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Abstract

We study the Euclidean gravitational path integral computing the Rényi entropy

and analyze its behavior under small variations. We argue that, in Einstein gravity,

the extremality condition can be understood from the variational principle at the

level of the action, without having to solve explicitly the equations of motion. This

set-up is then generalized to arbitrary theories of gravity, where we show that the

respective entanglement entropy functional needs to be extremized. We also extend

this result to all orders in Newton’s constant GN , providing a derivation of quantum

extremality. Understanding quantum extremality for mixtures of states provides a

generalization of the dual of the boundary modular Hamiltonian which is given by

the bulk modular Hamiltonian plus the area operator, evaluated on the so-called

modular extremal surface. This gives a bulk prescription for computing the relative

entropies to all orders in GN . We also comment on how these ideas can be used to

derive an integrated version of the equations of motion, linearized around arbitrary

states.
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1 Introduction and summary of results

Quantum entanglement has become a crucial aspect of understanding many physical

systems including quantum gravity. A universal property of quantum gravity is that

entropy satisfies an area law. This was first discovered for black holes [1, 2, 3], and more

recently it was generalized in the context of AdS/CFT correspondence [4, 5, 6] by Ryu

and Takayanagi [7, 8]. They gave an elegant prescription for the entanglement entropy of

any spatial region R in a holographic boundary theory in terms of the area of an extremal

surface in the bulk spacetime:

SR = ext
X∼R

A(X)

4GN
. (1.1)

Here the entanglement entropy is defined in the boundary theory as the von Neumann

entropy SR ≡ −Tr ρR log ρR of the reduced density matrix ρR, and is a measure of entan-
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glement between the region R and its complement R. The constraint X ∼ R means that

the Ryu–Takayanagi (RT) surface X is homologous to the boundary region R, and GN

denotes Newton’s constant. This prescription for holographic entanglement entropy was

derived from AdS/CFT in [9]. Furthermore, it is valid in general time-dependent cases

[10, 11].

In general, the gravitational theory in the bulk is described at low energies in terms of

Einstein gravity corrected by higher derivative interactions. These interactions generate

higher derivative corrections to the RT formula (1.1). A prescription for these corrections

was given in [12, 13] and has the form

Agen = SWald + Sextrinsic (1.2)

where the first term is the Wald entropy and the second consists of corrections from the

extrinsic curvature of the RT surface. Since Agen is the full classical contribution to the

gravitational entropy, we will refer to it as the “generalized area”.1 However, it has been

an open question whether the extremization procedure in (1.1) works for general higher

derivative gravity, using variations of the action. Our first result is that it does:

SR = ext
X∼R

Agen(X). (1.3)

As a byproduct of this result, one can generalize the derivation of the integrated lin-

earized equations of motion from the first law of entanglement [14, 15, 16, 17] to arbitrary

regions and states. This is done by defining the variation of the modular Hamiltonian

using the replica trick and from the linearized equations of motion for an arbitrary state

one should in principle be able to get the nonlinear equations of motion.

The RT prescription (1.1) and its higher derivative generalization (1.3) are valid in

the large-N limit of the boundary theory. Beyond the leading order in this limit, they

would receive 1/N corrections from quantum effects in the bulk. A natural prescription

for these quantum corrections is

SR = ext
X∼R

Sgen(X), Sgen ≡ 〈Agen〉+ Sbulk, (1.4)

where the “generalized entropy” Sgen is the sum of the expectation value of the general-

ized area 〈Agen〉 and a bulk entanglement entropy Sbulk. The bulk entanglement entropy

is defined with respect to the bulk spatial region between the RT surface X and the

boundary region R. The domain of dependence of this region defines the notation of the

entanglement wedge [18, 19, 20]. It is worth noting that after extremization X is known

as the quantum extremal surface.

The prescription (1.4) agrees with the one-loop result of [21, 22] and was conjectured

1For Einstein gravity, Agen = A
4GN

.
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in [23] to hold for all loops. Our second result is to establish this from AdS/CFT to all

orders in 1/N .

Furthermore, entanglement entropy is not the only measure of quantum entangle-

ment. To better understand the structure of entanglement, we also need the modular

Hamiltonian

Kρ ≡ − log ρ (1.5)

for a quantum state described by the density matrix ρ, as well as the relative entropy

Srel(ρ|σ) ≡ Tr [ρ log ρ− ρ log σ] (1.6)

which is a measure of distinguishability between an arbitrary state ρ and a reference state

σ. Our third result is

〈KR,σ〉ρ = ext
X∼R

[
〈AXgen〉ρ + 〈KX

bulk,σ〉ρ
]

(1.7)

where KR,σ is the modular Hamiltonian for the boundary region R for the state σ, Agen

is viewed as an operator on the surface X giving its generalized area, and Kbulk is the

bulk modular Hamiltonian in the spatial region between X and R. After extremization

we call X the “modular extremal surface” for the state σ.

Using the prescription (1.7) for the modular Hamiltonian, we find for the relative

entropy

Srel(ρ|σ) = 〈AXσ

gen +KXσ

bulk,σ〉ρ − 〈AXρ

gen +K
Xρ

bulk,ρ〉ρ (1.8)

where Xσ and Xρ are modular extremal surfaces defined by (1.7) for the states σ and

ρ respectively. Here we have dropped explicit references to the boundary region R for

brevity, and 〈· · ·〉ρ denotes the expectation value Tr (ρ · · · ) in the state ρ.

The results (1.7) and (1.8) agree with one-loop results of [24]. As we will show using

AdS/CFT, they are valid to all orders in 1/N . It is interesting to note from (1.8) that the

boundary relative entropy is equal to the bulk relative entropy only at the one-loop order

[24], and they generally differ at two loops or higher. This is because the two modular

extremal surfaces Xσ and Xρ differ by O(GN) in general.

Recently, the AdS/CFT dictionary has been clarified by viewing holography as a

quantum error correcting code [25]. The relation between the bulk and boundary relative

entropy was used in [26] to prove a theorem for reconstructing bulk operators in the

entanglement wedge of R in terms of boundary operators on R, and the one-loop result

can be used to obtain an explicit large-N reconstruction formula in terms of the modular

flow [27]. As we will see, the all-loop result (1.8) can be used to extend the reconstruction

theorem to all orders in 1/N , at least for bulk operators at a fixed distance away from

the RT surface, but it is not yet clear how to generalize the modular flow construction

beyond one loop. A related issue is that the complementary recovery property discussed

in [28] holds only at the one-loop order.
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The outline of this paper is as follows. We begin in Section 2 with a review of the

classical statement of extremality and rephrase it in a way that can easily be generalized

to arbitrary theories of gravity, using variations of the action. Section 3 is independent of

the rest of the paper and uses the variational principle to derive the integrated equations of

motion around an arbitrary background using the first law. In Section 4, we generalize the

classical discussion of Section 2 by including quantum fields in the bulk theory, providing a

derivation of quantum extremality. In Section 5, we use quantum extremality for mixtures

of states to write a formula for the bulk dual of the modular Hamiltonian to all orders in

GN . We conclude with some closing thoughts in the discussion.

2 Classical statement of extremality from variations

Let us start with a review of the replica trick applied to AdS/CFT. In the boundary

theory, the von Neumann entropy may be determined by the n → 1 limit of the Rényi

entropy

Sn ≡ 1

1− n
log Tr ρn, (2.1)

where n is known as the Rényi index. When n is an integer greater than 1, the Rényi

entropy can be calculated from

Sn =
1

1− n
log

Zn
Zn

1

, (2.2)

where Zn is the partition function of the boundary theory on a manifold known as the

n-fold branched cover. This partition function can be calculated via AdS/CFT. In the

large-N limit, we find the solutionMn to the bulk equations of motion with the n-fold cover

as the boundary condition and calculate its on-shell action In. Up to 1/N corrections, we

have logZn = −In. When there are more than one bulk solution, we choose the dominant

one which has the smallest on-shell action.

The n-fold cover on the boundary enjoys a Zn symmetry permuting the n replicas

cyclically. As in [9], we assume that the Zn replica symmetry extends to the dominant

bulk solution Mn. Let us take the quotient of the bulk solution Mn by the Zn replica

symmetry. This quotient amounts to considering the action În = In/n which can be

thought of as the on-shell action of the orbifold geometry M̂n ≡ Mn/Zn. The orbifold

has a conical singularity at the Zn fixed points. The derivative of the orbifold action with

respect to n is the modular entropy introduced in [29]:

S̃n ≡ −n2∂n

(
1

n
log Tr ρn

)
= n2∂nÎn. (2.3)

Since the orbifold geometry is seemingly singular, when doing variations one has to be
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careful with possible boundary terms at the tip of the cone. In other words, (2.3) reduces

to a boundary term on the conical defect, and taking the n → 1 limit we find the von

Neumann entropy S in terms of some geometric quantity Agen on a codimension-2 surface

X .

The goal of this section is to show that for classical theories of gravity, the equations

of motion close to n ≈ 1 imply that the surface X has to be extremal with respect to the

entanglement entropy functional Agen:

δdiffAgen = 0 (2.4)

where diff denotes to a diffeomorphism that would change the location of X where the

functional is evaluated.

2.1 Double variations

If we vary the action around the solution gn to the equations of motion with an off-shell

deformation δgn that preserves the conical deficit angle and vanishes on the asymptotic

boundary, we have

δÎn =

∫

M̂n

Enδgn +

∫

∂M̂n

Θ(gn, δgn)

∣∣∣∣
r=ǫ

= 0 (2.5)

where we have used the notation of [30]: En ≡ δÎn/δg denotes the equations of motion

at integer n, and Θ(gn, δgn) is the boundary term at the tip of the cone, linear in δg

and obtained from integrating the Lagrangian by parts after a variation. The solution gn

satisfies the equations of motion, leading to En = 0. The boundary term is evaluated on

a regulated surface r = ǫ where r is the radial distance from the tip of the cone, and we

take the ǫ→ 0 limit at the end of the calculation. The claim of (2.5) is that the boundary

term vanishes in this limit.

For integer n, it is clear that (2.5) holds, since we can go to the parent spaceMn where

there is no physical boundary at the Zn fixed points.

