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Abstract. We investigate cosmological perturbations generated during de Sitter inflation in
the three-coupled scalar theory. This theory is composed of three coupled scalars (φp, p =
1, 2, 3) to give a sixth-order derivative scalar theory for φ3, in addition to tensor. Recovering
the power spectra between scalars from the LCFT correlators in momentum space indicates
that the de Sitter/logarithmic conformal field theory (dS/LCFT) correspondence works in
the superhorizon limit. We use LCFT correlators derived from the dS/LCFT differentiate
dictionary to compare cosmological correlators (power spectra) and find also LCFT correla-
tors by making use of extrapolate dictionary. This is because the former approach is more
conventional than the latter. A bulk version dual to the truncation process to find a unitary
CFT in the LCFT corresponds to selecting a physical field φ2 with positive norm propagating
on the dS spacetime.

http://arxiv.org/abs/1410.4657v2
mailto:ysmyung@inje.ac.kr
mailto:tymoon@inje.ac.kr


Contents

1 Introduction 1

2 Three-coupled scalar field theory 3

3 dS/LCFT correspondence 5

4 Three scalar propagations in dS 8

5 Power spectra 11

6 Discussions 14

A LCFT correlators from extrapolate dictionary 17

B LCFT correlators from differentiate dictionary 18

C Derivation of log-solutions by using the trick 22

1 Introduction

The Lee-Wick (LW) model of a fourth-order derivative scalar theory with φ̂ has provided
a cosmological bounce which could avoid the big bang singularity [1]. By introducing an
auxiliary field (LW scalar φ̃) and redefining the normal scalar field as φ = φ̂+ φ̃, the fourth-
order Lagrangian can be expressed in terms of two second-order Lagrangians where the
kinetic and mass terms of the LW scalar have the opposite sign compared the signs for the
normal scalar. The LW scalar plays the role of a ghost scalar and thus, it is responsible for
giving a bouncing solution. In the contracting phase, φ dominates while φ freezes and φ̃ still
oscillates near the bounce. In the expanding phase, φ dominates again. Vacuum fluctuations
in the contracting phase have led to a scale-invariant spectrum of cosmological perturbations.
Recently, it was proposed that the bounce inflation scenario can simultaneously explain the
Planck and BICEP2 observations better than the ΛCDM model [2].

On the other hand, the singleton theory [3] was used widely to derive the anti de
Sitter (AdS)/logarithmic conformal field theory (LCFT) correspondence [4–7] as well as the
dS/LCFT correspondence [8, 9]. The singleton is a bulk Lagrangian composed of dipole fields
(φ1, φ2) to give a fourth-order differential equation (∇2 − m2)2φ2 = 0 for φ2 [equivalently,
a second-order coupled equation (∇2 − m2)φ2 = µ2φ1] on the AdS/dS background, even
though its starting Lagrangian is second-order. The field φ1 can be seen as an auxiliary field
to lower the number of derivatives in the fourth-order Lagrangian. The similarity between
the LW model and singleton theory is the connection of (φ↔ φ1, φ̂↔ φ2) and a difference is
the absence of the LW scalar φ̃ in the singleton theory. Also, the LW model has two different
masses, but the singleton has the same mass. Here we are interested in studying the singleton
in the AdS/dS background induced by the negative/positive cosmological constants. To that
end, the singleton was used to derive the LCFT [10, 11] on the boundary of AdS/dS which
induces a non-unitraity problem. The singleton was of interest from the cosmological point
of view for two reasons: The power spectrum during dS inflation is not scale-invariant even
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in the limit of zero-mass because of the presence of (H/2π)2 ln[ǫk] in the superhorizon and
it provides one example in which the Suyama-Yamaguchi inequality is reversed [8]. This
inequality describes the connection between the collapsed limit of four-point correlator and
the squeezed limit of three-point correlator [12].

In order to resolve the non-unitarity problem confronted in the singleton, one has to
truncate log-modes out by imposing the appropriate AdS boundary conditions [13]. A rank of
the LCFT refers to the dimensionality of the Jordan cell. The rank-2 LCFT dual to a critical
gravity has a rank-2 Jordan cell and thus, an operator has a logarithmic (log) partner. Stating
simply, a log partner is dual to φ2 whose equation is a fourth-order equation. However, there
remains nothing for the rank-2 LCFT after making truncation. This implies that there is no
power spectrum. The LCFT dual to a tricritical gravity has a rank-3 Jordan cell [14] and
an operator has two log partners of log and log2. After truncation, there remains a unitary
subspace with non-negative state. For simplicity, it is natural to consider a sixth-order scalar
field theory to cast off the non-unitarity problem. In order to avoid a difficulty in dealing with
a single sixth-order theory, we introduce an equivalent three-coupled scalar fields (φ1, φ2, φ3)
with degenerate masses m2 [15, 16]. A bulk version dual to the truncation process to find a
unitary CFT in the rank-3 LCFT corresponds to selecting a physical field φ2 with positive
norm propagating on the dS spacetime. After truncation, the only non-zero power spectrum
will be P22,0 = ξ2(ǫk)2w which is surly non-negative.

At this stage, we would like to mention that this three-coupled scalar theory might be
considered as a toy model of the tricritical gravity. However, it was pointed out that these
linearized approaches of tricritical gravities have pathologies when considering the non-linear
level [17]. This implies that calculations on the linearized level seemed to lend support to
the possibility of truncating the theory. In this sense, we have to regard our model of the
three-coupled scalar as a toy model of (linearized) tricritical gravities.

The canonical quantization of three-coupled scalar theory was performed with nontrivial
commutation relations on the Minkowski spacetime. These commutation relations will be
used to compute the power spectra of scalars when one chooses the Bunch-Davies (BD)
vacuum in the subhorizon limit of dS inflation. This is considered as the dS/quantum field
theory (QFT) correspondence in the subhorizon limit.

A single scalar field (inflaton) with a canonical kinetic term is generally known to be
a promising model for describing the slow-roll (dS-like) inflation [18, 19]. Importantly, a
recent detection of B-mode polarization has enhanced the occurrence of inflation at the GUT
scale [20]. Also, it is worth noting that the dS/CFT correspondence [21] has firstly pro-
vided the derivation of the non-Gaussianity from the single field inflation in the superhorizon
limit. [22]. If one accepts holographic inflation such that the dS inflation era of our universe
is described by a dual CFT living on the slice (R3) at the end of inflation, the BICEP2 results
might determine the central charge of the CFT [23].

Accordingly, it is promising to compute the power spectrum of the three-coupled scalar
field theory generated during dS inflation because this theory provides non-canonical fourth-
order and sixth-order equations, in addition to the canonical second-order equation. In order
to compute the power spectrum, one needs to choose the BD vacuum in the subhorizon limit
of z → ∞ (UV region). Here, one has to quantize the three-coupled scalar fields canonically in
the subhorizon limit whose commutation relations (5.7) are important to compute the power
spectrum. This may provide a hint for the dS/QFT correspondence in the subhorizon region
of z → ∞ (UV region). Also, it is meaningful to check whether the dS/LCFT correspondence
plays a crucial role in computing the power spectrum in the superhorizon limit of z → 0 (IR
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region) [8]. We will observe that the commutation relations (5.7) between three scalars have
the similar form as LCFT correlators (3.13), which shows the double correspondences of
dS/QFT and dS/LCFT on the UV and IR regions, respectively.

