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Abstract: In an ordinary quantum field theory, the “split property” implies that

the state of the system can be specified independently on a bounded subregion of a

Cauchy slice and its complement. This property does not hold for theories of gravity,

where observables near the boundary of the Cauchy slice uniquely fix the state on the

entire slice. The original formulation of the information paradox explicitly assumed the

split property and we follow this assumption to isolate the precise error in Hawking’s

argument. A similar assumption also underpins the monogamy paradox of Mathur

and AMPS. Finally the same assumption is used to support the common idea that the

entanglement entropy of the region outside a black hole should follow a Page curve.

It is for this reason that computations of the Page curve have been performed only

in nonstandard theories of gravity, which include a nongravitational bath and massive

gravitons. The fine-grained entropy at I+ does not obey a Page curve for an evaporating

black hole in standard theories of gravity but we discuss possibilities for coarse graining

that might lead to a Page curve in such cases.
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It is sometimes possible to make progress simply by discarding an incorrect as-

sumption. In this essay, we will discuss the incorrect assumption that the state of a

system, in a standard theory of quantum gravity, can be specified independently on a

bounded region and on its complement.

It is not hard to see why this assumption, although incorrect, is appealing. First,

such a property does hold for nongravitational quantum field theories, and can be

formalized in terms of the “split property” [1–3] that we review below. The split

property relies on the fact that, in nongravitational theories, the algebra of observables

on a Cauchy slice can be separated into a subalgebra associated with a bounded region

and a commuting subalgebra associated with its complement. Second, in classical

gravity it is possible to find solutions that coincide outside a bounded region but differ

inside [4]. This has led to a common belief that, even in quantum gravity, observables

outside a bounded region do not give us much information about the state inside the

region except for the energy and a small number of conserved charges.

However, it has recently been shown [5–7], in several examples, that the split

property fails in theories of quantum gravity. Instead such theories obey the principle

of “holography of information”, which states that all the information available on a

Cauchy slice is also available near its boundary. In particular, this means that once all

observables outside a bounded region have been specified there is no freedom to specify

the state of the system inside the region. So the manner in which quantum gravity

localizes information is the opposite of what the split property would suggest.

In this essay, we review how the split property has been assumed repeatedly in

discussions of black-hole information — sometimes tacitly and sometimes explicitly —

and this has often led to paradoxes. This assumption underpins Hawking’s original
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argument for information loss [8, 9]. It was also a key ingredient in the monogamy

paradox formulated by Mathur [10] and then elaborated by AMPS [11] that led to

discussions of “firewalls” behind the horizon. More interestingly, this assumption also

underlies the idea that the entropy of Hawking radiation should obey a “Page curve”

[12,13].

It is because this assumption is false in standard theories of gravity that compu-

tations of the Page curve [14–19] have been carried out only in nonstandard theories

of gravity that involve a nongravitational bath, contain a massive graviton and do not

obey the Gauss law. But these models of gravity do not provide an accurate under-

standing of the evaporation of black holes in standard gravity. We will point out how

simply discarding the assumption of the split property leads to a more robust resolution

of Hawking’s paradox.

This essay presents a brief summary of this perspective, with minimal technical

details. We provide specific references to the literature in the text and refer the reader

to the review [20] for a more detailed discussion and additional references. In section

1, we review the split property and its failure due to gravitational effects. In section

2, we isolate the precise point at which the split property was assumed in Hawking’s

original argument for information loss and, in section 3 we describe the significance of

this assumption in some later refinements of the paradox. We then explain, in section

4, how the same assumption led to the expectation that the entropy of the black hole

exterior should follow the Page curve and review the significance of the nongravitational

bath and massive gravitons in recent computations of the Page curve. In section 4, we

also discuss some possibilities for coarse-grained sets of observables that might lead to

a Page curve in standard theories of gravity.

However, one of the messages of this essay is that the failure of the split property

in theories of gravity is not a bug that needs to be avoided. Rather, this unusual

localization of quantum information in quantum gravity is an important physical lesson

that emerges from a study of black-hole information. By suitable manipulations, it is

possible to construct systems that lead to a Page curve and make a theory of gravity

resemble nongravitational theories. But this exercise does not appear to be directly

relevant for understanding the evaporation of black holes in a standard theory of gravity.

In standard theories of gravity, black hole spacetimes store information in a manner

that is more interesting than the Page curve would suggest.
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Figure 1: The configuration of interest. We study a region R (blue), surrounded by a

collar region ε (white) and the complement of R ∪ ε, which is denoted by Rε (purple).

The region, Rε extends to infinity. In a nongravitational theory, the state on Rε and

R can be specified entirely independently but in a theory of gravity the state on Rε

completely fixes the state on R.

1 The split property and its failure in gravity

1.1 Nongravitational quantum field theory

We start by briefly reviewing the split property in nongravitational quantum field

theories [1–3]. (See also the review [21].) Consider a Cauchy slice in a noncompact

spacetime. Let R be a bounded region that is surrounded by a small “collar region”, ε.

The complement of R∪ ε is denoted by Rε as shown in Figure 1. In a nongravitational

theory, there is no obstacle to studying local operators, φ(x) that probe the physics in

the region R and are labelled by a point x ∈ R. As usual, it is possible to consider

arbitrary polynomials of such operators to generate the algebra of the region R that

we denote by A.