In the next subsection, we will argue that (2.5) holds for general values of n. For now

we will explore the consequences of this, saving the details for later. Since (2.5) is zero

for any n, its derivative with respect to n is also zero:

∂nδÎn
∣∣
n=1

= 0. (2.6)

Note that this follows as long as the equations of motion are obeyed at n ≈ 1.

We can take the two variations ∂n and δ in (2.6) in the opposite order, so that ∂n gives

us the entanglement entropy functional Agen for a metric in the neighbourhood of the on-

shell metric. Up until now we have kept the variation of the metric δgn arbitrary except
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for the boundary conditions of preserving the conical deficit angle and vanishing on the

asymptotic boundary. Let us now choose δgn to become a diffeomorphism at n = 1.2 If

we consider the variations in the opposite order for a diffeomorphism at n = 1, we obtain

∂nÎn|n=1 = lim
δn→0

Î1+δn[g1+δn]− Î1[g1]

δn
= Agen

(
∂nÎn + δ∂nÎn

)∣∣∣
n=1

= lim
δn→0

Î1+δn[g1+δn + δg1+δn]− Î1[g1]

δn
= Agen + δdiffAgen (2.7)

where Agen is defined from (2.7) and can be computed using the conical method of [12,

13, 31] or directly using the n → 1 limit of the Wald entropy (see Section 2.3). This

discussion is independent of how one computes it. To derive the second line, we used that

g1+δg1 is a solution to the equations of motion at n = 1 and we can use the same entropy

functional Agen evaluated on a slightly dislocated surface X + δX . In Section 2.3, it will

be clear how this works when one can take the ∂n variation inside the action.

Taking the difference of the two equations in (2.7) and compare it with (2.6) we get

δdiffAgen = 0. (2.8)

In other words, the entanglement entropy functional should be stationary with respect

to shifts in the surface. This argument uses the equations of motion linearized in n − 1

which is the same condition that led to extremality in [9]. However, the advantage of our

method here is that by considering variations of the action, we do not have to evaluate

the equations of motion explicitly.

We expect this to be true for an arbitrary theory of gravity. In the next subsections

we discuss the subtleties that lie in these cases.

2.2 Boundary terms and the n→ 1 limit

In the previous discussion, we used the equations of motion at integer n and at the same

time deformed the metric off-shell (at finite n − 1). However, since we want to do two

variations of the action, we want to be able to define ∂nI(gn) for an slightly off-shell

metric, gn + δgn. We want to restrict to “regular” δgn: deformations of the metric which

give a finite contribution to the action and do not change the strength of the conical

singularity. This constraints the variation and allows for a well defined action for the

deformed off-shell geometry.

We would first like to show that δÎn = 0 for all n. We can first consider Einstein

2We do not put additional constraints on δgn away from n = 1 except for the boundary conditions.
In general δgn will be off-shell at finite n− 1 because the conical boundary condition essentially fixes the
on-shell solution as gn.
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gravity, where we get

δÎn =

∫

∂M̂n

ΘEinstein(gn, δgn)

∣∣∣∣
r=ǫ

=

∫

∂M̂n

√
gn(∇bδgrb − gbcn ∇rδgbc)

∣∣∣∣
r=ǫ

regular δgn
= 0. (2.9)

Because
√
gn ∝ r = ǫ, it is clear that only if δgn diverges approaching the tip one can get

a non-zero answer.

More generally, for an arbitrary higher derivative theory, we have [30]:

δÎn =

∫

∂M̂n

Θ(gn, δgn)

∣∣∣∣
r=ǫ

=

∫

∂M̂n

rErbcd∇cδgbd

∣∣∣∣
r=ǫ

(2.10)

where Erbcd would be the equations of motion for Rabcd, viewed as an independent field.

For example for f(Riemann), Erbcd =
∂L

∂Rrbcd
.

It is clear for Einstein gravity that a regular variation of the metric cannot give a finite

contribution to the boundary term. However, while (2.10) = 0 at integer n, we would also

like to argue that this is true for 1 < n < 2. The regularity condition for the variation

requires the boundary term (2.10) to be finite if not zero. This is because there are no

divergent terms at n = 1 and we are choosing the δgn to keep the variation finite for

n > 1. However, the most general metric compatible with replica symmetry will be an

expansion with positive powers of rn−1 and integer powers of r (see next section). Given

that we are working at integer n until the very end, ǫn−1 → 0, which implies that there

cannot be a finite term. This implies that (2.10) is zero.

2.3 Variational approach for the gravitational entropy

While ∂nÎn|n=1 in (2.7) can be computed explicitly using squashed cones, that approach

requires being careful with several subtleties that arise in the n → 1 limit and there is

currently no complete formula for an arbitrary theory of gravity. In this subsection, we

are going to propose an equivalent but perhaps clearer approach than (2.7), where we

think of ∂n as a variation inside the action.

Close to the conical singularity, the metric near n ≈ 1 will schematically look like (we

refer the reader to [12] for more details):

gn = dr2 +
r2

n2
dτ 2 + (γn +Knr

neiτ + · · · )dy2 + · · · ≡ gn;0 + r2(n−1)gn;1 + · · ·

γn = γn;0 + γn;1r
2(n−1) + γn;2r

4(n−1) + · · · , Kn = Kn;0 +Kn;1r
2(n−1) + · · · (2.11)

where · · · denotes terms which are higher order in r, and τ has period 2π. The n = 1
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metric “splits”3: it is determined by the sum of different terms at n > 1

gn=1 = g1;0 + g1;1 + g1;2 + · · · . (2.12)

This was seen as a problem for the squashed cone approach in [32] (see also [33, 34]):

in order to determine the “splitting” one has to solve the most divergent part of the

equations of motion, which could be problematic because in order to determine the form

of Agen explicitly one needs the equations of motion at n ∼ 1.

We would like to understand if we can treat ∂ngn outside the r = ǫ tube as a small

variation inside the action integral. This is not true at n = 1: the metric might include

terms gn ∝ ǫ2(n−1), which give ∂ngn ∝ ǫ2(n−1) log ǫ, which is not small as n → 1 (at fixed

but small ǫ). However, we can avoid this issue by working at n > 1. In this case, we

expect that ∂ngn is a small variation4 and thus we can apply (2.10) for ∂ngn. All the

contribution from ∂ngn comes from the gττ component in (2.11). This gives the Wald

entropy at finite (but non-integer) n− 1 :

S̃n = ∂nÎn = n−2SWald(gn;0) +

∫

M̂n

En∂ng. (2.13)

This formula is valid for non-integer n and it is a finite n − 1, off-shell version of (2.7).5

In order to avoid contradictions, it is important that the n→ 1 limit of the Wald entropy

at finite n−1 is not the Wald entropy at the n = 1 solution. The reason is that the Wald

entropy at finite n − 1 is written in terms of the gn,0 fields in (2.11), while at n = 1 one

only have access to the sum over them (2.12). We expect the equations of motion close

to n = 1 to determine g1;0 in terms of gn=1.

By carefully taking the limit, one gets the generalized area:

S̃1 = Agen[gn=1] = lim
n→1+

SWald(gn;0) (2.14)

where we used the n = 1 equations of motion. Note that this approach was used before

for Einstein gravity in [9, 29]: because of the simplicity of this theory, one can evaluate

(2.14) directly at n = 1 without worrying about subtleties in the limit.

For readers familiar with the squashed cone approach to higher-derivative entangle-

ment entropy [12, 13, 31], (2.14) might look surprising, because Agen has a contribution

from the Wald entropy at n = 1, but it also has an “anomalous” contribution which de-

pends on the extrinsic curvature [12]. The anomalous contribution depends on the details

3One way to define gn;0, gn;1, · · · is to require that they contain only integer powers of r.
4This is true as long as there are no terms in the metric that go like g ∝ ǫf(n) where f(n) vanishes

for any 1 < n < nc, in which case ∂ng is a small variation in a finite neighbourhood around n = 1 (not
including n = 1 itself). We think that this is a very reasonable assumption and we have not been able to
find any counterexample.

5We expect this formula to hold for any n as long as ∂ngn is a small variation. If for some reason, the
metric splits at some nc, we would define S̃nc

= limn→nc
SWald(gn;0), as we will do in (2.14).

8



of how the metric splits. In our case, SWald is explicitly defined in terms of the Lagrangian

and the g1;0 metric. In this way, our approach gives an explicit formula for the holographic

entanglement entropy: the Wald entropy of the split metric g1;0. However, to determine

its form in terms of n = 1 quantities, one has to solve the most divergent part of the

equations of motion.

One should be able to show explicitly how (2.14) relates the squashed cones contribu-

tion and the Wald entropy. For Lovelock theories, it is easy to see how this works: Agen is

just given by the Wald entropy in terms of induced Riemann tensor, which is the n → 1

limit of the projected Riemann tensor on the surface. For higher derivative theories which

have fewer derivatives than Lovelock, such as the one considered in [35], we do not have

an “anomalous” contribution to Agen and there are no subtleties in taking the n → 1

limit. In Appendix A, we consider a set of two-dimensional examples which we believe

capture (2.14) more generally.

In our discussion, we have always focused on families of metrics (not necessarily on-

shell) which keep the action finite. It is often the case that in the r ≈ 0 expansion, the

most general form for the metric gives rise to an infinite action. In other words, there

are some divergent terms in the equations of motion which give a divergent contribution

to the gravitational action, while other metric contributions with divergent equations of

motion have a finite action (for example, changes in the location of the surface). We will

always work with metrics which have a finite action, which is equivalent to imposing the

most divergent part of the equations of motion. Even if this class of metrics will depend

on the Lagrangian, it is rather universal: it will not depend on the location of the conical

singularity. In this way, by requiring the action to be finite, we expect that one can

understand the relation between g1;0 and gn=1, which would determine SWald explicitly in

terms of n = 1 quantities.

3 The first law of entanglement and equations of mo-

tion

This section is a side product of the previous section. It is independent of the rest of the

paper and it will not be mentioned again until the discussion. In the previous sections, we

have explained how, in classical gravity, the commutativity of the double variation ∂n, δdiff

implies the extremality of the entangling functional. We can also use this framework to

consider more general variations which do not vanish at the boundary. In holography, it

is natural to consider turning on a small source. This framework naturally allow us to

derive the integrated equations of motion by assuming that the entanglement entropy is

given by the area thus generalizing [16, 17].