2 Three-coupled scalar field theory

We consider the three-coupled scalar field theory where three fields (φ1, φ2, φ3) are coupled
minimally to Einstein gravity as [13, 16, 24]

S = SE + STCS (2.1)

SE =

∫

d4x
√−g

( R

2κ
− Λ

)

, (2.2)

STCS = −
∫

d4x
√−g

[

∂µφ1∂
µφ3 +

1

2
∂µφ2∂

µφ2 + µ2φ1φ2 +m2φ1φ3 +
1

2
m2φ22

]

, (2.3)

where SE is introduced to provide de Sitter background with Λ > 0 and STCS represents the
three-coupled scalar theory. Here we have κ = 8πG = 1/M2

P, MP being the reduced Planck
mass, m2 is the degenerate mass-squared, and µ2 is a parameter. We follow the conventions
in [19] to compute the power spectrum.

The Einstein equation is given by

Gµν + κΛgµν = 2κTµν (2.4)

with the energy-momentum tensor

Tµν = ∂µφ1∂νφ3 +
1

2
∂µφ2∂νφ2

−1

2
gµν

(

∂ρφ1∂
ρφ3 +

1

2
(∂ρφ2)

2 + µ2φ1φ2 +m2φ1φ3 +
1

2
m2φ22

)

.

Three scalar equations are obtained when one varies the action (2.3) with respect to φ3, φ2, φ1,
respectively,

(∇2 −m2)φ1 = 0, (∇2 −m2)φ2 = µ2φ1, (∇2 −m2)φ3 = µ2φ2 (2.5)

which are arranged to give degenerate fourth-order and sixth-order equations

(∇2 −m2)2φ2 = 0, (∇2 −m2)3φ3 = 0. (2.6)

It shows how a higher-derivative scalar theory comes out from the second-order coupled
action (2.3). This is so because of the presence of µ2φ1φ2-term in (2.3). We have always the
same second-order equation (∇2 −m2)φp = 0 for p = 1, 2, 3 without it.

When one chooses the vanishing scalars, the dS spacetime solution is given by

φ̄1 = φ̄2 = φ̄3 = 0 → R̄ = 4κΛ. (2.7)

Curvature quantities are given by

R̄µνρσ = H2(ḡµρḡνσ − ḡµσ ḡνρ), R̄µν = 3H2ḡµν (2.8)
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Figure 1. Penrose diagram of de Sitter inflation with the UV/IR boundaries (∂dS
∞/0) located at

η = −∞ and η = 0−. A slice (R3) at η = −ǫ is employed to define the LCFT. Conformal invariance
in R

3 at η = −ǫ is connected to the isometry group SO(1,4) of dS space. The dS isometry group
acts as conformal group when fluctuations are superhorizon. Hence, correlators are expected to be
constrained by conformal invariance. On the other hand, one introduces the BD vacuum in the
subhorizon limit of η → −∞ to compute the power spectra.

with a constant Hubble parameter H2 = κΛ/3. We represent the dS spacetime explicitly by
choosing a conformal time η as a flat slicing

ds2dS = ḡµνdx
µdxν = a(η)2

[

− dη2 + dx · dx
]

(2.9)

with the conformal scale factor

a(η) = − 1

Hη
→ a(t) = eHt, (2.10)

where the latter represents the scale factor for cosmic time t. During the dS stage, the scale
factor a goes from small to a very large value like af/ai ≃ 1030. It implies that the conformal
time η = −(aH)−1 runs from −∞ (infinite past) to 0− (infinite future). As is shown in
Fig. 1, the UV/IR boundaries (∂dS∞/0) of dS space are located at η = −∞ and η = 0−,
respectively, which make the boundary compact [21]. Also we recall that this coordinate
system covers only half of dS space and thus, η = −∞ corresponds to the past horizon. We
emphasize that the BD vacuum must be chosen at η = −∞, while the dual LCFT can be
thought of as living on the slice (R3) at η = −ǫ(0 < ǫ ≪ 1). This indicates that one has to
take into account both boundaries of η = −∞ and −ǫ to compute the power spectrum. This
might imply the dS/QFT and dS/LCFT correspondences.

For simplicity, we take the Newtonian gauge of B = E = 0 and Ēi = 0 for metric
perturbation hµν around the dS background ḡµν (2.9). Then, the perturbed metric is given
by

ds2 = a(η)2
[

− (1 + 2Ψ)dη2 + 2Ψidηdx
i +
{

(1 + 2Φ)δij + hij

}

dxidxj
]

(2.11)

with transverse-traceless tensor ∂ih
ij = h = 0. Also, one has three scalar perturbations

φp = φ̄p + ϕp, p = 1, 2, 3. (2.12)
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In order to obtain the cosmological perturbed equations, one has to linearize the Einstein
equation (2.4) directly around the dS spacetime, arriving at

δRµν(h) − 3H2hµν = 0 → ∇̄2hij = 0. (2.13)

Two scalars Ψ and Φ are not physically propagating modes. Ψ = −Φ was found [19] when
using the linearized Einstein equation, and it was used to define the comoving curvature
perturbation in the slow-roll inflation. Also, a vector Ψi is nonpropagating mode since it has
no kinetic term. In the dS inflation, there is no coupling between {Ψ,Φ} and {ϕp} because
of vanishing background φ̄p = 0. The linearized scalar equations are given by

(∇̄2 −m2)ϕ1 = 0, (2.14)

(∇̄2 −m2)ϕ2 = µ2ϕ1, (2.15)

(∇̄2 −m2)ϕ3 = µ2ϕ2. (2.16)

These are combined to give a degenerate fourth-order equation and and a sixth-order equation

(∇̄2 −m2)2ϕ2 = 0, (2.17)

(∇̄2 −m2)3ϕ3 = 0, (2.18)

which are our main equations to be solved for cosmological purpose because a complete
solution to a second-order equation (2.14) was given by the Hankel function.

3 dS/LCFT correspondence

Conformal invariance on the slice (R3) near η = 0− is connected to the isometry group
SO(1,4) of dS spacetime. The dS isometry group acts as conformal group when fluctuations
are in the superhorizon limit of η → 0−. The two-point functions (correlators) are expected
to be constrained by conformal invariance. For definiteness, we first consider the slice (R3)
and its momentum space at η = −ǫ and then, take the limit of ǫ→ 0 [8].

To derive the dS/LCFT correspondence, we first solve Eqs. (2.14), (2.17), and (2.18)
in the superhorizon limit of η → 0−. Their solutions are given by

ϕ1,η→0(η) ∼ (−η)w, ϕ2,η→0(η) ∼ (−η)w ln[−η], ϕ3,η→0(η) ∼ (−η)w ln2[−η] (3.1)

with

w =
3

2

(

1−
√

1− 4m2

9H2

)

. (3.2)

In the dS/CFT picture, the complementary series of 0 < 4m2

9H2 < 1 have a dual interpretation in

terms of a unitary CFT while the principal series of 4m2

9H2 > 1 require a nonunitary CFT [25].
Hence, we choose the complementary series for developing the dS/LCFT correspondence.
These solutions all satisfy the Dirichlet boundary condition of limη→0− [ϕp,0] → 0.

Deriving cosmological correlator of a massive scalar from the dS/CFT dictionary, it is
very important to note the following two statements [26]:
(i) In Lorentzian dS4, the extrapolated bulk correlators are a sum of two contributions.
One is the leading behavior of a CFT correlator of an operator with conformal dimension

w = 3
2 −

√

9
4 − m2

H2 , while the other comes from the leading behavior of a CFT correlator of
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an operator with dimension △+ = 3
2 +

√

9
4 − m2

H2 .

