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Abstract

In this paper, we study the entanglement entropy of a single interval on a cylinder in two-

dimensional TT -deformed conformal field theory. For such case, the (Rényi) entanglement

entropy takes a universal form in a CFT. We compute the correction due to the deformation up to

the leading order of the deformation parameter in the framework of the conformal perturbation

theory. We find that the correction to the entanglement entropy is nonvanishing in the finite

temperature case, while it is vanishing in the finite size case. For the deformed holographic large

c CFT, which is proposed to be dual to a AdS3 gravity in a finite region, we find the agreement

with the holographic entanglement entropy via the Ryu-Takayanagi formula. Moreover, we

compute the leading order correction to the Rényi entropy, and discuss its holographic picture

as well.
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1 Introduction

The integrable quantum field theory allows us to understand the non-perturbative aspects of

the quantum field theory. In a remarkable paper by Zamolodchikov[1], the operator TzzTz̄z̄ − T 2
zz̄

of a two-dimensional(2D) quantum field theory(QFT) was studied and its expectation value had

been shown to have an analytic form. Such deformation is now called TT -deformation. The TT

deformation has some interesting properties, as shown in various studies including the spectrum

and the S-matrix[2]. In particular, an integrable QFT deformed by such operator was found to

be still integrable [2, 3]. In [3], it was shown that the deformation of the theory of 24 free scalars

leads to the Nambu-Goto action. In [4], Cardy explained the solvability of the deformation by

considering it as a stochastic process. For other studies on the TT deformation of a field theory,

see [5–7].

The TT deformation of a 2D conformal field theory(CFT) is of particular interest. To be more

precise the TT deformed CFT form a one-parameter family of the theories T (µ) parametrized by

µ ≥ 0. The original CFT sits on µ = 0. Moving infinitesimally from T (µ) to T (µ+δµ) is achieved by
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adding a term

δµ

∫
d2x

(
T (µ)T

(µ) −Θ(µ)2
)

(1.1)

to the action of T (µ), where

T (µ) = −2πT (µ)
zz , T

(µ)
= −2πT

(µ)
z̄z̄ , Θ(µ) = 2πT

(µ)
zz̄ (1.2)

are the stress tensor of T (µ). In this case, the spectrum could be determined explicitly. Considering

the deformed CFT on a cylinder of circumference L, the spectrum is

En(µ,L)L =
2π

µ̃

(
1−

√
1− 2µ̃Mn + µ̃2J2

n

)
, (1.3)

where µ̃ = µ
4πL2 is a dimensionless quantity and

Mn = ∆n + ∆̄n −
c

12
, Jn = ∆n − ∆̄n (1.4)

are the conformal dimensions and the spins of the primary operators in the undeformed CFT. As

the spectrum could be imaginary for a fixed µ̃, the theory should have a UV cutoff. It is certainly

an interesting problem to find a UV completion of such deformation.

On the other hand, the TT -deformation opens a new window to study the AdS/CFT corre-

spondence. It is a double-trace deformation, and could change the boundary condition of the AdS

gravity. For a TT -deformed holographic CFT, McGough, Mezei, and Verlinde [8] proposed that

the dual AdS3 gravity should be defined in a finite region, with the asymptotic boundary being at

a finite radial position. More precisely if a CFT i.e. T (0) has a gravity dual, then the theory T (µ)

is dual to the original gravitational theory with the new boundary at r = rc. With our convention,

the relation between µ and rc is

µ =
6R4

πcr2
c

, (1.5)

where R is the AdS radius, and c is the central charge of the original CFT. This new correspondence

has been checked from various points of view. First of all, the spectrum (1.3) is reproduced by

considering the quasi-local energy of a BTZ black hole of mass Mn and angular momentum Jn

in a spatial region r < rc. Secondly, the superluminal propagation of the perturbation of the

stress tensor[9] can be understood holographically by the metric perturbations preserving Dirichlet

boundary condition on the surface r = rc[10]. Moreover, the exact RG equation could be understood

holographically as well[8]. More on the holographic interpretation of the TT deformation can be

found in [11–19]1.

1There is another interesting generalization of the TT deformation, the so-called TJ-deformation[20], which breaks

the Lorentz symmetry but is still solvable. For other relevant studies on this kind of deformation, see [21–23].
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In this paper, we would like to study the entanglement entropy in the TT -deformed conformal

field theory. In particular we pay special attention to the entanglement entropy in the deformed

holographic CFT and investigate its implication in the AdS/CFT correspondence. In a holographic

CFT, the entanglement entropy could be captured by the area of the minimal surface via the Ryu-

Takayanagi(RT) formula [24, 25]. When considering the new duality proposed in [8], it seems that

the RT-formula still holds. We would like to use the entanglement entropy to test their proposal.

More concretely we are going to compute the entanglement entropy of a single interval on a cylinder

in the TT -deformed CFT by using the conformal perturbation method. We will investigate two

cases: the one at a finite temperature and the other one with a finite size. We find that in the

finite temperature case, there is indeed nonvanishing correction from the deformation, while in the

finite size case, the correction is vanishing. We discuss the holographic entanglement entropy via

the RT formula and find the consistent picture. Moreover we compute analytically the leading

order correction to the Rényi entropy, and discuss its holographic picture. We show that for the

AdS3 gravity with a cutoff surface, the on-shell action includes a cutoff-dependent term, which

corresponds to the leading order correction due to the TT -deformation in the partition function in

the CFT.

The remaining parts of the paper are organized as follows. In section 2, we compute pertur-

batively the single-interval (Renyi) entanglement entropy on a cylinder in the deformed CFT. In

section 3, we compute the holographic entanglement entropy of a single interval in the BTZ black

hole and global AdS3 with a finite radius cutoff, and compare with the field theory results. In

section 4, we show that the on-shell action of the gravitational configuration in a cut-off restrained

region could be dual to the CFT partition function with the leading order correction under the

TT -deformation. We end with discussions in section 5. In the appendix, we collect some technical

details.