The idea is that, from the field theory perspective, we can think of the second variation

9



commuting as the first law [14, 15]: [δ, ∂n]
log Trρn

n
|n=1 = δS − ∂nTrδρρ

n−1 = δS − δK. We

would like to understand if we can recover this from the bulk point of view.

In order to do this, we want to be in the same setup as [17]. Consider a deformation

of the density matrix which changes the one point function of the stress tensor by a small

amount, δ〈Tµν〉 ≪ 1, which is achieved by turning on the respective source, the boundary

metric. If we add a term λ
∫
ddxδgµνbdyTµν to the Lagrangian, then the stress tensor will

get an expectation value linear in λ (to first order in the deformation). In the original

geometry, we expect the same change in the action by computing the variation of the

action:

δλI =

∫

M

Eδλg + λ

∫

M∞

ddx〈TBYµν 〉δgµνbdy. (3.1)

The variation of the action will be given by the equations of motion plus a boundary

term, the usual integral of the Brown-York stress tensor. This boundary term will vanish

if the expectation value of the stress tensor is zero.

Now, if we repeat the same for the Rényi entropies, we obtain:

δλÎn =

∫

Mn

Enδλgn + λ

∫

M∞

〈TBYµν 〉nδgµνbdy. (3.2)

We can analytically continue this expression in n, take its n derivative, and express it

in terms of boundary quantities using the standard dictionary 〈TBY 〉 = 〈T 〉:

∂nδλÎn|n=1 = λ

∫
ddx〈KTµν〉δgµνbdy + ∂n

∫

Mn

Enδλgn|n=1 = δλ〈K〉+ ∂n

∫

Mn

Enδλgn|n=1.

(3.3)

This formula for the variation of the boundary Hamiltonian from analytically contin-

uing the one point function at integer n was discussed previously in [36, 37]. Note that in

the case where the modular Hamiltonian is local, the right-hand side (RHS) will be given

by
∫
R
dΣµξνδ〈Tµν〉 and this can be understood from the left-hand side (LHS) because

δ〈Tµν〉 =
∫
ddx〈TµνTαβ〉δgαβbdy. So we are in exactly the same setup as [17].

We can try to understand the variations in the opposite order:

∂nÎn|n=1 =

∫
E∂ng + Agen → δλ∂nÎn|n=1 = δλ

∫
E∂ng + δλAgen (3.4)

where we have not yet used any equation of motion.

In this way, given that the variations commute with each other, we obtain:

[∂n, δλ]În|n=1 = δλ〈K〉 − δλAgen −
∫
δλE∂ng|n=1 +

∫
∂nEn|n=1δλg. (3.5)

We have derived this equation by assuming that there is some action, but this equation

should be a true equation independently of how we derive it. Note that, to derive it, we
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did not need to use the background equations of motion since they cancel in the double

variation.

This gives a gravitational entanglement first law, in a very similar to Wald’s first law

[38]. In both cases one derives the first law by varying the Lagrangian. In Wald’s case, the

first law is a consequence of having a Killing vector: the conservation of diffeomorphism

current relates the difference between the area in the extremal surface and the energy at

infinity with the gravitational constraints, integrated in a Cauchy slice in the entanglement

wedge. In our case, we do a ∂n variation, which is less symmetric and we obtain that the

two boundary terms differ by a codimension 0 integral. In this way, under the assumptions

that the entanglement entropy is given by the generalized area and that the background

equations of motion are satisfied close to n = 1, we have derived the following equation:

δλS − δλK =

∫
δλEg̃ (3.6)

with g̃ = ∂ng, but the equation is true even if we do not know what g̃ is. In this case,

δE is integrated over the whole manifold. Since we have less symmetries that in Rindler

(where there is a Killing vector), the integral is higher dimensional, but it does not seem

possible to do better from the first law.

From the assumptions that the background metric to satisfy the background equations

of motion at leading order in n− 1, the standard bulk-boundary dictionary and that the

entropy is given by the area, we have deduced that δS = δK ⇐⇒
∫
δEg̃ = 0. Since this

is true for an arbitrary entangling surface, this probably implies δE = 0 everywhere. In

principle, the linearized equations around an arbitrary background could be integrated to

give the nonlinear equations of motion. However, given that the leading order in (n− 1)

background equation of motion is a necessary assumption for this discussion, one might

need to assume the background equations of motion for all n to derive the nonlinear

Einstein equations.6

Note also that this expression for the modular Hamiltonian is compatible with [24].

In fact, for Einstein gravity, we can think of δA =
∫
RT
γαβδgαβ and express δg =∫

M∞
dxG(X, x)T (x). This gives an expression for δK from which we can read 〈KTµν〉

in holographic theories (similar comments were made in [14, 39]). The reason why this

is only true given the equations of motion is because in order to write the metric oper-

ator in terms of the boundary fields one imposes the linearized equations of motion for

the graviton. The good thing about the euclidean prescription described above is that it

provides a bulk definition for the modular Hamiltonian which is independent of the area

through the asymptotic one point functions at n ∼ 1.

6This is because the equivalent of the first law for the modular entropies would give us the linearized
equation of motion at arbitrary n from which the nonlinear equation can be obtained.
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4 Quantum corrections to entanglement entropy

In the presence of quantum corrections, we will have a path integral in the replicated

space Mn. The presence of quantum corrections will modify the equations of motion

to all orders in GN , we are going to denote the backreacted background metric by gcl,n

and will expand it in GN : gcl,n = g
(0)
cl,n + GNg

(1)
cl,n + · · · .7 As in [9], we assume that the

background metric gcl,n is Zn symmetric.

We are going to define the “orbifolded” partition function by dividing by n:

− logZn = Igrav(gcl,n)− logZmatter
n (gcl,n), În[gcl,n] = −1

n
logZ. (4.1)

Let us review the discussion of [21], where they describe how to think about logZn,

∂nÎn at non-integer n. In the previous classical discussion, because of the Zn symmetry

of the background, the calculation of the action only needed the metric in the quotient

space, however the quantum partition function is only defined in the parent space.8 We

can exploit the Zn symmetry of the background metric, to write the partition function

as:

logZn = logTrρnn (4.2)

where the gravitational density matrix ρn is defined by the boundary condition that the

background metric gcl,n has a conical singularity of strength 1/n. By taking n powers

of this seemingly singular density matrix, one ends up with a geometry which does not

have a conical singularity. Given that ρn is defined for arbitrary n, one can analytically

continue (4.2) to real n: it is just the n-th power of ρn. In this way, we can express

the derivative of În as the sum of the derivatives with respect to the lower and upper

arguments of Trρnn:

∂nÎn = −∂δn log Trρnn+δn − ∂δn
1

n+ δn
log Trρn+δnn = n−2〈SWald〉n + S̃n,bulk. (4.3)

These first term is obtained by taking a derivative with respect to the background

metric inside the path integral and using the expectation value of the equations of motion

as in [21] (but to all orders in GN). To exploit the semiclassical part of the problem (which

allowed us to use the ρn notation), where we have a well defined background metric, one

needs to work perturbatively in GN around a given saddle g
(0)
cl,n. This discussion only

makes sense in the GN expansion. This formula is formally true for arbitrary n, however

to get the corrections to the background metric g
(k>0)
cl,n one needs to analytically continue

the expectation value of the stress tensor, 〈T 〉n, to non-integer n.

7By the label classical, we mean that it is not a fluctuating but rather a background field. gcl,n will
contain GN corrections due to the backreaction of the quantum fields.

8This is just the statement that the background metric is a one point function, which is Zn invariant,
while higher correlators need the whole parent space.
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We can take the n→ 1 limit:

S = lim
n→1+

(
n−2〈SWald〉n + S̃n,bulk

)
= 〈Agen〉+ Sbulk = Sgen. (4.4)

To one loop, this is the same as [21]. The notation is a little different. There, 〈Agen〉
was explicitly separated into two terms: one coming from the generalized area evaluated

in the background metric gcl (which was denoted δA
4GN

) and a contribution coming from

matter fields which couple with derivatives of the metric, 〈Swald−like〉. This last term is

easily illustrated with a scalar field with a term
∫
Rφ2, where Swald−like =

∫
RT
φ2. In this

original notation, the expectation value of the area due to graviton fluctuations should be

thought as included in Swald−like.

This procedure is in principle well defined to all orders in GN : logZn is a completely

standard partition function, although equation (4.3) requires introducing a r = ǫ artificial

boundary in our gravitational background. This “brick wall” partition function has been

discussed in detail in [40, 41].

More concretely, at integer n, the partition function is well defined and nothing special

happens at the Zn symmetric fixed point. In order to take the n derivative, it is convenient

to define the partition function with a boundary at r = ǫ. We want to do this in a way that

we recover the original partition function when ǫ→ 0. This is achieved by choosing a set

of boundary conditions for the quantum fields at r = ǫ and then integrating independently

over all possible boundary conditions. This integration is often referred to as summing over

edge modes [40, 41], there they write the partition in a smooth black hole background for

abelian gauge fields in terms of the partition function in a brick wall geometry summed

over all possible electric fluxes across the boundary. Of course, after setting up these

boundary conditions to define the partition function in the presence of a boundary, the

entropy (n derivative) will also have the same boundary conditions and edge modes. We

can think of these edge modes as the center variables of [42]. We expect this story to

generalize straightforwardly to gravity, see [24] for a discussion about gauge invariant

boundary conditions for free gravitons.

4.1 Variations

In order to take variations with respect to the background metric, we have to define

our partition function slightly off-shell. We can do this by adding a background stress

tensor which couples with the metric operator:
∫
dxd

√
gT bkg

µν h
µν , with hµν = gµν−gµνcl,n, the

background subtracted metric, it is hopefully clear from context that h, g denote operators

while gcl is a c-number. This term in the Lagrangian naturally splits the metric operators

into the background metric, gcl,n and background subtracted fluctuation, which we will
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denote by h.9 Derivatives with respect to the background stress tensor generate then

background subtracted metric correlations. The role of the background stress tensor is to

turn on-shell an arbitrary background metric10 which allows us to think of the partition

function as a function of the background metric.