(ii) In Lorentzian dS4, functional derivatives of late-time Schrödinger wavefunction produce
CFT correlators with dimension △+ only.
The dominant term in (i) was computed by Witten for a particular scalar [27], whereas a
massless version of statement (ii) was firstly made by Maldacena [21]. This indicates that the
dS/CFT “extrapolate” and “differentiate” dictionaries are inequivalent to each other, while
the AdS/CFT “extrapolate” and “differentiate” dictionaries are equivalent. Following (ii)
to compute cosmological correlator of a massive scalar, it is inversely proportional to CFT
correlator with dimension △+ as

〈φ(k)φ(−k)〉 ∝ 1

〈O(k)O(−k)〉 ∝ 1

k−3+2△+
= k2w−3, (3.3)

which leads to the power spectrum for a massive scalar in the superhorizon limit. On the
other hand, the cosmological correlator is directly proportional to the CFT correlator with
different dimension w when one follows (i)

〈φ(k)φ(−k)〉 ∝ e〈σ(k)σ(−k)〉e ∝ k2w−3. (3.4)

If one uses (i) to derive LCFT-correlators, they are derived from the relation

e〈Op(x)Oq(y)〉e = lim
η,η′→0

[ηη′]−w〈ϕp(x, η)ϕq(y, η
′)〉, (3.5)

where 〈ϕp(x, η)ϕq(y, η
′)〉 are Green’s functions and its derivative with respect to w. We have

derived them in Appendix A explicitly.

Following (ii) to derive LCFT correlators, one must use the bulk-to-boundary propaga-
tors and relation

〈Op̄(x)Oq̄(y)〉 = − δ2 lnZbulk

δϕp,0(x)δϕq,0(y)
, (3.6)

where 3̄ = 1, 2̄ = 2, 1̄ = 3 and

Zbulk = e−δSSb[{ϕa,0}]. (3.7)

See Appendix B for detail derivations using “differentiate” dictionary. Explicitly, rank-3
LCFT correlators are determined by

〈O1(x)O1(y)〉 = 〈O1(x)O2(y)〉 = 0, (3.8)

〈O1(x)O3(y)〉 = 〈O2(x)O2(y)〉 =
A

|x− y|2△+
, (3.9)

〈O2(x)O3(y)〉 =
A

|x− y|2△+

(

− 2 ln |x− y|+D1

)

, (3.10)

〈O3(x)O3(y)〉 =
A

|x− y|2△+

(

2 ln2 |x− y| − 2D1 ln |x− y|+D2

)

, (3.11)

where constants A, D1, and D2 are given by

A = c0△+, D1 =
1

△+
+

1

c0

∂c0
∂△+

, D2 =
1

c0△+

∂c0
∂△+

+
1

2c0

∂2c0
∂△2

+

. (3.12)
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We note here that c0 is an undetermined constant. Eqs.(3.8)-(3.11) are summarized to be
schematically [15, 16]

〈Op(x)Oq(y)〉 =





0 0 CFT
0 CFT L

CFT L L2



 , (3.13)

where CFT, L , and L2 represent their correlators in (3.9), (3.10), and (3.11), respectively.

In order to derive LCFT correlators in momentum space, one may use the relation

1

|x− y|2△+
=

Γ(32 −△+)

4△+π3/2Γ(△+)

∫

d3k|k|2△+−3eik·(x−y), (3.14)

where we observe an inverse-relation of exponent 2△+ between |x| and k = |k|. However, it
seems difficult to derive momentum correlators of (3.10) and (3.11) because of the presence
of log-terms. Instead, following [8], we obtain them newly

〈O1(k1)O1(k2)〉′ = 〈O1(k1)O2(k2)〉′ = 0, (3.15)

〈O1(k1)O3(k2)〉′ = 〈O2(k1)O2(k2)〉′ =
A0

k
3−2△+

1

, (3.16)

〈O2(k1)O3(k2)〉′ = a〈O1(k1)O3(k2)〉′ +
∂

∂△+
〈O1(k1)O3(k2)〉′

=
A0

k
3−2△+

1

[

2 ln[k1] + a+
A0,△+

A0

]

, (3.17)

〈O3(k1)O3(k2)〉′ = a〈O1(k1)O3(k2)〉′ + b
∂

∂△+
〈O1(k1)O3(k2)〉′ +

1

2

∂2

∂△2
+

〈O1(k1)O3(k2)〉′

=
A0

k
3−2△+

1

[

2 ln2[k1] + 2
(

b+
A0,△+

A0

)

ln[k1] + a+ b
A0,△+

A0
+

1

2

A0,△+△+

A0

]

,

(3.18)

where the prime (′) denotes the correlators without the (2π)3δ3(Σiki) and a, b are arbitrary
constants. Also, A0 is given by

A0 =
AΓ(32 −△+)

4△+π3/2Γ(△+)
=
c0△+Γ(

3
2 −△+)

4△+π3/2Γ(△+)
(3.19)

which was obtained from using the relation (3.14) together with (3.9). Here, A0,△+
and

A0,△+△+
denote derivatives of A0 and A0,△+

with respect to △+, respectively. These corre-
lators will be compared to the power spectra obtained in the superhorizon limit of z → 0 in
Sec. 5 by choosing a and b appropriately. Actually, there is ambiguity for fixing D1 and D2

in (3.10) and (3.11). It implies that these depend on the computation scheme. For example,
these are given by ζ1 and ζ2 in (A.7) and (A.8) when using the “extrapolate” dictionary.
Including a and b in (3.17) and (3.18) reflects this ambiguity.

Finally, to compare (3.15)-(3.18) with the power spectra, we express LCFT-correlators
as

〈Op(k1)Oq(k2)〉′ = 〈O2(k1)O2(k2)〉′ × 〈Op(k1)Oq(k2)〉′L, (3.20)

where 〈Op(k1)Oq(k2)〉′L are contributions from logarithmic parts.
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4 Three scalar propagations in dS

In order to calculate the power spectrum, we have to know the solution to Eqs. (2.14),
(2.17), and (2.18) in the whole range of η(z). Also, these solutions are required to satisfy two
coupled equations (2.15) and (2.16) simultaneously. For cosmological purpose, the scalars ϕp

can be expanded in Fourier modes φp
k
(η)

ϕp(η,x) =
1

(2π)
3

2

∫

d3k φp
k
(η)eik·x. (4.1)

The second-order equation (2.14) leads to

[

d2

dη2
− 2

η

d

dη
+ k2 +

m2

H2

1

η2

]

φ1k(η) = 0 (4.2)

which could be expressed in term of z = −kη
[ d2

dz2
− 2

z

d

dz
+ 1 +

m2

H2

1

z2

]

φ1k(z) = 0. (4.3)

The solution to (4.3) is given by the Hankel function H
(1)
ν as

φ1k(z) =
H√
2k3

√

π

2
ei(

πν
2
+π

4
)z3/2H(1)

ν (z), ν =

√

9

4
− m2

H2
. (4.4)

In the subhorizon limit of z → ∞, Eq.(4.3) reduces to

[ d2

dz2
− 2

z

d

dz
+ 1
]

φ1k,∞(z) = 0 (4.5)

which implies the positive-frequency solution with the normalization 1/
√
2k

φ1k,∞(z) =
H√
2k3

(i+ z)eiz . (4.6)

This is also a typical mode solution of a massless scalar propagating on whole dS spacetime.
In the superhorizon limit of z → 0, Eq.(4.3) takes the form

[

d2

dz2
− 2

z

d

dz
+
m2

H2

1

z2

]