While this papar was in preparation, closely related studies were presented in [26]. The authors

in [26] considered the entanglement entropy for an entangling surface consisting of two antipodal

points on a sphere.

2 Entanglement entropy in TT -deformed CFT

Let us consider a TT -deformed CFT living on some manifoldM. And we are interested in the

entanglement entropy of some subsystem A ∈M. The entanglement entropy is given by

S(A) = lim
n→1

Sn(A), Sn(A) =
1

1− n
log

Zn(A)

Zn
, (2.1)
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where Z is the partition function on M, Zn(A) is the partition function on the manifold Mn(A)

which is obtained by gluing n copies of M together along A. The precise definition of Mn and

more details about the above formulas can be found in [27]. In this work, we only consider the

small µ case, i.e. µ→ 0. According to (1.1) the action of the deformed CFT can be written as

S = SCFT + µ

∫
M

(TT −Θ2), (2.2)

where T, T and Θ are the quantities of the original CFT. Now we have

Zn(A)

Zn
=

∫
Mn e

−SCFT−µ
∫
Mn (TT−Θ2)[∫

M e−SCFT−µ
∫
M(TT−Θ2)

]n . (2.3)

Since µ is small, we further expand in terms of µ and get

Zn(A)

Zn
=

∫
Mn e

−SCFT
(
1− µ

∫
Mn(TT −Θ2) +O(µ2)

)[∫
M e−SCFT

(
1− µ

∫
M(TT −Θ2) +O(µ2)

)]n . (2.4)

We know that in a CFT which is defined on a flat manifold, any correlation function with Tµµ

insertion is zero, i.e. 〈Tµµ . . . 〉 = 0. Later we will always consider the case M is a cylinder. Thus∫
M
e−SCFTΘ2 ∼

〈
Θ2
〉
M = 0, (2.5)∫

Mn

e−SCFTΘ2 ∼
〈
Θ2σ

〉
M = 0, (2.6)

with σ being the operator inducing the field identification such that the adjacent replicas are pasted

along A. After some simple algebra, we get

Zn(A)

Zn
=

( ∫
Mn e

−SCFT[∫
M e−SCFT

]n
)(

1− µ
∫
Mn

〈
TT
〉
Mn + nµ

∫
M

〈
TT
〉
M +O(µ2)

)
. (2.7)

Notice that
〈
TT
〉
Mn is only a function defined on Mn. Actually we have∫

Mn

〈
TT
〉
Mn = n

∫
M

〈
TT
〉
Mn , (2.8)

from which we get

Zn(A)

Zn
=

( ∫
Mn e

−SCFT[∫
M e−SCFT

]n
)(

1− nµ
∫
M

[〈
TT
〉
Mn −

〈
TT
〉
M
]

+O(µ2)

)
. (2.9)

Then we can read the leading order correction to Sn(A)

δSn(A) =
−nµ
1− n

∫
M

[〈
TT
〉
Mn −

〈
TT
〉
M
]
. (2.10)

Taking the n → 1 limit, we have the leading order correction to S(A). In the following, let us

consider two concrete cases where δS(A) can be calculated.
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2.1 Finite temperature

The first case is a 2D deformed CFT at a finite temperature 1/β. The spatial direction is not

compactified and the manifoldM on which the theory is defined is an infinitely long cylinder with

circumference β. We introduce complex coordinate w = x+ iτ and w̄ = x− iτ on the cylinderM,

where x ∈ (−∞,∞) and τ ∈ (0, β) with the identification τ ∼ τ + β. The subsystem A is chosen

to be a single interval of length l which will be parallel to the axis of the cylinder. The endpoints

of A are put at (w, w̄) = (0, 0) and (w, w̄) = (l, l).

Consider the transformation

w → z = e
2πw
β , (2.11)

which maps the cylinder to a plane C. The stress tensor obeys the well-known transformation law

T (w) =

(
dz

dw

)2

T (z) +
c

12
{z, w}, (2.12)

where

{z, w} = (z′′′z′ − 3

2
z′′2)/z′2 (2.13)

is the Schwarzian derivative. There is a similar relation for T . Using (2.12) and 〈T (z)〉C = 0, we

find 〈
TT (w, w̄)

〉
M =

( c
12

)2
{z, w}{z̄, w̄}

=
( c

12

)2
(

2π2

β2

)2

. (2.14)

To obtain
〈
TT (w, w̄)

〉
Mn , one should consider the following maps. The first map is

w → w′ = e
2πw
β , (2.15)

which maps each sheet of Mn to a plane C. The interval A on the cylinder M is mapped to an

interval A′ on the plane C whose endpoints become (w′, w̄′) = (1, 1) and (w′, w̄′) = (e
2πl
β , e

2πl
β ).