At integer n, we will consider the variation of Î with respect to the background metric:

δÎn|Tbkg=0 =

∫

M̂n

(En(gcl,n) + 〈T 〉n)δg +
∫

∂M̂n

Θ(gcl,n, δg)|r=ǫ = 0 (4.5)

where we used the quantum corrected equations of motion and the results from the previ-

ous section. Since this equation is valid for arbitrary n, its n derivative will be zero. The

boundary term appears when gcl,n has to be integrated by parts and it should be thought

as including an expectation value with respect to the fluctuating fields, but we omitted it

to simplify the notation.

By turning a background stress tensor, we can also take variation of (4.3)

δ∂nÎn|Tbkg=0 = n−2δ〈SWald〉n + δS̃n,bulk +

∫

M̂n

(δE(gcl,n) + δ〈T 〉n)∂ng. (4.6)

As our variation would be off-shell at integer n, the last term will not cancel. However,

if we consider a variation which is on-shell close at n = 1, a diffeomorphism, the variation

of last term will be zero, so, asking for δ∂nÎn = ∂nδÎn = 0 implies that

δdiff(〈Agen〉+ Sbulk) = δdiffSgen = 0. (4.7)

This is the quantum extremality condition of [23]. To leading order in GN , we will

later show explicitly that this is true using the equations of motion at n ∼ 1, but this

approach is valid to higher orders in GN . An example with finite backreaction would be

that of the Polyakov action (see Appendix B), but this example might be too simple,

since its effective action is local.

GN perturbation theory, the stress tensor and gravitons

The previous discussion applied order by order in GN and here we will be more a little

bit more explicit about how it is defined.

The Einstein equation is an operator equation, which means that:

〈E(g)〉 = GN〈Tmatter(g, φ)〉. (4.8)

9To each order in GN , we can think of the Einstein equation as simply the tadpole equation for the
metric operator: gcl,n = 〈g〉n.

10We can think of T bkg = T bkg[gcl], since the equations of motion (tadpole equations) are E(gcl) −
GN 〈T 〉 = T bkg and the LHS defines T bkg[gcl]. Equivalently, we can do Legendre transformation and
obtain the effective action, which is a function of the off-shell background metric.
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We can expand the Einstein tensor in terms of g = gcl+h in GN and, to each order, we

can basically think of the gravitons h as interacting matter with an their effective stress

tensor determined by the expectation value of the Einstein tensor, expanded around with

E(〈g〉). In this way, we can write the O(Gk
N) term in the previous equation as:

Elin
n (g

(k)
cl )+E(g

(j<k)
cl )|O(Gk

N
) = [GN〈Tmatter(gcl, h, φ)〉+ 〈Tgrav(h, gcl)〉]O(Gk

N
) = GN 〈T 〉|O(Gk

N
)

(4.9)

where the first term in the LHS is the linearized Einstein tensor and this equation de-

termines g
(k)
cl,n in terms of expectation values and g

(j<k)
cl,n and can be thought as a tadpole

contribution to g
(k)
cl,n. Note that Tgrav is defined order by order inGN by expanding 〈En(g)〉.

We schematically denote the RHS as 〈T 〉.
We can think of the equations of motion as a background field expansion of the action

order by order in GN and consider the variation of the (effective) action with respect to

the background metric. If we think about gravitons order by order, they are basically

the same as complicated matter with an effective stress tensor determine by the previous

equation.

4.2 The definition of quantum extremal surfaces

In the previous sections, we derived the quantum extremality condition. In this section,

we will explore the quantum extremality equations. Note that, in order to have a non-

trivial quantum extremal surface, there has to be some asymmetry between the inside

and outside region, and, for the symmetric case of a sphere in the vacuum, there will not

be corrections to the extremal surface.

In our framework, we will always have a well defined background metric gcl and in-

teracting gravitons on top of it. We can think of the location of the entangling surface

in similar terms: X = X0 + GNX1 + · · · , X denotes the location of the surface to all

orders.11 For Einstein gravity (it generalizes trivially to higher derivatives but we are

going to focus on Einstein for simplicity), the leading term corresponds to the location of

the extremal surface
1

4GN
KI
X0
(g

(0)
cl ; y) = 0 +O(G0

N), (4.10)

where K is the extrinsic curvature of the surface at X0 and it depends on the position on

the RT surface y and in the background metric, since it is codimension 2 surface, there

are two normal directions which we denote by I. To leading order in GN , we can write

an equation for the quantum extremal surface using the results of [36, 43]. One can use

perturbation theory to understand how the entropy changes by a small change in the

subregion. As in the previous discussion, we are going to denote by r = ǫ the tubular

region close to the entangling surface. Using their work, one can show that to first order

11Note that there are no G
1/2
N contributions since the entanglement entropy from gravitons is O(G0

N )
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in GN :

1

4GN
KI
X0+X1

(gcl; y)
∣∣
O(G0

N
)
= −δXISbulk(X0) = −2π lim

ǫ→0
ǫ〈T Ir(r = ǫ; y)K0〉. (4.11)

This is a linear equation for X1, determined in terms of quantities evaluated at X0 (the

classical extremal surface) which are well defined. T is the RHS of (4.9) and it is evalu-

ated ǫ away from the entangling surface. The finite contribution to the variation of the

entanglement entropy comes from a divergent contribution of 〈TK〉. In general terms,

we expect this object to diverge when the stress tensor approaches the boundary of the

region and the leading divergence goes like 1
ǫd−2 . All the contributions that give a diver-

gent variation of the entropy will correspond to the renormalization of the gravitational

couplings, and should disappear after adding the proper counterterms. So, only the di-

vergent contribution 〈TK〉 ∝ 1
ǫ
will contribute. If the background has a Killing vector,

this correlator will not have an odd divergent term. The higher orders can be obtained

from solving the exact equation

1

4GN
KI
X(gcl; y) = −2π lim

ǫ→0
ǫ〈T Ir(r = ǫ; y)KX〉 (4.12)

where KX is the modular Hamiltonian of the bulk surface X . This equation can be

expanded in X order by order in GN . Of course, K should be thought as an expectation

value and (4.12) as a tadpole equation for X , for example to O(G0
N), we can think of

adding an extra term in the RHS −〈KX0(h; y)〉.
To leading order in GN , we can also see how one would obtain the quantum extremality

condition from the equations of motion around n ∼ 1. The extremality of the area in RT

is obtained by expanding the equations of motion near n ∼ 1, r ∼ 0 [9]. Schematically:

En = 0× (n− 1)0 + (n− 1)
KI(y)

r
+O((n− 1)r0) +O((n− 1)2) → KI(y) = 0, (4.13)

that is, extremality is derived from regularity of the metric close to the Zn symmetric

fixed point. In the presence of quantum matter, we will have:

En −GN〈T 〉n = 0× (n− 1)0 + (n− 1)(
K(y)

r
+ 8πGN〈TK〉) + · · · . (4.14)

It is now clear that if there is a 1/r divergent term in 〈TK〉, regularity of the metric close

to the Zn symmetric fixed point will shift the surface to the quantum extremal. It is also

clear from this equation that the stress tensor that appears in (4.12) is just the RHS of

Einstein equations.
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Subtleties with gravitons

It might not be completely clear how to evaluate the entanglement entropy in the quantum

extremal surface for gravitons, or whether it is well defined (see [24] for a set of boundary

conditions that works for extremal surfaces). We certainly expect logZn to be well defined

to all orders in GN and gcl,n should also be well defined in the GN expansion. Upon

the inclusion of a boundary and summing over the proper edge modes, we expect that

(4.4,4.12) makes sense order by order in GN .

Of course, in order to make this more concrete one should understand better the

entanglement entropy of gravitons. For free gravitons, we expect that one can apply

the ideas of [40, 41] together with [24] to compute the entanglement entropy. Then, we

expect that the interacting graviton can be treated in the same way, by considering the

interaction in entanglement perturbation theory [36, 44, 45]. In the same way, we expect

that the deformation of the surface away from extremality can be understood in similar

terms. More explicitly, as long as the displacement is small, we will schematically have

Sbulk =
∑

m

∫

RT

dy1

∫
ds1 · · ·

∫

RT

dym

∫
dsmδX(y1) · · · δX(ym)×

× 〈Ts(X0, y1) · · ·Tsm(X0, ym)f(K0)〉, (4.15)

with Ts = eiK0sTe−iK0s, the modular evolved stress tensor. That is, the bulk entangle-

ment entropy in a neighboring surface will be a correlator of (modular evolved) stress

tensors and some function of the modular Hamiltonian K0 integrated several time over

the extremal surface. So, in principle, we might only need the modular Hamiltonian

in extremal surface to obtain the entanglement entropy in other surfaces. In this ex-

pression, part of the GN will come from δX , part from changing the background metric

and part from the correlator: stress tensors and K0, for example to O(GN) we will have

Sbulk = Sbulk,free(X0) + Sbulk,GN
(X0) +

∫
RT
dyδXI〈T Ir(X0, y)K0〉+

∫
dxδgab〈T ab(x)K0〉.

Alternatively, we could just define this graviton entanglement entropy in terms of the

boundary replica trick. We expect the partition function in this smooth manifold to be

perfectly well defined.

Note that quantum extremality relates the contributions from δX of Sbulk to the

contribution from the area. We will discuss this more explicitly in the next section.

4.3 Quantum extremality and mixtures

Up to here, we have discussed quantum extremality in terms of partition functions Trρn

which have a well defined path integral preparation and correspond to a unique classical

saddle. We would like to understand how to extend the previous methods to mixtures of
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states:

Zn[ρ+ σ] = Tr(ρ+ σ)n =
∑

Ak={σ,ρ}

Tr(A1A2A3 · · ·An). (4.16)

Even if Zρ+σ,n cannot be prepared in the Euclidean path integral, each of the terms in

the RHS of (4.16) can, so we can think of (4.16) as a sum of path integrals. So, Zρ+σ,n is

in principle well defined for integer n: we have an asymptotic circle with perimeter 2πn

which is divided into n slices and set boundary conditions in each of the slice determined

by a configuration in the RHS of (4.16). Because this definition is an n−dependent sum

of path integrals, it seems hard to analytically continue in n.