φ1k,0(z) = 0, (4.7)

whose solution is given by

φ1k,0(z) =
H√
2k3

zw, w =
3

2
− ν. (4.8)

On the other hand, plugging (4.1) into (2.17) leads to a degenerate fourth-order equation
for φ2k(η)

[

η2
d2

dη2
− 2η

d

dη
+ k2η2 +

m2

H2

]2

φ2k(η) = 0 (4.9)
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which seems difficult to be solved directly. However, we may solve Eq.(4.9) in the two limits
of subhorizon and superhorizon. In the subhorizon limit of z → ∞, Eq.(4.9) takes the form

[

z2
d2

dz2
− 2z

d

dz
+ z2

]2

φ2k,∞ = 0. (4.10)

whose direct solution is given by

φ2,dk,∞ = c̃2(i+ z)eiz . (4.11)

The complex conjugate of φ2,dk,∞ is a solution to (4.10) too. Importantly, we note that Eq.(2.15)
reduces to a second-order equation in the subhorizon limit

[ d2

dz2
− 2

z

d

dz
+ 1
]

φ2k,∞(z) = 0, (4.12)

whose solution is also given by

φ2k,∞(z) = c̃2(i+ z)eiz = φ2,d
k,∞(z). (4.13)

Curiously, Eq.(4.9) takes the form in the superhorizon limit of z → 0 as

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]2

φ2k,0(z) = 0. (4.14)

Its solution is given by the log-function

φ2k,0(z) = zw ln[z]. (4.15)

The presence of “ln[z]” reflects that (4.15) is a solution to the fourth-order equation (4.14).
For φ1k,0(z) = zw, φ2k,0(z) also satisfies the superhorizon limit of a coupled equation (2.15)

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]

φ2k,0(z) = − µ2

H2
φ1k,0(z) (4.16)

for having a choice of µ2 = (3− 2w)H2.
Lastly, we have the degenerate sixth-order equation for φ3k(η)

[

η2
d2

dη2
− 2η

d

dη
+ k2η2 +

m2

H2

]3
φ3k(η) = 0 (4.17)

which seems formidable to be solved exactly. However, its equations in the subhorizon limit
takes the form

[

z2
d2

dz2
− 2z

d

dz
+ z2

]3

φ3k,0(z) = 0. (4.18)

A direct solution is given by

φ3,dk,0(z) = c̃3(i+ z)eiz . (4.19)
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Eq.(2.16) reduces to a second-order equation in the subhorizon limit

[ d2

dz2
− 2

z

d

dz
+ 1
]

φ3k,∞(z) = 0, (4.20)

whose solution is given by

φ3k,∞(z) = c̃3(i+ z)eiz = φ3,dk,∞(z). (4.21)

In the superhorizon limit, Eq.(4.17) leads to

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]3

φ3k,0(z) = 0 (4.22)

whose solution is given by (see Appendix C for derivation using the trick in [5])

φ3k,0(z) ∝ zw ln2[z]. (4.23)

Here, the presence of “ln2[z]” indicates that (4.23) is a solution to the degenerate sixth-order
equation (4.22). Explicitly, one has three steps to show that φ3k,0(z) is a solution to (4.22)

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]

φ3k,0(z) → 2(2w − 3)zw ln[z] + 2zw, (4.24)

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]2
φ3k,0(z) → 2(2w − 3)2zw, (4.25)

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]3
φ3k,0(z) → 0. (4.26)

We point out that considering φ2k,0(z) = zw ln[z], φ3k,0(z) =
zw ln2[z]

2 − 1
2w−3z

w ln[z] also satisfies
the superhorizon limit of a coupled equation (2.16)

[

z2
d2

dz2
− 2z

d

dz
+
m2

H2

]

φ3k,0(z) = − µ2

H2
φ2k,0(z) (4.27)

by choosing µ2 = (3− 2w)H2.
Consequently, we summarize the two asymptotic solutions. The solutions are given by

the same form in the subhorizon limit, irrespective of their higher-order derivative equations,
as

φpk,∞(z) = c̃p(i+ z)eiz = φp,dk,∞(z), (4.28)

while these take different forms in the superhorizon limit

φ1k,0(z) = zw, φ2k,0(z) = zw ln[z], φ3k,0(z) =
zw ln2[z]

2
− 1

2w − 3
zw ln[z]. (4.29)

This implies that the solution feature to the higher-order derivative equation appears in the
superhorizon region only, but the solution to the second-order equation always appears in
the subhorizon region. This is because we are not interested in (2.17) and (2.18), but rather
in (2.15) and (2.16) where the right-handed side is subdominant in the subhorizon limit.
The former solution will be used to define the dual LCFT via the dS/LCFT correspondence,
while the latter will be exploited to define the BD vacuum for quantum fluctuations through
the dS/QFT correspondence.

– 10 –



5 Power spectra

The power spectrum is defined by the two-point function. The defining relation is given by

BD〈0|ϕp(η,x)ϕq(η,y)|0〉BD =

∫

d3k
[Ppq(k, η)

4πk3

]

eik·(x−y), (5.1)

where k = |k| is the comoving wave number. It could be computed when one chooses
the BD vacuum state |0〉BD which is the Minkowski vacuum of a comoving observer in the
distant past [in the subhorizon limit of η → −∞(z → ∞)] when the mode is deep inside the
horizon [19]. Quantum fluctuations were created on all length scales with wave number k.
Cosmologically relevant fluctuations start their lives deep inside the comoving Hubble radius
(aH)−1 which defines the subhorizon: k ≫ aH(z ≫ 1). On later, the comoving Hubble
radius shrinks during inflation while keeping the wavenumber k constant. All fluctuations
exit the comoving Hubble radius, they reside on the superhorizon region of k ≪ aH(z ≪ 1)
after horizon crossing. In the dS inflation, we choose the subhorizon limit of z → ∞ (the
UV boundary) to define the BD vacuum, while the superhorizon limit (the IR boundary) is
chosen as z → 0 to define the dS/LCFT correspondence.

To compute the power spectrum, we have to know the commutation relations and the
Wronskian conditions. The canonical conjugate momenta are given by

π1 = a2
dϕ3

dη
, π2 = a2

dϕ2

dη
, π3 = a2

dϕ1

dη
, (5.2)

where the mid-term is considered as a standard canonical momentum. The canonical quan-
tization is accomplished by imposing equal-time commutation relations:

[ϕ̂p(η,x), π̂q(η,y)] = iδpqδ
3(x− y). (5.3)

The three operators ϕ̂p are expanded in terms of Fourier modes as [15, 16]

ϕ̂1(z,x) =
1

(2π)
3

2

∫

d3kN1

[(

iâ1(k)φ
1
k(z)e

ik·x
)

+ h.c.
]

, (5.4)

ϕ̂2(z,x) =
1

(2π)
3

2

∫

d3kN2

[(

â2(k)φ
1
k(z) + â1(k)φ

2
k(z)

)

eik·x + h.c.
]

, (5.5)

ϕ̂3(z,x) =
1

(2π)
3

2

∫

d3kN3

[

i
{

â3(k)φ
1
k(z) +

(

â2(k)−
i

2
â1(k)

)

φ2k(z) (5.6)

+
1

2
â1(k)φ

3
k(z)

}

eik·x + h.c.
]

.

with {Np} the normalization constants. Here it is worth noting that we do not know the com-
plete solutions {φpk(z)} because we could not solve the degenerate fourth-order equation (4.9)
and sixth-order equation (4.17) completely. However, if one uses the asymptotic solutions
φp,0
k

= c̃p(i+ z)eiz in the subhorizon limit instead of φp
k
, one may impose (5.3) to derive the

commutation relation between annihilation and creation operators. Plugging (5.4)-(5.6) into
(5.3) determines the relation of normalization constants as N1N3 = −1/2k and N2 = 1/

√
2k.

