ
[f ] Y µdσµ (111)

where dσµ is oriented from V − towards V + and [f ] is a scalar function defined on Σ,
called step of f at Σ, and defined by

∀q ∈ Σ [f ] (q) ≡ lim
x →

V +
q
f+(x) − lim

x →
V −

q
f−(x) .

We can rewrite all this by defining a one-covariant distribution δ as

〈

δ, ~Y
〉

≡
∫

Σ
Y µdσµ =

∫

Σ
Y µnµdσ .

From equation (111), choosing f+ = 1 and f− = 0 it is direct that δ has an intrinsic
definition as δ= ∇θ. This distribution can act on every vector field defined at least at
the points of the hypersurface which is locally integrable there. We can also define a
scalar distribution δ as follows

〈δ, Y 〉 ≡
∫

Σ
Y dσ .

Of course, δ depends on the choice of the normal form n and we have δ = n · δ or, in
components, δµ = nµ · δ. Therefore equation (111) can be written as

∂µf = ∂µf
+ · θ + ∂µf− · (1 − θ) + [f ] · δµ . (112)

We are now going to define the connection and the Riemann tensor in the manifold.
g being a continuous tensor across the hypersurface we can write it as

g = (1 − θ) g− + θ g+
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independently of the value of a, and the tensor distribution associated to it obviously
is

g = (1 − θ) · g− + θ · g+ .

As usual, we can define the connection symbols associated to the metric in the manifold.
We denote by Γ+α

βγ the Christoffel symbols associated with g+ and defined on V + ∪Σ,
by Γ−α

βγ those associated to g− and defined on V −∪Σ, and finally by Γα
βγ the connection

symbols associated with the whole metric distribution g . The relation between them
is obviously

Γα
βγ = (1 − θ) · Γ−α

βγ + θ · Γ+α

βγ . (113)

However, in order to be able to define covariant derivatives of tensor distributions, and
as is immediate from formula (109), we need to know the connection symbols not only
as distributions but as functions in the manifold as well. We choose these functions
in a natural way from the expression of the connection symbols as distributions. In
consequence we have

Γα
βγ = (1 − θ) Γ−α

βγ + θ Γ+α

βγ . (114)

Using the definition of the Riemann tensor Rα
βλµ = ∂λΓ

α
βµ − ∂µΓα

βλ + Γα
λρΓ

ρ
βµ − Γα

µρΓ
ρ
βλ

and treating this equation as a relation between distributions in the manifold, we will
find a relation between the Riemann tensor of V4 and the Riemann tensors defined
from Γ+α

βγ and Γ−α
βγ. In fact, from formulas (112) and (113) we have

∂µΓα
βλ = (1 − θ) · ∂µΓ−α

βλ + θ · ∂µΓ+α

βλ + δ · nµ

[

Γα
βγ

]

and, given that Γα
βγ are distributions associated to functions so that the product Γα

λρΓ
ρ
βµ

is well defined

Γα
λρΓ

ρ
βµ = (1 − θ) · Γ−α

λρΓ
−ρ

βµ + θ · Γ+α

λρΓ
+ρ

βµ

where we have made use of θ·θ = θ and its consequences θ·(1 − θ) = 0, (1 − θ)·(1 − θ) =
(1 − θ), we finally arrive at the following expression for the Riemann tensor distribution

Rα
βλµ = (1 − θ) · R−α

βλµ + θ · R+α

βλµ + δ · nλ

[

Γα
βµ

]

− δ · nµ

[

Γα
βλ

]

. (115)
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