At this point, it is useful to make a remark about mixtures of path integrals in general.

In the effective action formalism that we described before, whenever we have a mixture of

states, we want to fix the same background source across the different states. Since there

is only one background source, there is only one corresponding classical value for the field,

that is, one tadpole equation. Consider the example of the linear mixture of two density

matrices: 1
2
(ρ + σ). In the presence of the same background tensor δ

δTbkg (Zρ + Zσ) =

〈g〉ρ + 〈g〉σ = 2gcl,ρ+σ, we can Legendre transform by adding the term −
∫
dxdT bkggcl,ρ+σ

to the path integrals. This means that δ
δgcl,ρ+σ

Z = 0 will give the sum of the equations of

motion, the tadpole condition will be 〈g− gcl,ρ+σ〉ρ+σ = 0 which is not explicitly linear in

ρ + σ because it is expanded around a background. If Zρ and Zσ share the same saddle

to leading order in the saddle point expansion12, g
(0)
cl,ρ = g

(0)
cl,σ, then we can understand this

formalism as adding a quantum mixture of states to the classical geometry and solving

the sum of the equations of motion E(gcl,ρ+σ) = 〈T gcl,ρ+σ〉ρ+σ, which we can now compute

in GN perturbation theory.13 Note that even if the Einstein equations 〈E(g)〉 = 〈Tmatter〉
are linear in the mixture, the expectation value of the tadpole is background dependent.

This makes the linearity of Einstein equations hard to see if we write them around gcl,ρ+σ,

however it is clear that gcl,ρ+σ =
1
2
(gcl,ρ + gcl,σ) (yet this is clear because 〈g〉ψ = gcl,ψ).

The previous discussion gives a prescription to extend our result to mixtures of states

that have the same O(G0
N) value of the metric: g

(0)
cl,ρ = g

(0)
cl,σ. These two states share, to

leading order in GN , the same (Zn symmetric) saddle for Zn. We can think of the sum

of path integrals in terms of a mixture of quantum states in the g
(0)
cl geometry, satisfying

12If g
(0)
cl,ρ 6= g

(0)
cl,σ, gcl,ρ+σ is not a saddle. While gρ+σ appears when coupling of the two path integrals

through a background stress tensor, it does not have a clear semiclassical interpretation and we will not
be considering this situation.

13This gives a well-defined procedure to compute the partition functions. If the two states are macro-
scopically distinguishable, the gravitons h = g−gcl,ρ+σ would not have a well-controlled one-loop partition

function. However, for h = g− g
(0)
cl −GNg

(k>0)
cl,ρ+σ, this graviton is only slightly off-shell with respect to the

path integral of ρ or σ, so the difference is small and it has a well-defined partition function. Alternatively,
we can compute these partition functions with respect to their on-shell background first and use linearity
gcl,ρ+σ = gcl,ρ + gcl,σ.
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the equations of motion:

E(gcl,(ρ+σ)n) = 〈T gcl,(ρ+σ)n〉(ρ+σ)n (4.17)

where we think of the RHS as a sum over partition functions and the superscript denote

that we are expanding the gravitons around the gcl,(ρ+σ)n background. It is key that we

phrase the problem in terms of a unique geometry and not a mixture of them since this

will allows us to analytically continue in n. To do this, we note that gcl,(ρ+σ)n is Zn

symmetric, which allows us to think of Tr(ρ + σ)n in terms of taking the n-th power of

(ρ+σ)n, where the subscript n denotes that it has the metric determined by (4.17). Upon

analytic continuation of the RHS of (4.17), the previous gives a prescription to compute

Zn(ρ+ σ) = Tr[(ρ+ σ)n]
n for non integer n. Given this, the discussion from the previous

section follows and we get quantum extremality for mixtures:

1

4GN
KI
X(gcl,ρ+σ; y) = −2π lim

ǫ→0
ǫ〈T Ir(r = ǫ, y)KX

ρ+σ〉ρ+σ. (4.18)

It is clear that we want to think of the n = 1 solution as given by a unique geometry,

gcl,ρ+σ where quantum states can be entangled. Note that the fact that at integer n

we have complicated sums of partition functions makes the quantum extremal surface

nonlinear in the state, since it depends on the modular Hamiltonian of the mixture, ie

Xρ+σ 6= Xρ +Xσ because gcl,(ρ+σ)n 6= gcl,ρn + gcl,σn.

5 Modular extremality

A simple consequence of quantum extremality for mixtures is that we can compute the

expectation value of modular Hamiltonians for states close to each other (same g
(0)
cl ). The

modular Hamiltonian is just the log of the density matrix :

〈Kσ〉ρ = −〈log σ〉ρ = −∂n〈σn−1ρ〉. (5.1)

We can get this from a mixture σ + λρ, since ∂λTr(σ + λρ)n|λ=0 = Trρσn−1.

In this way, if we combine this with quantum extremality for mixtures14, we get a

formula for the dual to the modular Hamiltonian:

〈Kσ〉ρ =
〈AXσ〉ρ
4GN

+ 〈KXσ

bulk,σ〉ρ,
δ

δXσ

〈Kσ〉ρ = 0. (5.2)

The boundary modular Hamiltonian is just given by the area plus the expectation value

of the bulk modular Hamiltonian of σ in the ρ background. For simplicity of notation, we

14For small perturbations, one can actually derive modular extremality for 〈Kσ〉σ+δσ in terms of quan-
tum extremality plus the first law for S(σ + δσ) = 〈Kσ+δσ〉σ+δσ .
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will illustrate this for Einstein gravity, but it generalizes trivially to higher derivatives.

The surface where these terms are evaluated is determined by quantum extremality for

the mixture, which implies that the sum of the two terms is extremized. We will call the

Xσ surface modular extremal. The variation can be carried out [45]:15

1

4GN
KI
Xσ(ρ)(gcl, y) = − δ

δXI
σ

〈KXσ

bulk,σ〉ρ

= lim
ǫ→0

ǫ

[
〈: T Ir(r = ǫ; y) :ρ K

Xσ

bulk,σ〉ρ +
∫ ∞

−∞

ds

4 sinh2(s/2 + iε)
〈: T Irs (r = ǫ; y) :σ〉ρ

]
(5.3)

where : T :ρ= T − 〈T 〉ρ and : Ts :σ≡ exp(iKXσ

bulk,σs) : T :σ exp(−iKXσ

bulk,σs). As we

discussed before, one should also add an expectation value of the extrinsic curvature for

the gravitons in the RHS but we omitted it for simplicity. The finite contribution arises

from a 1/ǫ divergence in the first term, as in quantum extremality, and the second term can

in principle get finite contributions from the s integral (for a local modular Hamiltonian

there are contributions from s ∼ − log ǫ that make this finite). We can think of the first

term of the variation of ρ and the second term the variation of log σ. If ρ = σ, then the

second term does not contribute, since it is proportional to the one point function of the

stress tensor and we recover quantum extremality for a single state.

To leading order in GN , Xσ(ρ) is just the classical extremal surface and this is the

bulk expression for the modular Hamiltonian discussed in [24]. In that paper, it was also

discussed what the dual of the relative entropy is to leading order in GN and our result

generalizes it to higher orders:

Srel(ρ|σ) ≡ 〈Kσ〉ρ − 〈Kρ〉ρ = 〈A
Xσ

4GN

− AXρ

4GN

+KXσ

bulk,σ −K
Xρ

bulk,ρ〉ρ. (5.4)

Given that the surfaces where the modular Hamiltonians are evaluated are different,

the relative entropy does not have a simple description. Its difference from the bulk relative

entropy can be understood as coming from the difference in areas localized O(GN) away

from the classical extremal surface. From our point of view, the object which has a natural

bulk description is the modular Hamiltonians, since it has a well defined path integral.

5.1 A linear mapping of surfaces

From the point of view of the path integral at integer n, Trρσn−1, it is clear that our

expression should be linear in ρ. At n = 1, this is the statement that we should be

thinking of the position of the modular extremal surface Xσ(ρ) as linear function of the

state ρ.

In this way, given a state σ and its quantum extremal surface Xσ(σ) , we can think

15Note the first term in this expression is only discussed in their appendix since in they focus on the
full modular Hamiltonian, where such a term is not present.
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of Xσ(ρ) as a mapping from the quantum extremal surface in the σ background to a

surface in the ρ background (this is similar to [26], where some unspecified mapping was

proposed).

The GN corrections generalize the extremal area operator appearing in [24] to the σ-

dependent modular area operator: AXσ depends on the modular Hamiltonian of σ. Since

our equation can be understood as the expectation value of an operator in the state ρ, we

can write is as an operator equation:

Kσ =
AXσ

4GN
+KXσ

bulk,σ. (5.5)

Linearity and state dependent divergences

In principle, one could worry about the fact that (5.3) is not linear in ρ because of

lim
ǫ→0

ǫ
[
〈T Ir(r = ǫ, y)Kbulk,σ〉ρ − 〈T Ir(r = ǫ, y)〉ρ〈Kbulk,σ〉ρ

]
. (5.6)

Note however that in the second term, the divergent contribution has to come from

Kbulk,σ, since there is nothing special happening at r = ǫ in the original state. Now,

if this divergent contribution from Kbulk,σ was state independent, 〈KX
bulk,σ〉ρ = c(X)

ǫ
and

thus we recover a linear expression.16 〈Kbulk,σ〉ρ could in principle have state dependent

divergences. State dependent divergences in the entropy were studied in [46], and they

look like 〈
∫
∂R

O〉ρ, which using the first law they can be mapped to a contribution to the

modular Hamiltonian
∫
∂R

O [24], which will lead to state dependent divergences in the

modular Hamiltonian. However, because our contribution to the entropy includes 〈Agen〉,
Sgen will not have these divergences. In other words, Kbulk,σ + Agen does not have state

dependent bulk divergences and we can just shift the possible term from Kbulk,σ to Agen in

a way that none of the terms will have state dependent divergences and we get a clearly

linear (5.6).