After this map Mn becomes a manifold Cn which is obtained by gluing n copies of the plane C
together along A′. The next map is

w′ → z =

(
w′ − 1

w′ − e
2πl
β

) 1
n

, (2.16)

which maps Cn to a plane C. More about this map can be found in section 3 of [27]. Combining

these two maps, we find a map w → z relating Mn to the plane C. Once again using (2.12) and

〈T (z)〉C = 0, we find 〈
TT (w, w̄)

〉
Mn =

( c
12

)2
{z, w}{z̄, w̄}. (2.17)
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In order to read the entanglement entropy, we only need the information under the limit of

n→ 1. Expanding {z, w} and {z̄, w̄} near n = 1, we have

{z, w} = −2π2

β2
+ (n− 1)

4π2
(

1− e
2πl
β

)2
e

4πw
β

β2
(
e

2πw
β − e

2πl
β

)2 (
e

2πw
β − 1

)2
+O((n− 1)2), (2.18)

{z̄, w̄} = −2π2

β2
+ (n− 1)

4π2
(

1− e
2πl
β

)2
e

4πw̄
β

β2
(
e

2πw̄
β − e

2πl
β

)2 (
e

2πw̄
β − 1

)2
+O((n− 1)2). (2.19)

Then we find

〈
TT (w, w̄)

〉
Mn =

( c
12

)2

(2π2

β2

)2

+ (n− 1)

(
−2π2

β2

) 4π2
(

1− e
2πl
β

)2
e

4πw
β

β2
(
e

2πw
β − e

2πl
β

)2 (
e

2πw
β − 1

)2
+ h.c.




+O((n− 1)2). (2.20)

Plugging (2.14) and (2.20) into (2.10), then taking the n→ 1 limit, we get

δS(A) = −µ
( c

12

)2 8π4

β4

(
1− e

2πl
β

)2
∫
M

 e
4πw
β(

e
2πw
β − e

2πl
β

)2 (
e

2πw
β − 1

)2
+ h.c.

 . (2.21)

The integration is a little bit tricky and the details can be found in the appendix A. In the end, we

obtain

δS(A) =
−µπ4c2l coth

(
πl
β

)
9β3

. (2.22)

In the “low temperature” limit, β � l, the correction to the entanglement entropy (2.22) is
−π3c2µ

9β2 . In the “high temperature” limit, β � l, the correction is −π
4c2lµ

9β3 . Actually, at high enough

energy, the deformed theory cannot be taken as a local field theory and the above discussion breaks

down. Moreover in order to compare with the bulk dual, we have to take the large c limit carefully.

It turns out that we should keep µc finite in the large c limit[5, 17]. Under this limit, the correction

of the entanglement entropy is proportional to c, which could be compared with the semi-classical

action of the gravity.

Recall that the entanglement entropy of A in a CFT with the same setup is

S0(A) =
c

3
log

(
β

πε0
sinh

(
πl

β

))
, (2.23)

with ε0 the CFT cutoff. So to the leading order in µ, we have

S(A) = S0(A) + δS(A).
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It is remarkable that although our perturbative computation is to the leading order of µ and

seems work for any temperature, the parameter µ is of dimension of length square. In the finite

temperature case, there is a dimensionless quantity

µ̃β =
µ

β2
, (2.24)

which cannot be large. In terms of µ̃β, the change of the entanglement entropy is

δS(A) =
−µ̃βπ3c2

9

πl

β
coth

(
πl

β

)
. (2.25)

In fact, the leading order correction to the Rényi entropy can also be worked out. The com-

putation of it is more tedious, and the details can be found in the appendix B.1. The final result

is

δSn(A) = −
π4c2lµ(n+ 1) coth

(
πl
β

)
18β3n

+
πc2µ(n− 1)(n+ 1)2

576n3ε2

−
π3c2µ(n− 1)(n+ 1)2

(
cosh

(
2πl
β

)
− 7
)

csch2
(
πl
β

)
864β2n3

+

π3c2µ(n− 1)(n+ 1)2 coth2
(
πl
β

)
log

(
β sinh

(
πl
β

)
2πε

)
36β2n3

. (2.26)

When n = 1, only the first term survives, and it gives the leading order correction (2.22) to the

entanglement entropy. The second term diverges as 1/ε2 and does not depend on β and l. The

third term does not depend on the cutoff ε and can have a finite contribution when n 6= 1. The

last term has the form # log
(β sinh

(
πl
β

)
2πε

)
, recalling that log

(β sinh
(
πl
β

)
2πε

)
is the original entanglement

entropy.

2.2 Finite size

Another simple case is a 2D deformed CFT at zero temperature but with a finite size L. The

spatial direction is now compactified, while the time direction is non-compact so the manifoldM is

still an infinitely long cylinder with circumference L. We introduce complex coordinate w = x+ iτ

and w̄ = x − iτ on the cylinder M, where τ ∈ (−∞,∞) and x ∈ (0, L) with the identification

x ∼ x+L. The subsystem A is chosen to be a single interval of length l < L which will be vertical

to the axis of the cylinder. The endpoints of A are put at (w, w̄) = (0, 0) and (w, w̄) = (l, l).

The computation procedure is similar to the finite temperature case. Using the map

w → w′ = tan
(πw
L

)
, (2.27)
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which can also map the cylinder to a plane C, we obtain〈
TT (w, w̄)

〉
M =

( c
12

)2
{w′, w}{w̄′, w̄}

=
( c

12

)2
(

2π2

L2

)2

. (2.28)

The interval A on the cylinder M is mapped to an interval A′ on the plane C whose endpoints

become (w′, w̄′) = (0, 0) and (w′, w̄′) = (tan
(
πl
L

)
, tan

(
πl
L

)
). Combining with the map

w′ → z =

(
w′

w′ − tan
(
πl
L

)) 1
n

(2.29)

yields a map w → z which relates Mn to the plane C. Then we have〈
TT (w, w̄)

〉
Mn =

( c
12

)2
{z, w}{z̄, w̄}. (2.30)

Expanding {z, w} and {z̄, w̄} near n = 1, we find

{z, w} =
2π2

L2
+ (n− 1)

π2 sin2
(
πl
L

)
csc2

(
πw
L

)
csc2

(
π(l−w)
L

)
L2

+O((n− 1)2),

{z̄, w̄} =
2π2

L2
+ (n− 1)

π2 sin2
(
πl
L

)
csc2

(
πw̄
L

)
csc2

(
π(l−w̄)
L

)
L2

+O((n− 1)2). (2.31)

Then

〈
TT (w, w̄)

〉
Mn =

( c
12

)2

(2π2

L2

)2

+ (n− 1)
2π2

L2

π2 sin2
(
πl
L

)
csc2

(
πw
L

)
csc2

(
π(l−w)
L

)
L2

+ h.c.