Also, the commutation relations between âp(k) and â
†
q(k′) are obtained to be

[âp(k), â
†
q(k

′)] = 2k





0 0 −1
0 1 i
−1 −i 3

2



 δ3(k− k′), (5.7)
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which indicates a quantum nature of three-coupled scalar theory. This shows the dS/QFT

correspondence in the subhorizon limit. It is also noted that a factor of 3
2 in [â3(k), â

†
3(k

′)]
represents higher-derivative nature for ϕ3.

We note that the off-diagonal commutation relations [ϕ̂p(η,x), π̂q(η,y)] = 0 for p 6= q

gives the following Wronskian conditions together with (4.6), c̃2 = iH/(2
√
2k3) (4.13), and

c̃3 = H/(4
√
2k3) (4.21):

a2
(

φ1k,∞
dφ2∗k,∞
dz

− φ2∗k,∞
dφ1k,∞
dz

+ φ1∗k,∞
dφ2k,∞
dz

− φ2k,∞
dφ1∗k,∞
dz

)

= −1

k
, (5.8)

(

φ1k,∞
dφ3∗k,∞
dz

− φ3∗k,∞
dφ1k,∞
dz

+ φ3k,∞
dφ1∗k,∞
dz

− φ1∗k,∞
dφ3k,∞
dz

)

= 2
(

φ2k,∞
dφ2∗k,∞
dz

− φ2∗k,∞
dφ2k,∞
dz

)

. (5.9)

Now we are position to choose the BD vacuum |0〉BD by imposing âp(k)|0〉BD = 0.
We should explain what the BD vacuum is really, since the three-coupled scalar theory is
quite different from the three free-scalar theory without µ2ϕ1ϕ2. We mention briefly how
to quantize the n-coupled scalar field theory within the Becchi-Rouet-Stora-Tyutin (BRST)
quantization scheme in Minkowski space [16]. It has been carried out by introducing the FP
ghost action composed of n-FP ghost fields. Extending a BRST quartet generated by two
scalars and FP ghosts to n scalars and FP ghosts, there remains a physical subspace with
positive norm for odd n, while there exists only the vacuum for even n. This has shown
the non-triviality of a odd-higher derivative scalar field theory, which might show a hint
to resolve the nonunitarity confronted when developing a higher-order derivative quantum
gravity. Explicitly, the n = 2 case corresponds to a dipole ghost field for the singleton. They
have formed a quartet to give the zero norm state when one includes the FP ghost action,
leaving the vacuum only. On the other hand, the n = 3 case is enough to have a physical
subspace with positive norm state upon requiring the BRST quartet mechanism. Comparing
it with Yang-Mills theory (4.52) in [28], we have an apparent correspondence between two

ϕ1 ↔ B, ϕ2 ↔ AT, ϕ3 ↔ AL, (5.10)

where B is a conjugate momentum of scalar gauge mode AS, while AT represents the trans-
verse gauge mode with positive norm and AL denotes the longitudinal gauge mode with
negative norm. Additionally, we note a difference arising from a non-zero commutator of
[â2(k), â

†
3(k

′)] = 2ikδ3(k − k′) whose dual plays an important role in selecting a physical
CFT e〈O2(x)O2(y)〉e in the rank-3 LCFT. This implies that the three-coupled scalar theory
provides a physical scalar field ϕ2 even though it couples to ϕ3 via (2.16). No larger than
n = 3-coupled scalar theory is necessary to construct a unitary scalar theory from a higher-
derivative scalar theory. Here, the subsidiary condition (the Gupta-Bleuler condition [29])
of ϕ+

1 (x)|phys〉 = 0 [30] either to find a physical field with positive norm or to eliminate
unphysical field with negative norm is translated into â1(k)|phys〉 = 0 which shares a prop-
erty of the BD vacuum |0〉BD defined by â1(k)|0〉BD = 0, in addition to â2(k)|0〉BD = 0 and
â3(k)|0〉BD = 0.

The scalar power spectrum for ϕ1 and P12(= P21) vanish as

P11 = P12 = P21 = 0 (5.11)

– 12 –



when one used the unconventional relations [â1(k), â
†
1(k

′)] = 0, [â1(k), â
†
2(k

′)] = 0, and

[â2(k), â
†
1(k

′)] = 0.
On the other hand, the power spectrum of ϕ2 and P13(= P31) are given by the conven-

tional massive scalar

P22 = P13 = P31 =
k3

2π2

∣

∣

∣
φ1k

∣

∣

∣

2

=
H2

8π
z3|ei(πν

2
+π

4
)H(1)

ν (z)|2. (5.12)

The remaining power spectrum P23(= P32) and P33 are given by

P23 =
k3

2π2

[

|φ1k|2 − i(φ1kφ
2∗
k − φ2kφ

1∗
k )
]

(5.13)

and

P33 =
k3

2π2

[3

2
|φ1k|2 −

3i

2
(φ1kφ

2∗
k − φ2kφ

1∗
k ) +

∣

∣

∣
φ2k

∣

∣

∣

2
− 1

2
(φ1kφ

3∗
k + φ3kφ

1∗
k )
]

, (5.14)

where we fixed N3 = 1/
√
2k.

It is important to note that in the superhorizon limit of z → 0, P23,0 and P33,0 are given
by

P23,0 → ξ2z2w
(

2 ln[z] + 1
)

(5.15)

and

P33,0 → ξ2z2w

{

2 ln2[z] +
6w − 11

2w − 3
ln[z] +

3

2

}

, (5.16)

which implies that P23,0 and P23,0 approach zero when z → 0. In deriving (5.15) and (5.16),
ξ was chosen to be a real quantity given by

φ1k,0 ∼ −iξzw, φ2k,0 ∼ −ξzw ln[z], φ3k,0 ∼ 2iξzw
( ln2[z]

2
− ln[z]

2w − 3

)

. (5.17)

Consequently, we obtain the whole power spectra in the superhorizon limit of z = −kη → 0

Pab,0(k, η) = ξ2







0 0 z2w

0 z2w z2w(2 ln[z] + 1)

z2w z2w(2 ln[z] + 1) z2w
{

2 ln2[z] + 6w−11
2w−3 ln[z] + 3

2

}






(5.18)

with

ξ2 =
1

22w

(H

2π

)2
(

Γ(32 − w)

Γ(32)

)2

. (5.19)

For η = −ǫ(0 < ǫ≪ 1) [31, 32], Eq.(5.18) takes the form

Pab,0(k,−ǫ) = ξ2(ǫk)2w





0 0 1
0 1 2 ln[ǫk] + 1
1 2 ln[ǫk] + 1 2 ln2[ǫk] + 6w−11

2w−3 ln[ǫk] + 3
2



 . (5.20)
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Now we are in a position to compare the power spectra (5.20) with LCFT correlators (3.20).
For this purpose, we wish to choose A0, a, b as

A0 = e(1−a)△+ , a = (2△+ − 5± s)/(4△+ − 6), b = (4△+ − 6± s)/(4△+ − 6) (5.21)

with s =
√

44△+ − 12△2
+ − 35. Then, we observe the relation

(2π)4πk−3Pab,0(k,−1) = 〈φakφb−k〉 ∝
1

〈O2(k)O2(−k)〉′
× 〈Oa(k)Ob(−k)〉′L, (5.22)

which shows that the power spectra (cosmological correlators 〈φp
k
φq−k

〉) are inversely propor-
tional to the CFT-correlator and are directly proportional to the logarithmic part. This is
clearly a new observation when one compares LCFT-correlators with CFT-correlator.