5.2 Modular extremality and the GN expansion

One should think of the GN expansion of
AXσ(ρ)

4GN
+ 〈KXσ

bulk,σ〉 as expanding around the

classical extremal surface KI
Xext

(gcl,ρ) = 0. In terms of δXσ(ρ) ≡ Xσ − Xext, we can

expand the area:

AXσ(ρ) = AXext(ρ) +

∫
dyf (1)(gcl, y)δXσ(y)

2 +

∫
dyf (2)(gcl, y)δXσ(y)

3 + · · · . (5.7)

16By state independent we mean in the smaller Hilbert space of bulk low energy excitations. This
contribution would depend on the semiclassical background, since the RT surface and the metric will be
different.
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And also the bulk modular Hamiltonian:

〈KXσ

bulk,σ〉ρ = 〈KXext
bulk,σ〉ρ +

∫
dyF

(1)
Kσ,ρ

[y]δXσ(y) +

∫
dydy′F

(2)
Kσ,ρ

[y, y′]δXσ(y)δXσ(y
′) + · · ·

(5.8)

where the F ’s are determined using modular perturbation theory, for example F (1)[y] is

the RHS of (5.3). Modular extremality relates the two terms, schematically: 2f (1)(y)δXσ+

3f (2)(y)δXσ(y)
2 + · · · = −GN (F

(1)[y] + 2
∫
dy′F (2)[y, y′]δXσ[y

′] + · · · ), but there are no

miraculous cancellations because the terms which are the same order in GN in the area

and bulk modular Hamiltonian have different powers of δXσ. Modular extremality does

simplify the expression for the boundary modular Hamiltonian since it can be expressed

purely in terms of only δXσ and f (provided that we know δXσ). Of course, this expansion

also applies for quantum extremal surfaces (when ρ = σ).

From this expansion, one could require the relative entropy to be given by the bulk

relative entropy of some surface, which is neither the modular nor quantum extremal

surface. We could set up an equation

Srel(ρ|σ) ≡ 〈Kσ〉ρ−〈Kρ〉ρ = 〈AXσ−AXρ+KXσ

bulk,σ−K
Xρ

bulk,ρ〉ρ = 〈KXS(ρ,σ)
bulk,σ −KXS(ρ,σ)

bulk,ρ 〉ρ (5.9)

which should be solved order by order in GN by expanding the RHS using (5.8) and

solving for XS(ρ, σ). While it is clear that this can be done to leading order, we are not

completely sure if there it has a solution to all orders. If that is true, it might be helpful

to think about the interpretation of modular extremality: it relates variations of the area

with variations of the modular Hamiltonian and this can be used to write the relative

entropy as the bulk relative entropy in some XS surface. However, even if it is the case,

it is clear that XS will be complicated and nonlinear in ρ, σ.

5.3 〈Kbulk,σ〉ρ and local modular Hamiltonians

At this point, even if we have a formal definition for this modular extremal surfaces, it

would be nice to understand better what the different terms mean.

To compute 〈Kbulk,σ〉ρ, in gravity in GN perturbation theory, we have to account

for three facts: the surface changes, the background metric changes, the quantum state

changes. Only the latter is present in usual field theories. As we discussed before, the

fact that the surface changes can be understood in terms of entanglement perturbation

theory (and can be combined with the change in the area), and we are going to ignore

this dependence in this section. Given that the background metric changes, we should

think of the change in the state as a combination of a change in the matter fields plus

a shift in the metric due to backreaction. We could deal with by deforming the path

integral inserting an operator that changes the metric and this would give us a deformed
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modular Hamiltonian, as for shape deformations. However, given that the theory is

gravitational there seems to be a more natural way to do it: we should think of the bulk

modular Hamiltonian in terms of the GN expansion, to leading order it will be quadratic

on the fields and then interactions will be present at higher orders. Backreaction is easily

introduces by just shifting the tadpole gcl which appears in the modular Hamiltonian,

that is Kbulk,σ[gcl,ρ, hρ] ≡ Kbulk,σ[gcl,σ, hσ − (gρ − gσ)]. This is just a shift of the variables,

but the different expressions are useful when evaluated in the respective gcl state.

As an example, we can consider Kσ, the modular Hamiltonian of a sphere R in the

vacuum and ρ some state which varies by an O(1) expectation value of the boundary

stress tensor. In this case, the modular Hamiltonian is local:

〈Kσ〉ρ = 〈
∫

R

ξ.T 〉ρ. (5.10)

When we have local modular Hamiltonian, we can use Wald’s version of Gauss’ law

[47, 30] (see also [24]):

〈
∫

R

ξ.T 〉ρ=σ+δρ − 〈
∫

R

ξ.T 〉σ = E∞(δg) =

∫

ΣS

ξtbulkEtt,lin(δg) + ASlin(δg) (5.11)

where S is an arbitrary gauge-invariant surface that is well defined for the original and

the perturbed state (for example by picking a gauge where the surface stays at the same

position). ΣS is the spacelike surface between the boundary region R and the surface S.

Now, we can use (5.11) to integrate in 〈Kσ〉ρ for ρ perturbatively close to σ, to all

orders in perturbation theory. The reason is simple, if we write gρ = gσ +
∑

k λ
kδkg, we

have that 〈
∫
R
ξ.T 〉ρ − 〈

∫
R
ξ.T 〉σ =

∑
k λ

kE∞(δkg) is linear in the metric (and ρ) and we

can use the gravitational Gauss’ law for each term individually.

Now, Ett,lin(δ
kg) is nothing but the tadpole of equation (4.9) (technically, (4.9) referred

to the GN expansion, but it of course applies to any other perturbative expansion) which

we can morally think of as the stress tensor to that order. So, we can write the previous

formula as:

〈Kσ〉ρ − 〈Kσ〉σ =
∑

k

λk
∫

ΣS

ξ.T (k)
grav + ASlin(δ

kg). (5.12)

We expect that this can be used to write Kbdy = KS
bulk + AS for an arbitrary gauge

invariant surface S, but this requires a careful analysis of boundary terms which we

will not pursue further.17 This means that modular extremality is not very helpful for

local modular Hamiltonians. As the surface S, the most natural candidates are classical

extremal or modular extremal surfaces, but one could choose any other families of gauge

17Although naively only the linearized area operator appears, the RHS of Einstein equations (Tgrav)
is the bulk modular Hamiltonian modulo boundary terms which turn the linearized area operator into
the full area operator. One can see how this works to second order by carefully rewriting Tgrav as the
canonical energy (bulk modular Hamiltonian) plus the quadratic area operator [24].
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invariant surfaces. It is clear from this discussion that we should think of the change in

background in Kbulk,σ as simply shifting the tadpole from gσ to gρ.

Now, we would to connect the previous story with that of [48]. We can think of their

setup in our terms as ρ being a bulk coherent state on top of σ with a semiclassical

amplitude, schematically |Ψρ〉 = ei
√
λ/GNa

† |Ψσ〉, with a† the graviton creation operator.

We can to work in the limit where the amplitude is large (so that the state is classical) but

the states only change the metric perturbatively in λ. Since gρ, gσ correspond to the same

saddle, we can apply our discussion. In this limit, even if in the entanglement entropy

the area changes to order G−1
N , the bulk entanglement entropy stays O(G0

N), so we do

not need quantum extremality. It is less clear if the modular extremal surface changes

for coherent states, but we do not need it because of (5.12). We can instead consider the

simpler case when S is the extremal surface. In this case, since the bulk entanglement

entropy is O(G0
N), but the bulk modular Hamiltonian is O(G−1

N ), we deduce that:

Srel(ρ|σ) = ∆〈KSext

bulk〉+O(G0
N) (5.13)

where we used our expectation that Kbdy = KS
bulk + AS and for S being the extremal

surface the areas cancel in the relative entropy, they would not cancel for modular ex-

tremal surfaces. In this way, it is very suggestive to think of the Hamiltonian of [48]

as the bulk modular Hamiltonian in the entanglement wedge, in which case the posi-

tivity of relative entropy would be a consequence of the positivity of the bulk relative

entropy. Again, modular extremality does not seem important in their case because in

this symmetric situation, one can choose an arbitrary gauge invariant surface where to

integrate the boundary modular Hamiltonian. Of course, to make full connection between

(5.12), modular extremality and [48] more precise, one should understand better how the

boundary terms and Elin combine to give the bulk modular Hamiltonian to all orders.

More broadly, understanding if (classical) coherent states give an O(1) shift to the

position extremal surface when considering modular extremality seems interesting, since

quantum extremal surfaces can only shift the entangling surface by O(GN). This might

give a simpler classical setup to compute the dual of the modular Hamiltonian. For

example, if we consider a coherent state of scalar fields, where 〈φ〉λ = 0 +
√
λG−1

N φcl, we

expect the modular extremal surface to shift by a classical δXI(X, y) ∝ λ2
∫

ds
sinh2(s/2+iε)

T Irs
when computing 〈Kbdy(λ = 0)〉λ holographically. Of course, this is hard to do explicitly,

because we have little control over modular Hamiltonians other than those which are

local, where we can apply (5.12).
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6 Discussion

In this paper, we have exploited the variational principle at the level of the replicated

path integral to derive the extremality of the entangling functional of higher derivatives,

quantum extremality and modular extremality. This is done by thinking about the Rényi

entropies and taking the n → 1 limit carefully. This gives closure to the approach of [9]

which naturally gives the entanglement entropy functional but makes it hard to derive

the extremality condition for general gravitational theories and higher orders in GN . This

variational framework is also useful to generalize relation between the equations of motion

and the first law for general states.

We would like to close with some comments and future directions.

As a general note, across this paper, we have assumed that the bulk saddles have

replica symmetry. It would be nice if one could relax this or justify it better (see [49, 50]

for some discussion about this ).

Higher-derivative gravity

By working at integer n > 1 and then taking the n→ 1 limit in higher-derivative theories

of gravity, we have discussed how one should in principle determine the splitting terms

of [32]. These are determined by demanding that the gravitational action is finite. After

fixing these terms, the only remaining freedom comes from changing the location of the

surface, and this deformation keeps the action finite.