+O((n− 1)2). (2.32)

Plugging (2.28) and (2.32) into (2.10), then taking the n→ 1 limit, we get

δS(A) =
µπ4c2 sin2

(
πl
L

)
72L4

∫
M

[
csc2

(πw
L

)
csc2

(
π(l − w)

L

)
+ h.c.

]
. (2.33)

The integral involved is∫
M

csc2
(πw
L

)
csc2

(
π(l − w)

L

)
=

∫ ∞
−∞

dτ

∫ L

0
dx csc2

(
π(x+ iτ))

L

)
csc2

(
π(l − (x+ iτ)))

L

)
. (2.34)

We first do the x integral. Fortunately the primitive function can be found, which is

−
8iLe

2iπl
L

(
1 + e

2iπl
L

)(
log
(

1− e
2iπ(x+iτ)

L

)
− log

(
1− e

2iπ(−l+iτ+x)
L

))
π
(
−1 + e

2iπl
L

)3

+
8iLe

2π(τ+il)
L

(
2e

2π(τ+il)
L − e

2iπ(l+x)
L − e

2iπx
L

)
π
(
−1 + e

2iπl
L

)2 (
−e

2πτ
L + e

2iπx
L

)(
e

2π(τ+il)
L − e

2iπx
L

) . (2.35)
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The term on the second line has no contribution since plugging x = 0 or x = L into it gives the

same result. The term on the first line has no contribution as well since the two log terms always

cancel each other. This is very different from the finite temperature case. Thus we learn that∫
M

csc2
(πw
L

)
csc2

(
π(l − w)

L

)
= 0, (2.36)

which means

δS(A) = 0. (2.37)

So to the leading order of µ, the entanglement entropy of A is still

S(A) =
c

3
log

(
L

πε0
sin

(
πl

L

))
, (2.38)

with ε0 the CFT cutoff.

On the contrary, the leading order correction to the Rényi entropy in this case is not vanishing.

The computation is similar to the finite-temperature case, and the details can be found in the

appendix B.2. And the result is

δSn(A) =
πc2µ(n− 1)(n+ 1)2

576n3ε2

−
π3c2µ(n− 1)(n+ 1)2

(
11 cos

(
2πl
L

)
+ 19

)
csc2

(
πl
L

)
864L2n3

+

π3c2µ(n− 1)(n+ 1)2 cot2
(
πl
L

)
log

(
L sin(πlL )

2πε

)
36L2n3

. (2.39)

When n = 1, it is vanishing as we expect. Let us compare it with (2.26): the quadratic divergent

terms (1/ε2) are the same, which is independent of the finite temperature or finite size; their

logarithmic terms are the same under the identification L↔ iβ. The main difference between them

is that δSn(A) in the finite T case has an additional term

−
π4c2lµ(n+ 1) coth

(
πl
β

)
18β3n

, (2.40)

which is nonzero when n = 1.

3 Gravity dual

The AdS/CFT correspondence[29] states that the gravitational theory living in the bulk is

dual to a CFT living on the asymptotic boundary of the AdS spacetime. Especially the Ryu-

Takayanagi formula [24, 25] relates the entanglement entropy in the CFT with the area of the

10



corresponding minimal surface in the gravitational theory. The holographic entanglement entropy

could be understood as a generalized gravitational entropy[28].

For the AdS3/CFT2 correspondence, it has been found that after imposing appropriate asymp-

totic boundary condition[30], the AdS3 gravity could be dual to a 2D CFT with central charge[31]

c =
3R

2G
. (3.1)

The authours of [8] proposed that under TT deformation the bulk dual gravitational theory should

be defined by moving the asymptotic boundary inwards with the radius being at

r2
c =

6R4

µπc
. (3.2)

Here R is the AdS radius and c is the central charge of the dual CFT. In this case, we expect that

the holographic entanglement entropy is still given by the RT-formula,

S(A) =
Area of γA

4G
, (3.3)

where γA is the minimal surface in the bulk whose boundary is given by ∂A. In the cases we are

considering A is an interval, and γA is the geodesic whose endpoints coincide with A’s.

3.1 BTZ black hole

A 2d CFT at high temperature is dual to a BTZ black hole. According to [8] the TT deformed

CFT at high temperature is naturally dual to a BTZ black hole with a radial cutoff. The metric

of Euclidean BTZ black hole is

ds2 =
r2 − r2

+

R2
dt2 +

R2

r2 − r2
+

dr2 + r2dx2, (3.4)

with R the AdS radius, r+ the position of the horizon, t compactified as t ∼ t+ β. β = 2πR2

r+
is the

temperature of the black hole and the corresponding CFT.

Originally the boundary is located at r → ∞. Now we move the boundary inwards to r = rc

where the TT deformed CFT lives. On this new boundary, the metric is

ds2
b =

r2
c − r2

+

R2
dt2 + r2

cdx
2

=
r2
c − r2

+

R2

(
dt2 +

R2r2
c

r2
c − r2

+

dx2

)
. (3.5)

The black hole temperature is still β, which means the temperature of the TT deformed CFT is

also β. So t is the physical time of the deformed CFT, whose physical metric shall be

ds2
p = dt2 +

R2r2
c

r2
c − r2

+

dx2. (3.6)
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At some time t0, we put the endpoints of the subsystem A at (t, x) = (t0, 0) and (t, x) = (t0, δx).