A = span of{φ(x1), φ(x1)φ(x2), . . . , φ(x1)φ(x2) . . . φ(xn), . . .}, xi ∈ R (1.1)

Similarly, one may generate the algebra of observables in the region Rε that we denote

by A. Then, in a nongravitational quantum field theory, microcausality implies that

elements of these two algebras must commute pairwise

[A, Ā] = 0, ∀A ∈ A, Ā ∈ A. (1.2)
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In the context above, the split property states that if ρ1 and ρ2 are any two mixed

states in the theory, which we represent as density matrices, then it is possible to find

a “split state”, ρ, that appears to be like ρ1 in R and like ρ2 in Rε.

Tr(ρAĀ) = Tr(ρ1A)Tr(ρ2Ā), ∀A ∈ A, Ā ∈ A. (1.3)

The split property tells us that, in a nongravitational theory, even if we are given the

value of all observables in Rε we are completely ignorant about the state in R.

This property just formalizes the notion that, in a lattice regularization, the Hilbert

space of a nongravitational theory factorizes into a part associated with R and a part

associated with its complement. If the Hilbert space factorizes, we do not even need to

introduce a collar region. Say the full Hilbert space can be written as a tensor product

of a factor associated with R and another factor associated with its complement R:

H = HR ⊗HR. A split state can then be generated simply by taking

ρ = TrHR
(ρ1)⊗ TrHR

(ρ2); split state in a factorized Hilbert space. (1.4)

In the continuum theory, if one does not include the collar region then a product

state of the form above would have infinite energy. The collar region ensures that it is

possible to preserve the very-short distance correlations across the boundary of R and

Rε, allow a smooth “transition” from the state ρ1 in R to the state ρ2 in Rε and also

ensure no correlations between R and Rε.

If the reader finds the phrase “split property” unduly formal, the reader is free to

think in terms of the more familiar but slightly imprecise idea that the Hilbert space

“factorizes” into a part associated with a region and another part associated with its

complement. Indeed, we will use this formulation below to make contact with the

existing literature.

The “split property”, as written in the form (1.3), also holds in nongravitational

gauge theories. The existence of conserved charges does not modify (1.3); measuring

the charge in Rε does not tell us about the charge contained in R since an arbitrary

amount of compensating charge can be stuffed into the collar region.

1.2 Quantum gravity

1.2.1 Holography of information

The split property fails in quantum gravity and is replaced by the principle of hologra-

phy of information that we now review. We do not provide proofs of the results quoted

below but include references to the relevant literature.

In a theory of gravity, it is simplest to consider the algebra of asymptotic observ-

ables. This is because the gauge redundancy of the theory only comprises diffeomor-

phisms that die off asymptotically. So asymptotic observables are gauge invariant.

– 4 –



First consider four-dimensional asymptotically flat space. Let us denote the algebra

of operators at I+ by A(I+). (Similar statements hold for the algebra of operators on

I− and to avoid repetition, we only discuss I+.) The algebra A(I+) is generated by the

fields that describe the asymptotic fluctuations of the metric and of other dynamical

fields. The fluctuations of the metric can themselves be divided into the Bondi news

tensor NAB(u,Ω) (A,B run along the directions on I+) and the Bondi mass aspect

m(u,Ω) both of which are labeled by a retarded time, u, and a point on the celestial

sphere Ω.1 The algebra A(I+) is then constructed by taking all possible polynomials

in these operators precisely as in equation (1.1).

Now, consider the subalgebra formed by operators near the past boundary of I+,

which we denote by Abdry. (See Figure 2.) This is generated just as above except that

we restrict to operators whose retarded time is in the range (−∞,−1
ε
) for some choice

of ε. Naively, one might have thought that Abdry is a small subalgebra of A(I+). But

it can be shown any state of massless particles is uniquely specified by observables from

this algebra.

Tr(ρ1A) = Tr(ρ2A) ∀A ∈ Abdry ⇔ ρ1 = ρ2, (1.5)

where ρ1 and ρ2 are any two mixed states in the massless Hilbert space. The surprising

aspect of the statement above is that equality of the expectation values is not imposed

for all elements of A(I+) but only for the elements of Abdry. This result is proved as

“Result 1” in [5] and we note that Abdry here is denoted by A−∞,ε there.

We now turn to global AdSd+1 whose conformal boundary is of the form Sd−1 ×
R where the time coordinate runs from (−∞,∞). Let us denote the algebra of all

observables localized in boundary time t ∈ [0, ε] by Abdry. Then a statement of precisely

the form above can be established. If ρ1 and ρ2 are any two states in the theory

then imposing the equality of the expectation value of all elements in Abdry imposes

the equality of the states just as in (1.5). Such a statement would not be true in a

nongravitational theory, where the algebra of boundary observables would be much

larger than the algebra Abdry.

The result above is proved as “Result 5” in [5]. Note that this statement is not

proved using AdS/CFT. It can be independently derived by a consideration of the

operator algebra. In perturbation theory, this statement can also be derived directly

through an analysis of the constraints imposed on states by the Wheeler-DeWitt equa-

tion [7]. Within perturbation theory, it is also possible to construct a simple “physical

1In [22], it was argued that the mass aspect is not a well defined operator at finite retarded time.

For what follows, we only need the mass aspect near u → −∞ which can be defined as described in

Appendix B of [5].
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protocol” to extract information about the bulk from a small time band on the bound-

ary [6].