For a light mass-squared with m2 ≪ H2, we have w ≃ m2

3H2 . Hence, the corresponding
power spectra are given by

Pab,0|m2

H2 ≪1
(k,−ǫ) =

ξ2(ǫk)
2m2

3H2







0 0 1
0 1 2 ln[ǫk] + 1

1 2 ln[ǫk] + 1
{

2 ln2[ǫk] +
(

11
3 + 4m2

27H2

)

ln[ǫk] + 3
2

}






(5.23)

whose spectral indices are given by

nab,0|m2

H2
≪1

(k,−ǫ)− 1 =
d lnPab,0|m2

H2 ≪1
(k,−ǫ)

d ln k

=







0 0 2m2

3H2

0 2m2

3H2
2m2

3H2 + 2
1+2 ln[ǫk]

2m2

3H2
2m2

3H2 + 2
1+2 ln[ǫk]

2m2

3H2 + 4 ln[ǫk]+11/3+4m2/27H2

2 ln2[ǫk]+(11/3+4m2/27H2) ln[ǫk]+3/2






. (5.24)

We observe here that nab,0|m2

H2 ≪1
gets a new contribution 2

(1+2 ln[ǫk]) from the logarithmic

short distance singularity.

In the massless limit of m2 = 0(ν = 3/2, w = 0), the corresponding power spectra take
the form

Pab,0

∣

∣

∣

m2→0
(k,−ǫ) =

(H

2π

)2





0 0 1
0 1 2 ln[ǫk] + 1
1 2 ln[ǫk] + 1 2 ln2[ǫk] + 11

3 ln[ǫk] + 3
2



 (5.25)

in the superhorizon limit. This represents the purely log-nature of power spectra for a
massless three-coupled scalar theory.

6 Discussions

We discuss the following issues.
• UV and IR boundary conditions in dS inflation
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In deriving the power spectra of three-coupled scalars, we have needed two boundary con-
ditions at η = −∞(UV, z = ∞) and η = 0−(IR, z = 0). The former is necessary to accom-
modate the quantum fluctuations by taking the BD vacuum, while the latter is to define the
LCFT for the dS/LCFT correspondence. These correspond to the subhorizon and superhori-
zon limits, respectively.
• Power spectra, LCFT correlators, and the dS/QFT and dS/LCFT correspondences
In order to compute the complete power spectrum, we have to solve the fourth-order and
six-order scalar equations on whole dS spacetime. However, it is formidable to solve these
higher-order equations. Instead, we have obtained two asymptotic solutions at the UV and
IR boundaries. We have gotten non-trivial commutation relations (5.7) which show a feature
of the dS/QFT correspondence in the subhorizon limit. On the other hand, it was observed
from (5.22) that the power spectra in the superhorizon limit are inversely proportional to
the CFT correlator while they are directly proportional to the logarithmic part. This shows
that the dS/LCFT correspondence works well in the superhorizon limit.
• Cosmological correlators and LCFT correlators in extrapolate dictionary
As was shown in Appendix A, the cosmological correlators in momentum space

〈φpkφ
q
−k〉 = (2π)4πk−3Ppq(k) (6.1)

are directly proportional to the LCFT correlators e〈Op(k)Oq(−k)〉e when one uses the ex-
trapolate dictionary with operator Op with dimension w to derive them.
• IR divergence and renormalization
To calculate the correlators and power spectra, one has to choose a proper slice (R3) near
η = 0−. This has been performed by taking η = −ǫ firstly, and letting ǫ → 0 on later.
Actually, the ǫ-dependence appears in the power spectra (5.20) and spectral indices (5.24).
As was shown in the dS/CFT correspondence [31], the cut-off ǫ acts like the renormalization
scale which is well-known from the UV CFT renormalization theory. The cosmic evolution
can be seen as a reversed renormalization group flow, from the IR fixed point (Big Bang)
of the dual CFT to the UV fixed point (Late times) of the dual CFT theory [33]. Inflation
occurs at a certain intermediate stage during the renormalization group flow as
IR −→ Inflation −→ UV (Big Bang−→Inflation−→ Late times).
This is known to be dS holography. A choice for ǫ in dS spacetime might be the dS scale
H and thus, it amounts to ǫ ∼ 1

aH . Therefore, in order to obtain the ǫ-independent power
spectra and spectral indices, we must introduce proper counter terms to renormalize the
power spectra and spectral indices.
• Nonunitarity and truncation
As was shown P13,0 = P31,0 in (5.20), they would be negative for ln[ǫk] < −1/2, which implies
the nonunitarity of the power spectrum. Also, P33,0 would be negative for 6w−11

2w−3 ln[ǫk] <

−2 ln2[ǫk] − 3/2. These are not acceptable as the power spectra. In order to address the
nonunitarity issue of power spectra, we may propose to truncate all log-modes out by im-
posing appropriate dS boundary conditions. After truncation, there will remain a unitary
subspace. This might be carried out by throwing all modes which generate the third column
and row of the power spectra matrix (5.20). Actually, this is equivalent to throwing all modes
which generate the third column and row of the dual-LCFT matrix (3.13). This is regarded
as a truncation process to find a unitary CFT through the dS/LCFT picture. Hence, the
only non-zero power spectrum is P22,0 which is surly non-negative. This could be also proved
by using the BRST quantization in the Minkowski spacetime (equivalently, the truncation
process in the dS/QFT correspondence in the subhorizon limit) [15, 16].
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• Higher-order derivative scalar theory and physical observables
In this work, we have considered the three-coupled scalar theory. We have a second-order
equation for ϕ1, a degenerate fourth-order equation for ϕ2, and a degenerate six-order equa-
tion for ϕ3. Even though ϕ2 is coupled to ϕ3 through (2.16), it is a physical field and its
power spectrum has physical relevance. Either the truncation process in the superhorizon
limit or the BRST quantization in the subhorizon limit leads to selecting ϕ2 among {ϕp}.
Furthermore, the three-coupled scalar theory is enough to have a physical power spectrum.
• Holographic inflation and BICEP2 results
Recently, it was shown that if the dS inflation era of our universe is approximately described
by a dual CFT living on the spatial slice at the end of inflation (that is, if holographic infla-
tion occurred), the BICEP2 results might determine the central charge c = 1.2 × 109 of the
CFT [23]. Since the inflationary era is a dS-like inflation (the slow-roll inflation), the dual
theory must be a near-CFT3. One can think of it as a CFT3 perturbed by a nearly marginal
operator O: Su = SCFT +

∫

d3x[uO]. In the single field inflation, the comoving curvature
perturbation ζ is known to be conserved at large scales under very general conditions. How-
ever, the authors in [34] has shown that this is not the case in the dual CFT description. The
requirement that higher correlators of ζ should be conserved restricts the possibilities for the
RG flow. Imposing such restriction, the power spectrum Pζ must follow an exact power-law.
This may imply that the power-law form of P22,0 is physically relevant to the RG flow, even
though we did not carry out the RG-flow in the LCFT.