According to (3.6), the length of A is

l =
δxRrc√
r2
c − r2

+

. (3.7)

What we are left to do is to find the geodesic distance λ between (r, t, x) = (rc, t0, 0) and (r, t, x) =

(rc, t0, δx). To achieve this we define the new coordinates

r = r+ cosh ρ, t =
R2θ

r+
, x =

Rτ

r+
, (3.8)

following which the metric (3.4) becomes

ds2 = R2
(
sinh2 ρdθ2 + dρ2 + cosh2 ρdτ2

)
, (3.9)

which is the Euclidean version of global AdS3 metric. The endpoints become (ρ, θ, τ) = (ρc, θ0, 0)

and (ρ, θ, τ) = (ρc, θ0,
r+δx
R ) with

rc = r+ cosh ρc. (3.10)

Now the geodesic distance λ can be easily found:

cosh

(
λ

R

)
= 1 + 2 cosh2 ρc sinh2 r+δx

2R
. (3.11)

Plugging (3.10) and (3.7) into it, we find

cosh

(
λ

R

)
= 1 + 2

(
rc
r+

)2

sinh2

πl
β

√
1−

(
r+

rc

)2
 . (3.12)

When rc � r+, we can expand λ in terms of r+/rc and obtain

λ

4G
=

R

2G
log

βrc sinh
(
πl
β

)
πR2

+
πR2

βrc sinh
(
πl
β

) − 2π2R2l cosh
(
πl
β

)
β2rc

+O

((
r+

rc

)2
) , (3.13)

where we have used β = 2πR2

r+
to replace r+ by 2πR2

β . If we consider the “high temperature” case

β < l, the second term in the parenthesis can be naturally ignored since it is much smaller than

the third term. On the other hand since rc is very large, we can treat the third term as a small

quantity compared with the first term. This leads to

λ

4G
=

R

2G
log

βrc sinh
(
πl
β

)
πR2

− R

2G

2π3R4l coth
(
πl
β

)
β3r2

c

=
c

3
log

βrc sinh
(
πl
β

)
πR2

− π4c2µl

9β3
coth

(
πl

β

)
(3.14)
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after considering the relations c = 3R/2G and (1.5). Now as the cutoff boundary is at rc so the

corresponding cutoff in the field theory is ε = R2/rc, then we find the perfect match with the field

theory result.

3.2 Global AdS

A 2d CFT at zero temperature with the spatial direction compactified lives on the asympotic

boundary of the global AdS3. So the TT deformed CFT which we considered in section (2.2) is

dual to the global AdS3 with a radial cutoff. The metric of global AdS3 is

ds2 = R2
(
− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2

)
, (3.15)

with φ compactified as φ ∼ φ + 2π. We put the boundary at ρ = ρc, on which the TT deformed

CFT lives. At some time t0, the endpoints of the subsystem A are put at (t, φ) = (t0, 0) and

(t, φ) = (t0, δφ). Suppose that the total length of the quantum system is L, then the length of A is

given by

l =
δφL

2π
. (3.16)

The geodesic distance λ between (ρ, t, φ) = (ρc, t0, 0) and (ρ, t, φ) = (ρc, t0, δφ) is given by

cosh

(
λ

R

)
= 1 + 2 sinh2 ρc sin2

(
πl

L

)
, (3.17)

where we have used (3.16) to replace δφ by 2πl/L. When ρc � 1↔ sinh ρc � 1, we can expand λ

in terms of 1/ sinh ρc and obtain

λ

4G
=

R

2G
log

(
2 sinh ρc sin

(
πl

L

)
+

1

2 sinh ρc sin
(
πl
L

) +O

((
1

sinh ρc

)2
))

. (3.18)

Now there is no other correction except that the cutoff surface is moved inward. This fact is in

accordance with the fact that there is no correction to the entanglement entropy from the TT

deformation in the finite size CFT in the leading order of µ.

After the careful calculations on the bulk side, we notice that the main difference between these

two cases lies on the difference between (3.7) and (3.16). (3.7) says that δx depends on the cutoff

rc when r+ 6= 0 (i.e. 1/β 6= 0), while (3.16) shows that δφ does not depend on the cutoff. In the

finite temperature case the leading order correction comes actually from the rc dependence of δx.

4 More general holographic picture

In the above discussion on the holographic entanglement entropy, we actually assumed the RT

prescription. This expectation turns out to be good. However, for the single-interval Rényi entropy,

13



we need to consider the backreaction of the twist operator[28, 32]. In the following, we try to argue

that the holographic picture is still true for general configurations, using the method developed in

[33–36].

We start from the TT -deformed CFT defined on the boundary metric

ds2 = gabdx
adxb. (4.1)

It is dual to the gravitational theory living on a compact sub-region of AdS. The metric of the bulk

configuration could be

ds2 =
dr2

r2
+ r2gabdx

adxb. (4.2)

We have set RAdS = 1. The Poincare coordinate is recovered by setting ξ = 1/r. In the Fefferman-

Graham gauge, the metric is expanded as

ds2 =
dρ2

4ρ2
+
gab
ρ
dxadxb. (4.3)

Having fixed the leading order g(0), the metric above is characterized by the stress tensor of the

classical Liouville field[37]. In other words, the classical gravitational solution is characterized by

the stress tensor, which is determined by the conformal weights and the accessory parameters in

particular. In general, it is hard to find the explicit form of the metric. In the following discussion

we denote the xa in Poincare coordinate as z, z̄, while the xa in FG coordinate is denoted as w, w̄.