Let us now consider the physical interpretation of (1.5). In asymptotically flat

space, I+ can be thought of as a limit of Cauchy slices on which one can specify data

for massless excitations. Therefore, in asymptotically flat space, (1.5) tells us that

the information available on this entire Cauchy slice is available near its boundary,

which is precisely the principle of holography of information. Equation (1.5) can be

interpreted similarly in AdS. The algebra of operators at the conformal boundary in

the time band [0, ε] is similar to the algebra of operators at the time t = ε
2

but in the

radial range r ∈ [cot ε
2
,∞). Therefore, in AdS, (1.5) again tells us that information

available anywhere on a Cauchy slice is available near its boundary.

Proofs of the principle of holography of information have only been given in these

cases, although it seems very plausible that this should be a general property of gravi-

tational theories. For related discussion, we refer the reader to [23–25]. However, it is

not currently known how this principle applies when spatial slices are compact.

1.2.2 Failure of the split property

We now return to the implication for the split property. We emphasize that our dis-

cussion here is limited to bounded regions that are surrounded by their complement

as shown in Figure 1. The discussion below does not apply when the region and its

complement both extend to asymptotic infinity.

In quantum gravity, it is impossible to define local gauge-invariant observables and

so the first subtlety in considering the split property is to define what one means by

the algebra, A, associated with a region. One way to proceed is as follows. Even in

quantum gravity, it is possible to find approximately localized observables that probe

the physics in the region R. A common way to obtain such observables is simply to fix

gauge. Another, more elaborate procedure, is to “dress” such observables by means of

a gravitational Wilson line [26]. However, as the latter picture makes clear, such oper-

ators are ultimately nonlocal. Nevertheless, starting with a set of approximately local

operator in the region R, it is possible to define an algebra by taking all polynomials

of these operators as shown in (1.1). One may similarly associate an algebra, A with

the region Rε. We can then ask whether these algebras obey some version of the split

property.

To answer this question, we note that whatever procedure is adopted for associating

an algebra with a region it is clear that, in all cases, the algebra A must contain the

algebra of all asymptotic operators that we denoted by Abdry above. This simple

observation immediately implies that the split property must fail in gravity.
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This can be easily shown by contradiction. Assume that (1.3) holds in gravity.

Then taking A = 1 and Ā ∈ Abdry we find that

Tr(ρĀ) = Tr(ρ2Ā), ∀Ā ∈ Abdry. (1.6)

But then applying (1.5) we see that we must have ρ = ρ2. This means that for some

nontrivial A and for a general ρ1 it is impossible to satisfy (1.3). Therefore, as claimed,

it is impossible to specify the state of the theory inside and outside a bounded region

independently in a theory of gravity.

One important consequence of this result is that there is no simple definition of

the entanglement entropy of the complement of a bounded region in gravity. A natural

question is whether we can somehow coarse grain the set of observables so as to recover

an approximate split property and thereby define an entanglement entropy. We return

to this question below although, in general, the answer is state dependent.

But, in many cases, the result (1.5) is important even at leading order in per-

turbation theory. One striking example is as follows. Consider the vacuum of global

AdS. Then, as reviewed in [6], even if we keep track of the metric-degrees of freedom

to leading nontrivial order in perturbation theory in
lpl
lAdS

(Planck scale divided by the

AdS scale), the entanglement entropy of the complement of a bounded region is trivial.

This is because the measurement of the energy from near the boundary is enough to

uniquely identify the global vacuum that is the only state with vanishing energy. The

entanglement entropy of bounded regions and their complements is often studied in the

vacuum of nongravitational field theories but such a quantity appears subtle to define

even perturbatively in gravity in global AdS!

In other states, it is harder to extract information about a bounded region from its

complement. For instance, it is nonperturbatively difficult to determine a black hole

microstate by observations outside the black hole. This allows for a definition of a

coarse-grained entropy for the exterior, even in the presence of gravity. Nevertheless,

as we describe in section 4, the failure of the split property becomes relevant again if

one attempts to define a fine-grained entropy that obeys a Page curve.

2 The error in Hawking’s argument

It is commonly stated that to resolve Hawking’s original paradox, it is necessary to find

the precise error in Hawking’s original argument [9]. We now explain how the failure

of the split property in gravity allows us to isolate this error.

In [8] and [9], Hawking presented both a calculation and an argument. The cal-

culation was as follows. Let ρ be the final state of a black hole formed from collapse
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and let a†ω, aω be creation and annihilation operators that describe outgoing modes of

frequency ω for a dynamical field. Then [8] showed that

Tr(ρaωa
†
ω) =

1

1− e−βω
, (2.1)

where β is the inverse temperature of the black hole. It was also argued that the

occupancy of higher powers of aωa
†
ω would be thermal. (Here we have slightly smeared

the operators to avoid writing a delta function in frequency as explained near equation

2.21 of [20].)

By itself, the result (2.1) does not amount to a computation of the entanglement

entropy of Hawking radiation or an argument that the final state, ρ, must be thermal.

This is because low-point correlators are insufficient to fix the entanglement entropy.

For instance, if we were to modify the result above to

Tr(ρaωa
†
ω) =

1

1− e−βω
+ O

(
e−

SBH
2

)
, (2.2)

with corrections that are exponentially suppressed in the black hole entropy, SBH, this

would be perfectly consistent with ρ being a pure density matrix [27, 28]. Therefore

the result (2.1) is not precise enough, by itself, to conclude that ρ must be mixed.