Consequently, a higher-order derivative scalar theory might not be a promising inflation
model because it gives rise to the nonunitarity of power spectra. Even though the dS/LCFT
correspondence is employed to compute the power spectra, we need to introduce a truncation
process to find a positive (unitary) power spectrum for P22,0.
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Appendix

A LCFT correlators from extrapolate dictionary

In this appendix, we derive the LCFT correlators by making use of the extrapolation approach
(i) in the superhorizon limit and show how the relation (3.5) come out explicitly. For this
purpose, we recall the Green’s function for a massive scalar propagating on dS spacetime
[35, 36]

G0(η,x; η
′,y) =

H2

16π
Γ(△+)Γ(△−) 2F1(△+,△−, 2; 1 −

ξ

4
) (A.1)

with ξ = −(η−η′)2+|x−y|2

ηη′ . Taking a transformation form of hypergeometric function [37]

2F1(△+,△−, 2; 1 −
ξ

4
) =

(4

ξ

)△−

2F1

(

△−, 2−△+, 2;
1− ξ

4

− ξ
4

)

, (A.2)

we obtain the asymptotic form for △− = w

lim
η,η′→0

(ηη′)−wG0(η,x; η
′,y) ∝ 1

|x− y|2w , (A.3)

which corresponds to LCFT correlators

e〈O2(x)O2(y)〉e =e 〈O1(x)O3(y)〉e =e 〈O3(x)O1(y)〉e. (A.4)

This is the same form as (B.27) and (B.28) when replacing △+ → w.
Furthermore, the Green’s functions G1 and G2 are derived by taking derivative with

respect to w as

G1 =
d

dw
G0 =

(4

ξ

)w(

− ln
[ξ

4

]

+
1

F

∂F

∂w

)

F, (A.5)

G2 =
1

2

d

dw
G1 =

1

2

(4

ξ

)w(

ln2
[ξ

4

]

− 2 ln
[ξ

4

] 1

F

∂F

∂w
+

1

F

∂2F

∂w2

)

F, (A.6)

where F denotes F = H2Γ(3−w)Γ(w)2F1(w,w−1, 2; 1−4/ξ)/(16π). It turns out that their
asymptotic forms are given by

lim
η,η′→0

(ηη′)−wG1(η,x; η
′,y) ∝ 1

|x− y|2w
(

− 2 ln |x− y|+ ζ1

)

, (A.7)

lim
η,η′→0

(ηη′)−wG2(η,x; η
′,y) ∝ 1

|x− y|2w
(

2 ln2 |x− y| − 2ζ1 ln |x− y|+ ζ2

)

, (A.8)

where (A.7) and (A.8) correspond to

e〈O2(x)O3(y)〉e =e 〈O3(x)O2(y)〉e and e〈O3(x)O3(y)〉e, (A.9)

being found from (B.29) and (B.30), respectively, when replacing △+ → w. We note that ζ1
and ζ2 will be fixed to be finite values after making some regularization scheme as was shown
in (B.29) and (B.30).

Finally, we would like to mention that cosmological correlators (power spectra) are
directly proportional to the LCFT correlators derived by making use of extrapolate dictionary
because

〈φp
k
φq−k

〉 = (2π)4πk−3Ppq(k) ∝ e〈Op(k)Oq(−k)〉e, (A.10)

which is surely compared to the differentiate dictionary in (5.22).
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B LCFT correlators from differentiate dictionary

Here, we derive the LCFT correlators by using the differentiation approach (ii) in the super-
horizon limit. In this case, the bulk bilinear action is given by [13, 16]

δSS[{ϕp}] = −
∫

dS
d4x

√−ḡ
[

∂µϕ1∂
µϕ3 +

1

2
∂µϕ2∂

µϕ2 + µ2ϕ1ϕ2 +m2ϕ1ϕ3 +
1

2
m2ϕ2

2

]

. (B.1)

We express the scalar fields ϕa in terms of bulk-to-boundary propagators Ka which relate
the bulk solution to the boundary fields ϕa,0 as

ϕ1(η,x) =

∫

d3y
[

ϕ1,0(y)K0(η,x; 0,y)
]

, (B.2)

ϕ2(η,x) =

∫

d3y
[

ϕ2,0(y)K0(η,x; 0,y) + ϕ1,0(y)K1(η,x; 0,y)
]

, (B.3)

ϕ3(η,x) =

∫

d3y
[

ϕ3,0(y)K0(η,x; 0,y) + ϕ2,0(y)K1(η,x; 0,y)

+ ϕ1,0(y)K2(η,x; 0,y)
]

. (B.4)

Here, the bulk-to-boundary propagators Ka satisfy

(∇̄2 −m2)K0 = 0, (B.5)

(∇̄2 −m2)K1 = µ2K0, (B.6)

(∇̄2 −m2)K2 = µ2K1, (B.7)

and a solution to (B.5) is given by

K0(η,x; 0,y) = c0

[ −η
−η2 + |x− y|2

]△
. (B.8)

Here c0 is a constant and △ is determined by

△(△− 3)H2 +m2 = 0, (B.9)

whose solution is given by

△± =
3

2
±
√

9

4
− m2

H2
. (B.10)

We choose△+ only for differentiate dictionary. It is noteworthy thatK0 is not a Green’s func-
tion (bulk-to-bulk propagator) of a massive scalar propagating on dS spacetime. Actually,
K0 can be derived from the Green’s function (A.1). Considering a different transformation
for hypergeometric function [37]

2F1(△+,△−, 2; 1 −
ξ

4
) =

(4

ξ

)△+

2F1

(

△+, 2−△−, 2;
1− ξ

4

− ξ
4

)

, (B.11)

we derive the bulk-to-boundary propagator K0 as

lim
η′→0

(η′)−△+G0(η,x; η
′,y) ∝

[ −η
−η2 + |x− y|2

]△+

. (B.12)
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Differentiating (B.5) and (B.6) with respect to △+ and comparing it with (B.6) and
(B.7) respectively, the propagators K1 and K2 are found to be

K1(η,x; 0,y) =
d

d△+
K0 = K0

(

ln
[ −η
−η2 + |x− y|2

]

+
1

c0

∂c0
∂△+

)

, (B.13)

K2(η,x; 0,y) =
1

2

d

d△+
K1 =

1

2

( d

d△+

)2
K0 =

K0

2

(

ln2
[ −η
−η2 + |x− y|2

]

+
2

c0

∂c0
∂△+

ln
[ −η
−η2 + |x− y|2

]

+
1

c0

∂2c0
∂△2

+

)

, (B.14)

where µ2 is also determined to be µ2 = ∂m2/∂△+ = (3 − 2△+)H
2. Following [4] where

singleton was used to derive the AdS/LCFT dictionary, we consider ϕ1(−ǫ,x) being the
Dirichlet boundary value at η = −ǫ near η = 0− and extend it to three-coupled scalar theory.
In this case, the boundary fields ϕa,0(x) can be expressed in terms of ϕa(−ǫ,x)

ϕ1,0(x) ≡ ǫ△+−3ϕ1(−ǫ,x),
ϕ2,0(x) ≡ ǫ△+−3

[

ϕ2(−ǫ,x) + ln[ǫ]ϕ1(−ǫ,x)
]

,

ϕ3,0(x) ≡ ǫ△+−3
[

ϕ3(−ǫ,x) + ln[ǫ]ϕ2(−ǫ,x) +
1

2
ln2[ǫ]ϕ1(−ǫ,x)

]

. (B.15)

Here we observe asymptotic behaviors of ϕp(−ǫ,x) as ǫ→ 0

ϕ1(−ǫ,x) ∝ ǫwϕ1,0(x), (B.16)

ϕ2(−ǫ,x) ∝ ǫw
(

− ln[ǫ]ϕ1,0(x) + ϕ2,0(x)
)

, (B.17)