For the TT -deformed holographic CFT, there is a certain regulator surface at a fixed radial

position. We choose the regulator surface in the Poincare coordinate, so that the induced metric

of the surface coincides with the one in CFT. The regulator surface is located at

ξc ≈ beφ, (4.4)

where φ is the classical Liouville field, relating to the Weyl factor, and

b2 =
µc

24π
. (4.5)

There is a coordinate transformation between the FG coordinate and the Poincare coordinate[38]

ξ =
ρ1/2e−φ

1 + ρe−2φa2
, (4.6)

where a = ∂φ.

The semi-classical action of the gravitational theory is

I = IEH + IGH + ICT , (4.7)
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including the Einstein-Hilbert term plus a negative cosmological constant, the Gibbons-Hawking

term and the counter term. The counter term cancels the power-law divergence in the bulk integral

and the boundary integral. More concretely, the on-shell Einstein-Hilbert action reduces to

IEH = − c

96π

∫
dzdz̄ξ−2

c , (4.8)

ξ−2
c = a4b2e−2φ + 2a2 − e2φ

b2
. (4.9)

The Gibbons-Hawking term and the counter term give

IGH + ICT = − c

96π

∫
dzdz̄(

e2φ

b2
+ 8∂∂̄φ). (4.10)

The final on-shell action is

I = − c

96π

∫
dzdz̄(2a2 + a4b2e−2φ − 8∂∂̄φ). (4.11)

Note that as b → 0, the action above is just the Liouville action, and the changes in the choice of

cut-off surface is sub-leading in b. Note also that there is an ambiguity in the choice of the counter

term, so the linear order change in the bulk action does matter, leaving the other potential terms

depending on certain regularization prescription.

To go further, we turn to calculate the above action in the FG gauge with a proper regulator

surface. It turns out that the last part vanishes and the first part becomes

I1 = −n c

96π

∫
dwdw̄4

√
TLT̄L. (4.12)

The result above can be understood as follows

− c

96π

∫
dzdz̄2a2

z = − c

96π

∫
dwdw̄e−2φe2φ2a2

w = −n c

96π

∫
dwdw̄4

√
TLT̄L. (4.13)

The TL is the Liouville stress tensor, related to the vacuum expectation value of the CFT stress

tensor by

〈T 〉CFT = − 1

2lp
TL. (4.14)

The action above can be used to get the HRE when certain conformal transformation has been

made[34], and lp = 8πG.

The remaining part, which is associated to the regulator surface and gives the correction to the

HRE, can be calculated by

I2 = − c

96π

∫
dzdz̄a4b2e−2φ = − cb

2

96π

∫
dwdw̄a4

we
4φe−2φe−2φ = −n cb

2

96π

∫
dwdw̄4TLT̄L. (4.15)
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Considering the fact that

c =
12π

lp
=

3

2G
, (4.16)

we find that the integrand from field theory side is

− cb2

96π
4TLT̄L = − µc2

576π2
TLT̄L. (4.17)

Recall the involved partition function Zn from the conformal perturbation theory, where the linear

term in µ is just

− µ
〈
T T̄
〉
CFT

= −µ 〈T 〉CFT
〈
T̄
〉
CFT

= − µ

4l2p
TLT̄L = − µc2

576π2
TLT̄L. (4.18)

Thus at the linear level, the QFT partition function calculated by the conformal perturbation

theory matches with the gravitational result.

Note that the discussion may apply to the more general cases than the single-interval Rényi

entropy. For example, for the two-interval case[36, 39] and the single-interval on a torus case[36,

40], the leading order correction in µ to the Rényi entropy should match with the holographic

computation as well.

5 Discussion

In this papar we have calculated the entanglement entropy of a single interval on a cylinder

in the TT -deformed CFT. We find that the leading order correction to the entanglement entropy

is nonzero in the finite temperature case while it is vanishing in the finite size case. In the dual

bulk side it is expected naively that moving inwards will certainly change the geodesic distances

which means the leading order correction should be nonzero in both cases. However in the finite

size case, the change of the boundary could actually be taken into account by a different cutoff. On

the contrary, in the high temperature case, such a change do modify the geodesic distance. Our

study supports the conjecture proposed in [8].

Unlike the work done in [26], our field theory results are only valid when µ→ 0. To obtain the

finite µ results, we need to know the partition function of the theory T (µ) onM andMn, which is

a much harder job. It would be definitely interesting to study this issue. On the gravity side, the

discussion in the present work relies also on the condition that µ is very small. In the finite µ case,

it is not clear if the RT prescription can be applied naively. To determine whether the RT formula

is still valid or not, one should go to the non-perturbative level. It is interesting to consider the full

version of this duality, saying arbitrary geometry and finite deformation.
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The holographic entanglement entropy in the standard AdS/CFT correspondence has brought

us many new understandings of the holographic duality. The new duality proposed in [8] is fasci-

nating, and provides a new window to study various problems in the AdS/CFT holography , like

holographic entanglement entropy, bulk reconstruction, holographic complexity etc.. We wish to

address these issues in the future.
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A The Integral

In this appendix, we present the details of the integration in section (2.1). In order to work out

the integral

∫
M

e
4πw
β(

e
2πw
β − e

2πl
β

)2 (
e

2πw
β − 1

)2
=

∫ ∞
−∞

dx

∫ β

0
dτ

e
4π(x+iτ)

β(
e

2π(x+iτ)
β − e

2πl
β

)2(
e

2π(x+iτ)
β − 1

)2 , (A.1)

we first do the τ integral. Luckily the primitive function can be found to be

iβ

(
e

2πl
β −1

−1+e
2π(x+iτ)

β

+ e
2πl
β −e

4πl
β

e
2πl
β −e

2π(x+iτ)
β

−
(
e

2πl
β + 1

)(
log

(
e

2π(x+iτ)
β − 1

)
− log

(
e

2π(x+iτ)
β − e

2πl
β

)))
2π
(
e

2πl
β − 1

)3 .