But Hawking also provided a general argument to suggest that the purity of the

initial state could not be preserved by small corrections of the form (2.2). This argument

was enunciated through, what was termed, the “principle of ignorance” in [9]. In [9],

Hawking argued that it was necessary to introduce a “hidden surface” about a black

hole background. Hawking then stated that the principle of ignorance would imply

that (see p. 2463)

“all field configurations on these hidden surfaces are equally probably pro-

vided they are compatible with the conservation of mass, angular momen-

tum, etc. which can be measured by surface integrals at a distance from

the hole.”

The argument of [9] proceeded by explicitly introducing a factorization of the final

Hilbert space. If H1 is used to denote the Hilbert space describing data on the initial

surface then it was argued that transition amplitudes would require the specification of

a state on the “hidden surface” Hilbert space H2 and a specification of the state on the

final surface outside the black hole H3. (See unnumbered equation on p. 2463 of [9])

The crux of the argument in [9] was that since data on the hidden surface would be

lost to the outside observer, the outside observer would perceive a mixed state.

Figure 2 restates this argument in the context of a nice slice through an evaporating

black hole spacetime. In a nongravitational quantum field theory, it is possible to
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Figure 2: The extended Penrose diagram of an evaporating black hole. A common

incorrect assumption is that the Hilbert space factorizes into a part H2 associated with

the interior and a part H3 associated with the exterior, up to constraints imposed by

mass and global charges. But the Hilbert space does not factorize on a nice slice or even

on I+. Information available in the algebra of all operators on I+ (marked in blue) is

available in the algebra Abdry of operators from the red region near I+− .

specify data independently on the part of the nice slice behind the horizon and the

part outside the horizon. Subject to the ultraviolet subtleties described in section

1.1, the Hilbert space factorizes into a part H2 associated with the interior and a

part H3 associated with the exterior. In classical gravity, it is possible to specify

different configurations in the black hole exterior subject to only the constraints of

some conserved charges. So if the split property were to hold in gravity, an observer at

I+ would lose information about the state of the interior and would have to trace over

all possibilities for H2 leading to a final mixed state at I+.

So we see that the argument of [9] relies explicitly on the split property whose

failure in theories of gravity was reviewed above. As explained in section 1, if one

examines the full wavefunctional of the theory then it is not possible to specify data

outside and inside the black hole separately. This quantum mechanical effect cannot

– 9 –



be neglected if we ask fine grained questions about whether or not the final state is

pure.

To summarize, there are two specific issues with Hawking’s argument for informa-

tion loss.

1. The computation of mode-occupancy performed by Hawking is not precise enough

to conclude that the final state is mixed.

2. In order to extend the validity of this calculation, Hawking invoked a “principle

of ignorance” that explicitly assumed a factorization of the Hilbert space. The

principle of holography of information implies that this assumption is incorrect

in gravity.

3 The monogamy paradox

The original formulation of the information paradox was refined by Mathur in [10] and

Mathur’s argument was later elaborated by AMPS [11]. The idea of [10,11] was to set

up a potential contradiction between effective field theory, unitarity and the monogamy

of entanglement that would be robust against small corrections of the form (2.2). A

detailed review is provided in [20] and we provide a brief summary here to elucidate

how the split property was assumed in these paradoxes.

Consider a nice slice in an evaporating black hole spacetime, as shown in Figure

2 and divide it into three parts: A,B,C where A is just outside the horizon, B is

just inside the horizon and C is a region near infinity corresponding to an asymptotic

observer. We will repeat the original argument of [10], which assumed that, even in

gravity, it should be possible to define an entanglement entropy corresponding to these

regions and we denote the entropy of the region R by Sent
R below.

Effective field theory tells us that pairs of Hawking quanta in regions A and B

must be entangled with each other, which led [10] to the conclusion that

Sent
AB < Sent

B , assuming a smooth horizon, (3.1)

i.e. the region B by itself is more “mixed” than A and B taken together.

The argument in [10] then proceeded by noting that if the entanglement entropy

of the radiation follows a Page curve then for an old black hole the entropy of C must

start falling with time. But since the radiation in C at a given time is the union of the

radiation in A and in C at an earlier time we must have

Sent
AC < Sent

C , assuming a Page curve for Sent
C and a old black hole. (3.2)
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These two claims are in contradiction with the strong subadditivity of entropy that

reads

Sent
AB + Sent

AC ≥ Sent
B + Sent

C . (3.3)

In [10], this was used this to argue that (3.1) must break down and the interior of the

black hole must be replaced by a “fuzzball” and in [11] the same argument was used

to suggest the presence of “firewall” at the horizon.

But, a simple resolution to this paradox is obtained through the following obser-

vation. The strong subadditivity inequality (3.3) holds only if the operator algebras

corresponding to subsystems A,B,C commute. Therefore, we see that a key assump-

tion — unstated but tacit — that goes into the monogamy paradox of [10] and [11]

is that the algebra of operators can be separated into commuting factors associated

with bounded geometric regions. As explained in section 1 this assumption is false

in theories of gravity. This failure cannot be ignored if we wish to make reference to

fine-grained quantities like the entanglement entropy. So the purported refinement of

Hawking’s original paradox is based on the same erroneous assumption as the original

paradox.