In Appendix A, we have demonstrated in some nontrivial examples how the n → 1

limit of the Wald entropy at n > 1 gives the gravitational entropy of [12, 13]. While our

approach is strongly suggestive that this is true generally, it would be useful to work it

out explicitly for more general examples.

The equations of motion

About the equations of motion, it would be nice to understand better if by varying

the regions that in consideration, one can derive the local equations of motion from

the integrated equations of motion. Note that, in contrast with [17], the equations are

integrated over one more dimension because of the lack of symmetry.

In order to derive the equations of motion from the first law of entanglement of [14, 15],

one has to understand the modular Hamiltonian. In general it is complicated, yet its

variations are well defined in terms of analytically continued one point functions in the

replicated theory. We expect that, in the absence of a more explicit expression for the

boundary Hamiltonian, the only way in which one can obtain the equations of motion

from the first law is by using the replica trick via the procedure described in Section 3.

Of course, there are other ways in which one could try to get the equations of motion

from the RT formula. An alternative option pursued by [51, 52] is to show that the
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boundary expression for the relative entropy around the vacuum for a spherical region

matches the expression for bulk relative entropy. The bulk and boundary relative entropies

differ off-shell by an integral of the equations of motion and thus one can derive the

backreacted equations of motion from the equality of these two quantities. More generally,

one might be able to use similar ideas to the ones that we described combined with

modular perturbation theory to generalize this approach to other surfaces and states.

Entanglement entropy of gravitons

We defined the entanglement entropy of gravitons by analytically continuing the finite n−1

partition function. Technically speaking, only Sgen is well defined, since the separation

into two terms is ambiguous: it depends on the details of how the boundary is inserted.

This ambiguity is related with the choice of center of [42]. It would be nice to understand

better the graviton entanglement entropy from a Hilbert space perspective, along the lines

of [40, 41, 24]. It would be interesting to carry out the perturbation theory described in

Section 4.2 to define the entanglement entropy of gravitons beyond the extremal surfaces

in GN perturbation theory.

Local modular Hamiltonians and modular extremality

We have also given an argument of how one can in principle think of the results of [48]

in terms of bulk relative entropy. Of course, it would be nice to understand this more

precisely, by being careful about the boundary terms in the graviton modular Hamiltonian

to higher orders.

Modular extremality does not seem necessary when the modular Hamiltonian is local,

since there we can just use Gauss’ law to integrate in the energy at infinity. It seems

hard yet very interesting to understand explicitly some examples of modular extremality

for modular Hamiltonians which are non-local. In contrast with quantum extremality

, we expect the modular extremal surface to be different from the extremal surface for

deformations which are classical (coherent states).

Modular flow and bulk reconstruction

To leading order in GN , the commutator between a properly dressed local operator at a

point Z in the entanglement wedge and the modular Hamiltonian is given by the com-

mutator with the bulk modular Hamiltonian. This was used in [26] to show that one can

reconstruct operators in the entanglement wedge in terms of the boundary subregion and

more recently, it was used in [27] to derive a boundary expression of the bulk operators.

Furthermore, [26] showed that if ρbulk = σbulk → ρ = σ, which is clearly true from

(1.8), then one can also reconstruct operators deep inside the entanglement wedge. As

has been argued recently [53], the analysis of [25, 26] is stable under GN perturbations
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and we expect that our discussion can help find the explicit bulk to boundary mapping

in the presence of backreaction. Because of the previous, we do not expect the approach

of [27] to break down when GN corrections are considered. To next order, it seems like

the correction to the difference between modular flows is determined by the shift in the

surface:

[Kσ,Φ(Z)] = [Kbulk,σ,Φ(Z)] +GN

∫

RT

dy[δX(y)2,Φ(Z)]. (6.1)

We leave for future work understanding this contribution to the commutator, but we

expect that by carefully understanding the previous one can generalize [27] to higher

orders in GN .
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A Dilaton gravity with higher derivative interactions

In this appendix, we study the gravitational entropy in toy models of higher derivative

gravity: 2d dilaton gravity coupled to matter fields with higher derivative interactions.

These theories can arise from dimensional reduction of higher derivative gravity in more

than two dimensions. We demonstrate how to solve the “splitting problem” and calculate

the entropy functional Agen in these toy models. Furthermore, we verify (1.3) and (2.14) by

showing directly from the equations of motion that the entropy is obtained by extremizing

Agen, and its extremal value agrees with the n→ 1 limit of the Wald entropy.

Throughout this appendix, we define ǫ ≡ n−1 and adopt a complex coordinate system

(z, z̄) on Mn such that the metric is in the conformal gauge

ds2 = e2ψ(z,z̄)dzdz̄ (A.1)

and the origin is the Zn fixed point. The Zn symmetry acts as a discrete rotation z →
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ze2πi/n.

We will study solutions of the equations of motion for ψ, the dilaton φ, and additional

matter fields. At n = 1, these fields have regular Taylor expansions around z = 0. For

example, we have

φ(z, z̄)
∣∣∣
n=1

= φ̊+ φ̊zz + φ̊z̄ z̄ +
1

2
φ̊zzz

2 +
1

2
φ̊z̄z̄ z̄

2 + φ̊zz̄zz̄ + · · · (A.2)

for the dilaton. Away from n = 1, such expansions become much more complicated. Near

n ≈ 1, we may generally expand the dilaton as

φ(z, z̄) = φ0 + φ1(zz̄)
ǫ + φ2(zz̄)

2ǫ + · · ·+
{
z1+ǫ [φz,0 + φz,1(zz̄)

ǫ + · · ·] + c.c.
}

+

{
1

2
z2(1+ǫ) [φzz,0 + φzz,1(zz̄)

ǫ + · · ·] + c.c.

}
+ zz̄ [φzz̄,0 + φzz̄,1(zz̄)

ǫ + · · ·] + · · · (A.3)

and similarly for other fields. Here c.c. denotes complex conjugate. As we go away

from n = 1, each term in the expansion (A.2) “splits” into a Taylor expansion in (zz̄)ǫ.

Continuity at n = 1 therefore requires the following matching conditions:

φ̊ = φ0 + φ1 + φ2 + · · · , (A.4)

φ̊µ = φµ,0 + φµ,1 + φµ,2 + · · · , (A.5)

φ̊µν = φµν,0 + φµν,1 + φµν,2 + · · · , (A.6)

and their higher-order analogues. Here µ = z, z̄, and we have only kept zeroth-order

terms in ǫ in coefficients such as φm and φµ,m. Higher-order terms in ǫ are negligible for

the purpose of calculating the von Neumann entropy in our examples.

The gravitational entropy Agen can be calculated as in [12], but the result would depend

on how the n = 1 coefficients split into n 6= 1 coefficients in (A.4)–(A.6). On the other

hand, Agen should depend only on the n = 1 solution (A.2) in order to be a useful entropy

functional. This is the “splitting problem.” As we will demonstrate explicitly below, the

solution to this problem is that the equations of motion near n ≈ 1 are sufficient to fix

the split of coefficients in (A.4)–(A.6), at least to the extent of allowing us to write Agen

in terms of the n = 1 coefficients appearing in (A.2).

A.1 One matter field

Let us first consider the following theory of dilaton gravity coupled with a single scalar

field σ with higher derivative interaction:

I = −1

2

∫
d2x

√
g
[
φR− (∇σ)2 + λ∇µ∇νσ∇µ∇νσ

]
. (A.7)
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The equation of motion for the metric is

1√
g

δI

δgµν
= gµν

[
−1

2
∇2φ− 1

4
(∇σ)2 + λ

4
∇ρ∇σσ∇ρ∇σσ

]
+

1

2
∇µ∇νφ+

1

2
∇µσ∇νσ

+
λ

2

(
∇µσ∇2∇νσ +∇νσ∇2∇µσ −∇2σ∇µ∇νσ −∇ρσ∇ρ∇µ∇νσ

)
= 0, (A.8)

whereas the equations of motion for the dilaton φ and the scalar σ are

− 1√
g

δI

δφ
=

1

2
R = 0, (A.9)

− 1√
g

δI

δσ
= ∇2σ + λ∇µ∇ν∇µ∇νσ = 0. (A.10)

Using (A.9) we find a flat space with the conformal factor ψ = 0, greatly simplifying the

other equations. If we want, we could get an AdS solution instead by replacing R with

R + 2 in (A.7); this leads to ψ = − log
(
1− zz̄

4

)
but our conclusion is largely unaffected.

Solving the other equations of motion near n ≈ 1, we find

σm>0 = 0, σµ,m>0 = 0, σµν,m>0 = 0, (A.11)

φ1 = 2λσz,0σz̄,0, φm>1 = 0, (A.12)

φz,0 = 2λσz,0σzz̄,0, φz,1 = 2λσz̄,0σzz,0, φz,m>1 = 0. (A.13)

This holds for arbitrary λ and constrains how the coefficients split in (A.4)–(A.6):

σ0 = σ̊, σµ,0 = σ̊µ, σµν,0 = σ̊µν , φ0 = φ̊− 2λσ̊zσ̊z̄, (A.14)

φ̊z = 2λ (̊σzσ̊zz̄ + σ̊z̄σ̊zz) . (A.15)

Let us make two comments before continuing. First, these relations are uniquely deter-

mined from a local analysis of the equations of motion near a small conical defect in the

quotient space M̂n, and are universal in the sense that they do not depend on whatever

boundary conditions we impose at the asymptotic boundary of spacetime. The reason

for this is that these relations arise from setting to zero the most singular terms in the

equations of motion expanded around z = 0. This is a good feature because the entropy

functional Agen should only depend on local geometric quantities once we fix the gravita-

tional action. Our second comment is that the split of σ̊z (and σ̊z̄) is over-constrained as

shown in (A.15), but we will see that this is a feature not a bug.