Plugging τ = 0 or τ = β into the term

e
2πl
β − 1

−1 + e
2π(x+iτ)

β

+
e

2πl
β − e

4πl
β

e
2πl
β − e

2π(x+iτ)
β

(A.2)

gives the same result, so this term has no contribution. The term we shall analyze carefully is

−
(
e

2πl
β + 1

)(
log

(
e

2π(x+iτ)
β − 1

)
− log

(
e

2π(x+iτ)
β − e

2πl
β

))
. (A.3)

Let us first focus on

log

(
e

2π(x+iτ)
β − 1

)
. (A.4)
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10 e

2 π x
β

(a) x > 0

10 e

2 π x
β

(b) x < 0

Figure 1: e
2π(x+iτ)

β runs on the orange circle clockwise, and (e
2π(x+iτ)

β − 1) is represented by the red arrow.

When moving the head of the arrow around the orange circle once: in (a) the argument of the red arrow

is added by 2π, so log
(
e

2π(x+iτ)
β − 1

) ∣∣∣τ=β

τ=0
= 2πi; in (b) the argument of the red arrow doesn’t change, so

log
(
e

2π(x+iτ)
β − 1

) ∣∣∣τ=β

τ=0
= 0.

Fixing x, when τ runs from 0 to β, e
2π(x+iτ)

β runs around the origin once with circular orbit of radius

e
2πx
β . If the radius e

2πx
β > 1, e

2π(x+iτ)
β will run around 1 once, which means that log

(
e

2π(x+iτ)
β − 1

)
will contribute 2πi. It is demonstrated explicitly in Fig.1. So we have

log

(
e

2π(x+iτ)
β − 1

) ∣∣∣τ=β

τ=0
=

 0, x < 0↔ e
2πx
β < 1

2πi, x > 0↔ e
2πx
β > 1,

(A.5)

For the other logarithmic function, the discussion is similar:

log

(
e

2π(x+iτ)
β − e

2πl
β

) ∣∣∣τ=β

τ=0
=

 0, x < l↔ e
2πx
β < e

2πl
β

2πi, x > l↔ e
2πx
β > e

2πl
β .

Consequently, we have

g(x) ≡ log

(
e

2π(x+iτ)
β − 1

)
− log

(
e

2π(x+iτ)
β − e

2πl
β

) ∣∣∣τ=β

τ=0
=


0, x < 0

2πi, 0 < x < l

0, l < x.

(A.6)

The value of g(x) can be easily seen from the contour in Fig.2.
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e
2 π l
β10 e

2 π x
β

(a) x < 0

e
2 π l
β10 e

2 π x
β

(b) 0 < x < l

e
2 π l
β10 e

2 π x
β

(c) l < x

Figure 2: Again e
2π(x+iτ)

β runs on the orange circle clockwise. (e
2π(x+iτ)

β − 1) is represented by the red arrow,

and (e
2π(x+iτ)

β − e
2πl
β ) is represented by the blue arrow. When moving the heads of the arrows around the

orange circle once: in (a) the arguments of both arrows won’t change, which means g(x) = 0; in (b) the

argument of the red arrow is added by 2π, while the argument of the bule arrow doesn’t change, so we have

g(x) = 2πi; in (c) the arguments of both arrows are added by 2π, but their contributions cancle each other,

so g(x) = 0.

With these in hand, the integral turns out to be

∫
M

e
4πw
β(

e
2πw
β − e

2πl
β

)2 (
e

2πw
β − 1

)2
=
βl
(
e

2πl
β + 1

)
(
e

2πl
β − 1

)3 , (A.7)

and δS(A) is simplified to

δS(A) = −
µπ4c2l coth

(
πl
β

)
9β3

. (A.8)

B Correction of the Rényi entropy

B.1 Finite temperature

The leading order correction to Sn(A) is given by (2.10). We already have
〈
TT (w, w̄)

〉
M and〈

TT (w, w̄)
〉
Mn . Previously we expand

〈
TT (w, w̄)

〉
Mn near n = 1. Now we need its exact form,

which is given by 〈
TT (w, w̄)

〉
Mn =

( c
12

)2
{z, w}{z̄, w̄}, (B.1)
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where the Schwarzian derivatives {z, w} and {z̄, w̄} are determined by the map

w → z =

(
e

2πw
β − 1

e
2πw
β − e

2πl
β

) 1
n

. (B.2)

Then I ≡
〈
TT
〉
Mn −

〈
TT
〉
M can be obtained. Using w = x+ iτ and w̄ = x− iτ , we arrive at

δSn(A) =
−nµ
1− n

∫
M
I

=
−nµ
1− n

∫ ∞
−∞

dx

∫ β

0
dτ I(x, τ). (B.3)

We first do the τ integral, and the primitive function of I(x, τ) can be found. Let us call it

I(x, τ). As before there are two kinds of terms in I(x, τ): the terms with log and the terms without

log. The analyses of them are similar with those in appendix A. After some carefull analyses we

can express the integral as∫ ∞
−∞

dx

∫ β

0
dτ I(x, τ) =

π4c2

36β4

(∫ 0

−∞
dxF (x)−

∫ ∞
0

dxF (x) +

∫ l

−∞
dxG(x)−

∫ ∞
l

dxG(x)

)
, (B.4)

where

F (x) =
iβC1(x)

(
n2 − 1

)
(−2πi)

2πn4
(
e

2πl
β − 1

)(
e

4πx
β − 1

)3 (
e

2πl
β − e

4πx
β

)3 , (B.5)

G(x) =
−iβC2(x)

(
n2 − 1

)
(−2πi)

2πn4
(
e

2πl
β − 1

)(
e

2πl
β − e

4πx
β

)3 (
e

4πl
β − e

4πx
β

)3 . (B.6)

Here C1,C2 are two functions of x, and their expressions are so long that we would not like to show

them here. Notice that F (x) has poles at x = 0, l/2, and G(x) has poles at x = l/2, l. With a

cutoff ε, the integral becomes

π4c2

36β4

(∫ −ε
−∞

dxF (x)−
∫ l

2
−ε

ε
dxF (x)−

∫ ∞
l
2

+ε
dxF (x) +

∫ l
2
−ε

−∞
dxG(x) +

∫ l−ε

l
2

+ε
dxG(x)−

∫ ∞
l+ε

dxG(x)

)
. (B.7)

The primitive functions of F (x) and G(x) can also be found, which are denoted by F(x), G(x).