In the context of the discussion of the firewall, the issue of factorization was dis-

cussed in [29, 30] and it was then observed in [28] that the paradox could be resolved

by recognizing the failure of the independence of operator-algebras in gravity. Similar

ideas were explored in [31].

Although, as presented above, the original paradox of [10] and [11] was phrased

using the entanglement entropy, it is possible to rephrase the paradox in terms of Bell

correlators. These correlators avoid the ambiguity in the definition of the entanglement

entropy and can be defined in a theory of gravity. This makes the paradox sharper,

although the resolution remains precisely the same as the one outlined above: the

operator-algebra of the theory does not contain commuting factors associated with

A,B,C. This reformulation and resolution can be seen particularly cleanly in a toy

version of the paradox both in AdS [32] and in flat space [33].

3.1 Other paradoxes

The original firewall paradox should be distinguished from subsequent paradoxes out-

lined in [34,35]. The question addressed in the paradoxes of [34,35] is whether “typical

states in AdS/CFT have a smooth interior.” These paradoxes are reviewed and sharp-

ened in [36]. They cannot be resolved through the simple observation that the Hilbert

space does not factorize in quantum gravity. These paradoxes, and similar paradoxes

that arise for the eternal black hole [37] can be addressed through a state-dependent re-

construction of the black hole interior. The issue of the consistency of state dependence
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is further discussed in [38, 39]. However, it is not clear if these issues are directly rele-

vant for evaporating black holes since evaporating black holes are never typical states

in the Hilbert space as discussed in [20].

4 The Page curve

We now turn to the common idea that the entanglement entropy of the region outside

the black hole should follow a Page curve. We explain why this idea also involves the

same assumption about the split property.

This assumption is stated explicitly in the original argument provided by Page and

Lubkin [12,40]. The argument of [12] explicitly considered a factorized Hilbert space

H = HA ⊗HB; dim(HA) = n; dim(HB) = m. (4.1)

It was then argued that for |Ψ〉 a pure state in the large Hilbert space, the entropy of

the reduced density matrix of a subsystem

ρA = TrB|Ψ〉〈Ψ| (4.2)

would obey

− 〈TrA(ρA log ρA)〉Haar = min(log(n), log(m)), (4.3)

up to corrections suppressed by min(n,m)/max(n,m) and where the expectation value

is taken with respect to the Haar measure on pure states of the larger system. Since

almost all states are Haar-typical this implies that for a “generic pure state” the entropy

of a subsystem is given by the formula above.

The argument applies perfectly well to nongravitational systems and has been use-

ful in that context [41]. However, this argument is also often applied to an evaporating

black hole. In [13], where this result was first applied to black holes (see paragraph

above Eqn. 1 in the published version), Page assumed that

“the black hole subsystem has dimension n . . . the radiation subsystem has

dimension m . . . [and] these subsystems form a total system in a pure state

in a Hilbert space of dimension mn.”

If one could indeed treat the black hole and radiation as parts of a larger factorized

Hilbert space, the assumptions of [12,40] would be met, and the entanglement entropy

of the radiation would follow a Page curve.

However, this is yet another restatement of the flawed assumption that we have

discussed above. As explained in section 1, if one thinks of the black hole as occupying
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a bounded region on a Cauchy slice, and the radiation as occupying the complementary

region then the state of the black hole is completely fixed once we specify all observables

in the radiation region. Therefore, at least if we consider the fine-grained entropy, there

is no reason to expect that the entropy of the radiation region will follow a Page curve.

It is not even true that the Page curve appears at I+. Let A(−∞, u) denote the

algebra of observables at I+ of the segment that extends from its past boundary to

some cut at retarded time u. Then, as is standard [42], one may define the entanglement

entropy Sent(u) with respect to this algebra. It can then be shown (see Result 3 in [5])

that
∂Sent(u)

∂u
= 0, (4.4)

which is the statement that the entanglement entropy is constant along I+ and does

not obey a Page curve.

4.1 The difference between ordinary statistical systems and black holes

At this point the reader may wonder why the effect above can be neglected for ordinary

statistical systems: although we live in a world where gravity is presumably quantized,

we still expect that the entanglement entropy of ordinary systems will obey a Page

curve.

This can be understood as follows. The difference between two typical microstates

of an ordinary statistical system with thermodynamic entropy S is suppressed by

O
(
e−

S
2

)
[43]. This follows simply from the fact that the number of relevant microstates

is given by eS. Therefore to meaningfully discuss the entanglement entropy of a sub-

system, we need to keep track of its observables to at least this accuracy. On the other

hand, gravitational effects are suppressed by a factor of GEd−2 in d dimensions, where

E is the typical energy scale associated with excitations in the system. For ordinary

systems, we can consider a limit where GEd−2 → 0 while S remains finite.

However, such a limit does not exist for black holes. For a black hole, if we take

the energy of a typical excitation to be E = T , where T is the Hawking temperature

then, for a Schwarzschild black hole in d dimensions we find that

GEd−2 =
α

SBH

, α =
π

3−d
2

(
d−3
4

)d−2
2Γ(d−1

2
)

(4.5)

where SBH is the entropy of the black hole. So there is no simple limit, where it is

possible to keep the entropy of the black hole finite while neglecting the gravitational

effects described in section 1.