The gravitational entropy can be easily calculated as in [12]:

Agen = 2π(φ0 + φ1)− 4πλσz,0σz̄,0. (A.16)
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As promised, this entropy functional can be rewritten18 in terms of fields and their deriva-

tives at n = 1:

Agen = SWald + Sanomaly, SWald = 2πφ̊, Sanomaly = −4πλσ̊zσ̊z̄. (A.17)

Moreover, it agrees with the n→ 1+ limit of the Wald entropy

lim
n→1+

SWald(gn) = 2πφ0 (A.18)

which is identical to (A.17) after using (A.14). It is worth noting that in taking the above

limit we need to calculate the Wald entropy at n > 1, and φ1 does not contribute to this.

Therefore, the Wald entropy has a discontinuity of the amount 2πφ1 at n = 1, which is

precisely compensated by Sanomaly in (A.17).

We satisfy the extremality condition ∂µAgen = 0 because it reduces to

∂zAgen = ∂z(2πφ̊− 4πλσ̊zσ̊z̄) = 2π
[
φ̊z − 2λ (̊σzσ̊zz̄ + σ̊z̄σ̊zz)

]
(A.19)

which vanishes due to the extra constraint (A.15).

A.2 Two matter fields

The previous example may seem too simple for experts, so let us now study a more

complicated theory of dilaton gravity coupled with two scalar fields σ and ω with higher

derivative interaction:

I = −1

2

∫
d2x

√
g
[
φR− (∇σ)2 − (∇ω)2 + λω∇µ∇νσ∇µ∇νσ

]
. (A.20)

The equation of motion for the metric is

1√
g

δI

δgµν
= gµν

[
−1

2
∇2φ− 1

4
(∇σ)2 − 1

4
(∇ω)2 + λ

4
ω∇ρ∇σσ∇ρ∇σσ

]

+
1

2
∇µ∇νφ+

1

2
∇µσ∇νσ +

1

2
∇µω∇νω

+
λ

2

{[
∇µσ∇ρ(ω∇ρ∇νσ) + (µ↔ ν)

]
−∇ρ(ω∇ρσ∇µ∇νσ)

}
= 0, (A.21)

18This rewriting only uses the most singular part of the equations of motion expanded around z = 0,
and is valid even after a δgn variation as long as it is regular as defined in Section 2.2.
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whereas the equations of motion for the dilaton φ and the other scalars σ, ω are

− 1√
g

δI

δφ
=

1

2
R = 0, (A.22)

− 1√
g

δI

δσ
= ∇2σ + λ∇µ∇ν(ω∇µ∇νσ) = 0, (A.23)

− 1√
g

δI

δω
= ∇2ω +

λ

2
∇µ∇νσ∇µ∇νσ = 0. (A.24)

Again we find a flat space with the conformal factor ψ = 0.

It is difficult to solve the other equations of motion for arbitrary λ, so we will work

perturbatively in λ and write the solution as

φ = φ(0) + λφ(1) + λ2φ(2) + · · · (A.25)

with similar expansions for other fields.

At the zeroth order in λ, we find the familiar case of dilaton gravity without any higher

derivative interaction:

φ
(0)
m>0 = 0, φ

(0)
µ,m≥0 = 0, (A.26)

σ
(0)
m>0 = 0, σ

(0)
µ,m>0 = 0, σ

(0)
zz̄,m≥0 = 0, (A.27)

ω
(0)
m>0 = 0, ω

(0)
µ,m>0 = 0, ω

(0)
zz̄,m≥0 = 0. (A.28)

At the linear order in λ, we find

φ
(1)
1 = 2ω

(0)
0 σ

(0)
z,0σ

(0)
z̄,0, φ

(1)
m>1 = 0, (A.29)

φ
(1)
z,0 = 0, φ

(1)
z,1 = 2σ

(0)
z̄,0

[
ω
(0)
0 σ

(0)
zz,0 + ω

(0)
z,0σ

(0)
z,0

]
, φ

(1)
z,m>1 = 0, (A.30)

σ
(1)
1 = −

[
ω
(0)
z,0σ

(0)
z̄,0 + ω

(0)
z̄,0σ

(0)
z,0

]
, σ

(1)
m>1 = 0, (A.31)

σ
(1)
z,1 = −

[
ω
(0)
zz,0σ

(0)
z̄,0 + σ

(0)
zz,0ω

(0)
z̄,0

]
, σ

(1)
z,m>1 = 0, (A.32)

ω
(1)
1 = −σ(0)

z,0σ
(0)
z̄,0, ω

(1)
m>1 = 0, ω

(1)
z,1 = −σ(0)

z̄,0σ
(0)
zz,0, ω

(1)
z,m>1 = 0. (A.33)

At the second order in λ, all we need to find is

φ
(2)
1 = 2ω

(0)
0

[
σ
(0)
z,0σ

(1)
z̄,0 + c.c.

]
− 2ω

(1)
0 ω

(1)
1 , (A.34)

φ
(2)
2 =

1

2

[
σ
(1)
1

]2
− 3

2

[
ω
(1)
1

]2
+ 2ω

(0)
0

[
σ
(0)
z,0σ

(1)
z̄,1 + c.c.

]
, φ

(2)
m>2 = 0, (A.35)

From these results we can determine the gravitational entropy as in [12]. Let us find

the contribution to Agen from each term in the action (A.20). We will work to second
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order in λ. The contribution of the φR term is

2π
[
φ
(0)
0 + λ

(
φ
(1)
0 + φ

(1)
1

)
+ λ2

(
φ
(2)
0 + φ

(2)
1 + φ

(2)
2

)]
. (A.36)

From the (∇σ)2 term we get

πλ2
[
σ
(1)
1

]2
, (A.37)

whereas the contribution of the (∇ω)2 term is

πλ2
[
ω
(1)
1

]2
. (A.38)

From the λω∇µ∇νσ∇µ∇νσ term we get the contribution

− 4πλ

[
ω
(0)
0 + λ

(
ω
(1)
0 +

1

2
ω
(1)
1

)] [
σ
(0)
z,0 + λ

(
σ
(1)
z,0 + σ

(1)
z,1

)] [
σ
(0)
z̄,0 + λ

(
σ
(1)
z̄,0 + σ

(1)
z̄,1

)]

+ 2πλ2σ
(1)
1

[
ω
(0)
z,0σ

(0)
z̄,0 + ω

(0)
z̄,0σ

(0)
z,0

]
. (A.39)

Combining these four contributions we get the gravitational entropy

Agen = A(0)
gen + λA(1)

gen + λ2A(2)
gen + · · · (A.40)

where

A(0)
gen = 2πφ

(0)
0 , (A.41)

A(1)
gen = 2π

[
φ
(1)
0 + φ

(1)
1

]
− 4πω

(0)
0 σ

(0)
z,0σ

(0)
z̄,0, (A.42)

A(2)
gen = 2π

[
φ
(2)
0 + φ

(2)
1 + φ

(2)
2

]
+ 3π

[
ω
(1)
1

]2
− π

[
σ
(1)
1

]2

+ 4πω
(1)
0 ω

(1)
1 − 4πω

(0)
0

[
σ
(0)
z,0

(
σ
(1)
z̄,0 + σ

(1)
z̄,1

)
+ c.c.

]
. (A.43)

Again, this entropy function can be rewritten in terms of fields and their derivatives at

n = 1. To second order in λ we find

Agen = 2πφ̊− 4πλω̊σ̊zσ̊z̄ − πλ2
[
σ̊2
z σ̊

2
z̄ + (ω̊zσ̊z̄ + ω̊z̄σ̊z)

2]+O(λ3). (A.44)

This also agrees with the n→ 1+ limit of the Wald entropy

lim
n→1+

SWald(gn) = 2π
[
φ
(0)
0 + λφ

(1)
0 + λ2φ

(2)
0

]
+O(λ3) (A.45)

which can easily be shown to be identical to (A.40).

It is worth noting that if we forgot about splitting and proceeded näıvely, we would

miss the λ2 term in (A.44). Therefore, this example shows that we cannot in general
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forget about splitting in calculating the gravitational entropy.

It is possible to check the extremality condition ∂µAgen = 0 by working out the relevant

part of the zz component of (A.21) to second order in λ.

B Polyakov action

A toy model to understand these issues would be to consider 2d dilaton gravity in the

presence of m quantum scalar fields [54, 55]

I =
1

2π

∫
dx2

√
g
[
e−2φ(R + 4(∂φ)2 + 4λ2)

]
− m~

96π

∫
R∇−1R. (B.1)

In the limit of large m, one can analyze the theory at finite N = m~. The second

term can be thought of as
∫
(∂η)2 − 2ηR, with ∇η = R. This expression suggests that

SWald = N
12
η0. This might seem too quick, but [56] showed using the Noether charge

methods that SWald = N
12
η0, so that the total entropy is

Stotal = 2e−2φ0 +
N

12
η0 = 2e−2φ0 +

N

6
ρ0 (B.2)

where η0, which is non-local in general, was expressed in terms of the metric in conformal

gauge, ds2 = e2ρdzdz̄. The quantum extremality condition would be−4e−2φ0∂φ0+
N
6
∂ρ0 =

0.

The equations of motion are [55]:

0 = e−2φ(4∂ρ∂φ + 2∂2φ)− N

12
(∂ρ∂ρ + ∂2ρ) (B.3)

and similarly for ∂̄.

Now, the question is whether given some metric ρ, the equations of motion can be

solved if one adds a small conical singularity δnρ = (n − 1) log zz̄. If N = 0, then it was

shown [9] that a δnφ change cannot cancel the singularity of ∂δρ = (n−1)
z

, so one concludes

that ∂φ = 0.

In the presence of N , there will be two kind of terms linear in δn:

∂δnρ(4∂φe
−2φ − N

6
∂ρ) +

[
δn(e

−2φ∂φ)∂ρ + 2δn(e
−2φ∂2φ)− N

12
∂2δnρ

]
= 0 (B.4)

with δnρ = (n−1) log zz̄. If we consider φ = ρ = 0, then the equation is solved by setting

δnφ = N
24
δnρ. For a non-trivial background, one can cancel the n−1

z2
between brackets by

picking an appropriate δnφ. This then results in the condition (4∂φe−2φ− N
6
∂ρ) = 0 which

is the quantum extremality condition.

Naively, it seems non trivial that one would get the quantum extremality condition
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because the gravitational action is non-local. However, in this particular case, after adding

an extra field the action becomes local and thus the usual arguments apply.
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