Now the term in the bracket becomes

F(−ε) + F(ε) + F(
l

2
+ ε)−F(

l

2
− ε)−F(∞)−F(−∞)

+G(l + ε) + G(l − ε) + G(
l

2
− ε)− G(

l

2
+ ε)− G(∞)− G(−∞). (B.8)
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We find that

F(∞) + G(∞) = 0, (B.9)

F(−∞) + G(−∞) = 0, (B.10)

F(
l

2
+ ε)−F(

l

2
− ε) = O(ε), (B.11)

G(
l

2
− ε)− G(

l

2
+ ε) = O(ε). (B.12)

And

F(−ε) + F(ε) + G(l + ε) + G(l − ε) = −
2βl

(
n2 − 1

)
coth

(
πl
β

)
n2

+
β4
(
n2 − 1

)2
16π3n4ε2

−
β2
(
n2 − 1

)2 (
cosh

(
2πl
β

)
− 7
)

csch2
(
πl
β

)
24πn4

+

β2
(
n2 − 1

)2
coth2

(
πl
β

)
log

(
β sinh

(
πl
β

)
2(πε)

)
πn4

+O(ε2). (B.13)

Multiplying the prefactor back, we finally get

δSn(A) = −
π4c2lµ(n+ 1) coth

(
πl
β

)
18β3n

+
πc2µ(n− 1)(n+ 1)2

576n3ε2

−
π3c2µ(n− 1)(n+ 1)2

(
cosh

(
2πl
β

)
− 7
)

csch2
(
πl
β

)
864β2n3

+

π3c2µ(n− 1)(n+ 1)2 coth2
(
πl
β

)
log

(
β sinh

(
πl
β

)
2πε

)
36β2n3

+O(ε). (B.14)

B.2 Finite size

The discussion in this case is similar to the one in Appendix B.1. Now we have〈
TT (w, w̄)

〉
Mn =

( c
12

)2
{z, w}{z̄, w̄} (B.15)

with the Schwarzian derivatives {z, w} and {z̄, w̄} determined by the map

w → z =

(
tan

(
πw
L

)
tan

(
πw
L

)
− tan

(
πl
L

)) 1
n

. (B.16)
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Defining I ≡
〈
TT
〉
Mn −

〈
TT
〉
M and using w = x+ iτ, w̄ = x− iτ , we get

δSn(A) =
−nµ
1− n

∫
M
I

=
−nµ
1− n

∫ ∞
−∞

dτ

∫ L

0
dx I(x, τ). (B.17)

Now we first do the x integral, and the primitive function of I(x, τ) can be found which is

denoted as I(x, τ). After some efforts we can express the integral as∫ ∞
−∞

dτ

∫ L

0
dx I(x, τ) =

π4c2

2304L4

(∫ 0

−∞
dτF (τ)−

∫ ∞
0

dτF (τ) +

∫ 0

−∞
dτG(τ)−

∫ ∞
0

dτG(τ)

)
,(B.18)

where

F (τ) =
64D1(τ)L

(
n2 − 1

)
n4
(
−1 + e

2iπl
L

)(
e

4πτ
L − 1

)3 (
−e

4πτ
L + e

2iπl
L

)3 , (B.19)

G(τ) =
64D2(τ)L

(
n2 − 1

)
n4
(
−1 + e

2iπl
L

)(
e

4πτ
L − 1

)3 (
−1 + e

4πτ+2iπl
L

)3 . (B.20)

Here D1,D2 are two functions of τ . We should notice that the form of the integral (B.18) is slightly

different from the one of (B.4), i.e. the G integral is changed from
∫ l
−∞−

∫∞
l to

∫ 0
−∞−

∫∞
0 . This

difference is significant.

Now F (τ) only has a pole at τ = 0, so does G(τ). With a cutoff ε, the integral becomes

π4c2

2304L4

(∫ −ε
−∞

dτF (τ)−
∫ ∞
ε

dτF (τ) +

∫ −ε
−∞

dτG(τ)−
∫ ∞
ε

dτG(τ)

)
. (B.21)

The primitive functions of F (τ) and G(τ) can be found out, which are denoted as F(τ), G(τ). Now

the term in the bracket becomes

F(ε) + F(−ε)−F(∞)−F(−∞) + G(ε) + G(−ε)− G(∞)− G(−∞).

There are log terms in F(τ) and G(τ), so we should deal with them very carefully. After figuring

out everything carefully, we finally get

δSn(A) =
πc2µ(n− 1)(n+ 1)2

576n3ε2

−
π3c2µ(n− 1)(n+ 1)2

(
11 cos

(
2πl
L

)
+ 19

)
csc2

(
πl
L

)
864L2n3

+

π3c2µ(n− 1)(n+ 1)2 cot2
(
πl
L

)
log

(
L sin(πlL )

2πε

)
36L2n3

+O(ε2). (B.22)

22



References

[1] A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quan-

tum field theory,” arXiv:hep-th/0401146 [hep-th].

[2] F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl.

Phys. B915 (2017) 363-383, arXiv:1608.05499 [hep-th].
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