Even in a theory of gravity, there is no obstruction to thinking of the black hole

radiation as a subsystem, in a coarse-grained sense. We can simply focus on observables
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that are insensitive to effects that are suppressed by powers of SBH. For instance, the

classical expectation value of the metric and other geometric quantities are all of this

form. However, within this approximation, it is not possible to speak meaningfully of

a fine-grained entropy for the radiation. It is possible that there is some intermediate

level of “coarse graining” where a Page curve appears for black holes, and we discuss

this possibility in section 4.4.

4.2 Computations of the Page curve

We now turn to the computations of the Page curve in the recent literature [14–19].

We first discuss the nature of “information transfer” in these computations. We then

describe why these computations involve massive gravity, and their lessons are inappli-

cable to standard theories of gravity.

4.2.1 Nature of information transfer

In popular descriptions [44], it is sometimes stated that the recent computations of the

Page curve indicate how information “emerges” from a black hole. However, this is

misleading.

Computations of the Page curve have been performed by coupling a holographic

gravitational system in AdS to a nongravitational bath. Therefore the Page curve

that is computed only measures how information is transferred from one section of this

nongravitational system to another. These computations are perfectly consistent with

the results explained above, which state that information is always available near the

boundary of the gravitational spacetime.

This can be understood more clearly by considering the two-step process shown

in Figure 3. In the first step (Figure 3a) we prepare a black hole in a theory of a

gravity in an asymptotically AdS spacetime. According to the discussion of section 1,

all information about the state is always present near the boundary of the spacetime.

In the second step (Figure 3b), we couple a nongravitational bath to the conformal

boundary of AdS. Information then flows into the nongravitational bath.

Since the bath is nongravitational, it does obey the “split property”. Therefore,

if one draws an imaginary interface in this bath, the information transfer across this

interface is controlled by a Page curve as one would expect on general grounds in any

nongravitational system. This is the Page curve that has been computed.

Moreover, the computation of this Page curve is also unnecessary to establish the

unitarity of the original process of black-hole formation. If the black hole is formed

from a pure state, unitarity follows from the fact that the entropy of the boundary

remains zero after the black hole forms. The Page curve is a check that the theory

remains unitary after it is coupled to a bath. But this latter question is a question
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(a) (b)

Figure 3: A two step process clarifying the nature of information transfer in computa-

tions of the Page curve. First, we prepare a black hole in AdS (left subfigure). According

to the principle of holography of information, information about the microstate resides

near the boundary of the spacetime. Second, we couple the system to a nongravitational

bath (pink shaded region in the right subfigure). Information flows across a nongravi-

tational interface (dashed line) and this information transfer is described by the Page

curve.

about the nongravitational bath and its coupling to the original system. This question

is interesting in its own right but it is not a question that is important for the original

gravitational theory.

Several computations of the Page curve use “doubly holographic” settings where the

system of the black hole and bath can be embedded in a higher-dimensional AdS. This

is achieved by inserting a Karch-Randall [45,46] brane in AdS, and the entropy of a part

of the bath can then be studied by the standard Ryu-Takayanagi prescription [47–49].

(See [17,50,51] for an elaboration of this perspective.) The authors of [52] generalized

this setup by considering an AdS space with two Karch-Randall branes inserted in a

black-string geometry. This serves as a model of a system where the bath itself is

gravitating.

It was then found in [52] that there was no nontrivial Ryu-Takayanagi surface

(excluding the black-string horizon itself) that extended from one brane to the other

with symmetric Neumann boundary conditions imposed on both branes. Therefore,

the Page curve disappears when the bath itself is gravitating. In [52], it was shown

that this conclusion is true even if gravity on the “bath brane” is much weaker than
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gravity on the “system brane”. This lends evidence to the idea that systems with “weak

gravity” should not be conflated with systems with “no gravity.”

4.3 Massive gravity and islands.

As explained above, extant Page curve computations address a nongravitational prob-

lem. What is interesting, nevertheless, is that this nongravitational problem can be

studied using gravitational techniques, including an elegant “island rule” [19], that

give answers consistent with the Page curve.

While the emergence of the Page curve in this nongravitational context is natural,

a closer examination of the gravitational computation reveals that the “island rule”

appears to be in tension with the principle of holography of information. The island

rule suggests that after the bath has been coupled to the holographic system, the state

of an “island” inside the gravitational system, is captured by part of the bath and the

state of its complement in the gravitational region is captured by the complementary

part of the bath. Since the nongravitational bath obeys a split property, this implies

that it is also possible to set up a split state in the gravitational bulk. This seems to

be in contradiction with the result of section 1.

The authors of [53] turned this into a sharp puzzle for theories of gravity in higher

than 1 + 1 dimensions. This puzzle does not require the full power of the principle of

holography of information. Rather, it can be shown, using only perturbation theory,

that islands are inconsistent in a theory of gravity that obeys the Gauss law.

The puzzle established in [53] exploits the observation that correlators of simple

operators in a typical black hole microstate, |Ψtyp〉 are approximately time independent.

Now consider a black hole that contains an island, and consider creating an excitation

in the island using an operator of the form U = eiλφ(P ), where φ(P ) is a weakly

coupled propagating field smeared near a point P in the island. A simple perturbative

computation reveals that

∂

∂λ
〈Ψtyp|U †H

∂φ(P ′)

∂t
U |Ψtyp〉 6= 0, (4.6)

where H is the integral of the metric near the AdS boundary that measures the total

energy and φ(P ′) is an insertion of the same scalar field smeared near a point P ′ at the

asymptotic boundary and t is the boundary time. The right hand side can be computed

explicitly in perturbation theory. (See section 3 in [53].) But this contradicts the idea

that simple unitary operators in an entanglement wedge should leave correlators outside

the wedge invariant.

Note that in equation (4.6) one is not attempting to identify the original black hole

microstate, which would not be possible within perturbation theory. Rather, equation
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(4.6) exploits the fact that an excitation on top of a typical microstate leads to an

atypical state. It is the difference between this atypical state and the original typical

state that can be detected in perturbation theory by simple correlators outside the

horizon [54].

The physical observation underlying the puzzle is simply that islands are unique

among entanglement wedges because islands are surrounded by their complements.

This brings islands within the purview of section 1; in contrast, standard entangle-

ment wedges in AdS/CFT always contain a piece of the asymptotic region and so the

discussion of section 1 does not apply to them. In standard entanglement wedges, it

makes sense to consider a little Hilbert space (as introduced in [55] or, equivalently, a

“code subspace” [56]) and one can study excitations within the entanglement wedge

that leave all correlators in the complement of the wedge invariant. This is because

the excitation can be “dressed” to infinity through the asymptotic part of the wedge.

Since islands do not contain such a region, in a standard theory of gravity, there are no

excitations that leave the complement of the island invariant. So, in standard gravity,

islands cannot constitute entanglement wedges, at least in the usual sense of the term.

The computation (4.6) shows this explicitly.

This does not mean that computations based on the island rule are wrong. Rather

the resolution to the puzzle is that (in higher than 1 + 1 dimensions) the coupling the

gravitational system to a bath causes the bulk graviton to pick up a mass. Therefore

almost all computations based on islands have been carried out in massive gravity [57].

Massive gravity is quite different from standard gravity; it does not have a Gauss

law, and so the principle of holography of information does not apply and islands are

consistent in such theories. Before we explain how this resolves the puzzle we first

explain why the nongravitational bath induces a mass for the graviton.

The easiest way to understand the graviton mass [58] is to again consider the

sequence shown in Figure 3, where a black hole is first prepared in a holographic

system and later coupled to a bath. In Figure 3a, before the system is coupled to a

bath, the holographic stress tensor on the boundary of AdS is conserved:

∂µT
µν = 0, (in Figure 3a before coupling to bath). (4.7)

where µ, ν run along the boundary coordinates. After the coupling is turned on, we

now have

∂µT
µν 6= 0. (in Figure 3b after coupling to bath). (4.8)

This must be true since, by construction, the coupling allows energy to leak into the

bath.

In conformal representation theory [59–62], the conservation of the stress tensor

is simply the statement that the stress tensor lives in a “short representation” of the
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conformal algebra. This allows its conformal dimension to be exactly d where d is

the boundary dimension. The non-conservation of the stress tensor implies that, in the

theory with the bath, the stress tensor is in a “long representation” but this means that

its conformal dimension must exceed d, and so it must pick up an anomalous dimension.

By the standard rules of AdS/CFT [63,64] this means that the bulk graviton must have

a mass. This can be verified through a direct bulk computation [65,66].

The constraints of massive gravity are different from those of standard massless

gravity. Most importantly, the Hamiltonian of the theory of massive gravity is not a

boundary term. Therefore, the principle of holography of information does not apply

and even the computation leading up to (4.6) is modified.

The simplest setting to see this difference is to compare linearized standard gravity

with linearized massive gravity. Writing the metric on a spatial slice as δij + hij, we

find that the metric fluctuation is constrained in terms of the local energy density, ρ as

1

16πG
(∂j∂ihij − ∂j∂jhii) = ρ, (4.9)

in standard gravity. Upon integration this leads to the familiar ADM expression [67]

for the total energy as a surface integral.

H =
1

16πG

∫
S∞

nj(∂ihij − ∂jhii), (4.10)

where the integral is performed over the sphere at asymptotically large r with normal

nj. Of course, (4.10) is the definition of the energy even when one goes beyond the

linearized approximation to the full theory of general relativity (see section 20.4 in [68])

and also in the quantum theory [69]. On the other hand, in linearized massive gravity

we find that the analogous constraint is [70]

1

16πG

(
∂j∂ihij − ∂j∂jhii +m2hii

)
= ρ. (4.11)

Since the left hand side is not a total divergence, the integral of the energy density is

not captured by an integral at infinity even in the linearized theory.

In [53], it is shown that, at least, in some well-understood examples of massive

theories of gravity, such as those that appear in the Karch-Randall model, there does

not appear to be any any immediate obstacle to preparing split states.2

To summarize: existing derivations of the Page curve pertain to information trans-

fer across a nongravitational interface and do not indicate the transfer of information

2Here, we should caution the reader that the question of how information is localized in theories of

massive gravity has not been studied in detail.
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within the gravitational region. Moreover, the models that have been used to compute

the Page curve involve rather nonstandard theories of gravity. These models differ

qualitatively from standard gravity, and it does not appear that the island proposal or

other results from such models can be generalized to black holes in standard gravity.

4.4 Page curves in standard gravity

In the section above, we criticized the expectation that the radiation from a black

hole in standard gravity should follow a Page curve. However, since this question has

historically been of interest, one may ask whether it is possible to find an appropriate

quantity, in a standard theory of gravity, that does follow a Page curve. Here, we

outline some possibilities in this direction.

Page curves in flat space. First, consider four-dimensional flat space. Then the

algebra of operators at I+ that we denoted in section 1 as A(I+) can be separated into

an algebra of “dynamical operators” (generated by the so-called “Bondi news” oper-

ators and tails of other massless degrees of freedom at I+) and a set of “constrained

operators”, which include the ADM Hamiltonian and other soft charges. These con-

strained modes are what cause the split property on I+ to fail. On the other hand, since

the operator algebra of dynamical modes at I+ is otherwise free, arbitrary products of

dynamical operators do not generate constrained operators. The algebra of dynamical

operators can therefore be separated into an algebra corresponding to a segment of I+
and a commuting algebra corresponding to its complement.

This is still not sufficient to ensure that the entropy with respect to the dynamical

algebra follows a Page curve; it is necessary to further assume that, in a generic state,

the entanglement between the hard modes and the different soft vacua [71, 72] can be

neglected. The validity of this assumption has not been investigated in detail and the

proposal of [73] was that this entanglement is significant. But if this assumption holds

then it is expected that the entropy of a state with respect to the coarse-grained algebra

above will follow a Page curve.

Although the coarse-graining above is mathematically consistent, it is somewhat

artificial from a physical point of view. The observer must be sensitive to very small

fluctuations of the metric, including those with a magnitude O
(
e−S
)

but is not allowed

to include the mass of the black hole and its correlators with other degrees of freedom

in the algebra of observables.

There are other possibilities for obtaining a Page curve at I+ all of which boil down

to the coarse-graining above. These include considering the algebra of operators in the

retarded-time interval (u,∞) — which extends from a cut at finite retarded time till

the future boundary of future null infinity — or equivalently considering the algebra of
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operators in the infinitesimal retarded-time interval (u, u + ε). We refer the reader to

section 5.4.5 of [20] for additional discussion.

Page curves for small AdS black holes. It is also interesting to consider small

black holes in AdS [74]. If the radius of the black hole is much smaller than the AdS

scale, it will evaporate entirely with no need to couple the system to an external bath.

Of course, in this case we know from AdS/CFT — and entirely consistent with the

discussion in section 1 — that information about the black-hole microstate is present

at the boundary of AdS at all times. Therefore if the black hole is formed from the

collapse of a pure state, the fine-grained entropy of the boundary remains zero at all

times.

On the other hand, if one considers a small set of coarse-grained observables —

such as generalized free-fields and products of a small number of such operators —

then one expects to see an entropy that simply rises according to Hawking’s original

prediction.

In order to see a Page curve, one needs to find an intermediate level of accuracy

— an algebra that keeps enough information that it can detect that the state is pure

after the black hole has evaporated but not so much information that it knows that the

state is pure at all times.

Although, currently, there is no known subalgebra of the full boundary algebra

that satisfies these properties, it appears plausible that such an “intermediate-level”

algebra can be found. However, it is unclear whether such an algebra will be natural

from a physical viewpoint or of intrinsic interest separate from reproducing the Page

curve.

5 Conclusion

In this essay, we have pointed out how a familiar physical assumption is, in fact, false

in quantum gravity. In nongravitational theories, the algebra of observables can be

separated into a subalgebra associated with a bounded region and another commuting

subalgebra associated with its complement. This property fails in a theory of quantum

gravity.

For the purposes of defining a fine-grained entanglement entropy, this issue can be

neglected for those systems where it is possible to take a limit in which the degener-

acy of microstates remains finite while gravitational effects become arbitrarily weak.

However, the limit above does not exist for black holes, and so this gravitational effect

is important if we study the fine-grained entanglement entropy of the radiation. In a
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fine-grained sense, this entropy is trivial and the region outside a black hole always has

information about the interior.

This physical effect was not accounted for in Hawking’s original formulation of the

information paradox, which assumed that the Hilbert space in gravity should factorize

the way it does in nongravitational theories. Our current understanding allows us to

pinpoint the precise error in Hawking’s argument. Ironically, the same assumption of

factorization also underlies the expectation that the entropy of the radiation should

obey a Page curve.

The point of this essay is not that it is impossible to find a Page curve for an

evaporating black hole. Indeed, if we are willing to suitably change the question that

is being addressed, it is possible to find an appropriate question to which the answer

is the Page curve. In several extant computations in the literature, the Page curve has

been derived by considering a nongravitational bath and then computing the entangle-

ment between two regions of this bath. The gravitational description of this system

involves a theory of massive gravity that appears to localize information like ordinary

quantum field theories. Even in standard theories of gravity, it appears plausible that a

prescription for coarse-graining the entropy or somehow neglecting gravitational effects

will cause a Page curve to emerge although such a computation has not been carried

out.

However, the reason for studying the black-hole information paradox is that it

teaches us about new physical effects in gravity. As such, one of the lessons that the

paradox teaches us is that gravity localizes information unusually. This is a striking

effect that persists in the low-energy theory.

A computation of the Page curve is not necessary to resolve the information paradox

and, historically, this idea was based on a flawed physical analysis. Although it is

possible to modify the system of an evaporating black hole in a standard theory of

gravity so as to force a Page curve upon it, this tends to obscure the interesting physics

that we learn from the paradox.
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