ϕ3(−ǫ,x) ∝ ǫw
(1

2
ln2[ǫ]ϕ1,0(x)− ln[ǫ]ϕ2,0(x) + ϕ3,0(x)

)

, (B.18)

where the first terms in (B.16)-(B.18) are consistent with (3.1) for η = −ǫ.
Then, we express (B.2)-(B.4) as

ϕ1(η,x) = c0ǫ
△+−3

∫

d3yϕ1(−ǫ,y)
[ −η
−η2 + |x− y|2

]△+

, (B.19)

ϕ2(η,x) = c0ǫ
△+−3

∫

d3y
[ −η
−η2 + |x− y|2

]△+
[

ϕ2(−ǫ,y) +
( 1

c0

∂c0
∂△+

+ ln ǫ
[ −η
−η2 + |x− y|2

])

ϕ1(−ǫ,y)
]

, (B.20)

ϕ3(η,x) = c0ǫ
△+−3

∫

d3y
[ −η
−η2 + |x− y|2

]△+
[

ϕ3(−ǫ,y) +
( 1

c0

∂c0
∂△+

+ ln ǫ
[ −η
−η2 + |x− y|2

])

ϕ2(−ǫ,y) +
{1

2
ln2 ǫ

[ −η
−η2 + |x− y|2

]

+
1

c0

∂c0
∂△+

ln ǫ
[ −η
−η2 + |x− y|2

]

+
1

2c0

∂2c0
∂△2

+

}

ϕ1(−ǫ,y)
]

. (B.21)

Now we are in a position to consider an on-shell boundary action δSSb found from surface
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integral on the boundary η = −ǫ after performing some integration by parts

δSSb = −1

2
lim
ǫ→0

∫

η=−ǫ
d3x

√
γ [ϕ1(n̂ · ∇)ϕ3 + ϕ2(n̂ · ∇)ϕ2 + ϕ3(n̂ · ∇)ϕ1]

= −1

2
lim
ǫ→0

∫

d3xǫ−2
[

ϕ1(−ǫ,x)
(∂ϕ3(η,x)

∂η

)

η=−ǫ
+ ϕ2(−ǫ,x)

(∂ϕ2(η,x)

∂η

)

η=−ǫ

+ ϕ3(−ǫ,x)
(∂ϕ1(η,x)

∂η

)

η=−ǫ

]

=
1

2
lim
ǫ→0

∫

d3xd3y
c0△+

|x− y|2△+
ǫ2△+−6

[

2ϕ1(−ǫ,x)ϕ3(−ǫ,y) + ϕ2(−ǫ,x)ϕ2(−ǫ,y)

+2
( 1

c0

∂c0
∂△+

+
1

△+
+ 2 ln[ǫ]− 2 ln |x− y|

)

ϕ1(−ǫ,x)ϕ2(−ǫ,y)

+
{1

2
(2 ln[ǫ]− 2 ln |x− y|)2 +

( 1

△+
+

1

c0

∂c0
∂△+

)

(2 ln[ǫ]− 2 ln |x− y|)

+
1

△+c0

∂c0
∂△+

+
1

2c0

∂2c0
∂△2

+

}

ϕ1(−ǫ,x)ϕ1(−ǫ,y)
]

, (B.22)

where the normal derivative is defined by (n̂ · ∇) = η∂η and
√
γ = 1/η3 with γ an induced

metric on the boundary at η = −ǫ. Introducing the boundary fields ϕa,0(x) [Eq.(B.15)], we
find the boundary action (B.22) which can be written as the classical action

δSSb[{ϕa,0}]

=
1

2

∫

d3xd3y
c0△+

|x− y|2△+

[

2ϕ1,0(x)ϕ3,0(y) + ϕ2,0(x)ϕ2,0(y) + 2
( 1

△+
+

1

c0

∂c0
∂△+

−2 ln |x− y|
)

ϕ1,0(x)ϕ2,0(y) +
{

2 ln2 |x− y| − 2
( 1

△+
+

1

c0

∂c0
∂△+

)

ln |x− y|

+
1

c0△+

∂c0
∂△+

+
1

2c0

∂2c0
∂△2

+

}

ϕ1,0(x)ϕ1,0(y)
]

. (B.23)

Making use of the formula

〈Oā(x)Ob̄(y)〉 = − δ2 lnZbulk

δϕa,0(x)δϕb,0(y)
, Zbulk = e−δSSb[{ϕa,0}], (B.24)

– 20 –



where 3̄ = 1, 2̄ = 2, 1̄ = 3, one can read off the LCFT correlators from (B.23)

− δ2 lnZbulk

δϕ3,0(x)δϕ3,0(y)
= 〈O1(x)O1(y)〉 = 0, (B.25)

− δ2 lnZbulk

δϕ3,0(x)δϕ2,0(y)
= 〈O1(x)O2(y)〉 = 〈O2(x)O1(y)〉 = 0, (B.26)

− δ2 lnZbulk

δϕ2,0(x)δϕ2,0(y)
= 〈O2(x)O2(y)〉 =

c0△+

|x− y|2△+
, (B.27)

− δ2 lnZbulk

δϕ3,0(x)δϕ1,0(y)
= 〈O1(x)O3(y)〉 = 〈O3(x)O1(y)〉 =

c0△+

|x− y|2△+
, (B.28)

− δ2 lnZbulk

δϕ2,0(x)δϕ1,0(y)
= 〈O2(x)O3(y)〉 = 〈O3(x)O2(y)〉

=
c0△+

|x− y|2△+

(

− 2 ln |x− y|+ 1

△+
+

1

c0

∂c0
∂△+

)

, (B.29)

− δ2 lnZbulk

δϕ1,0(x)δϕ1,0(y)
= 〈O3(x)O3(y)〉

=
c0△+

|x− y|2△+

(

2 ln2 |x− y| − 2
( 1

△+
+

1

c0

∂c0
∂△+

)

ln |x− y|

+
1

c0△+

∂c0
∂△+

+
1

2c0

∂2c0
∂△2

+

)

, (B.30)

which correspond to the cross coupling given by [13, 24]

∫

∂dS0

d3x
[

ϕ1,0O3 + ϕ2,0O2 + ϕ3,0O1

]

. (B.31)
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C Derivation of log-solutions by using the trick

It is known that the trick used in [5] indicates how to solve (4.17) directly by differentiating
(∇̄2−m2)ϕ1 = 0 with respect to m2. Explicitly, one can show it by considering the following
steps:

d

dm2

{(

− z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

)

φ1k(z) = 0
}

(C.1)

→
(

− z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

) d

dm2
φ1k(z) = φ1k(z) (C.2)

↔
(

− z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

)

φ2k(z) = µ2φ1k(z) (C.3)

which implies that φ2k(z) can be written in terms of φ1k(z) as

φ2k(z) = µ2
d

dm2
φ1k(z). (C.4)

Differentiating (C.2) further with respect to m2, one finds

d

dm2

{(

− z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

) d

dm2
φ1k(z) = φ1k(z)

}

(C.5)

→
(

− z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

)( d

dm2

)2
φ1k(z) =

2

µ2
φ2k(z) (C.6)

↔
(

−z2H2 d
2

dz2
+ 2zH2 d

dz
− z2H2 −m2

)

φ3k(z) = µ2φ2k(z) (C.7)

which shows that φ3k(z) can be expressed by φ1k(z) as

φ3k(z) =
µ4

2

(

d

dm2

)2

φ1k(z). (C.8)

In deriving (C.6), we have used (C.4). Note that (4.9) and (4.17) can be found by acting

(∇̄2 −m2) on (C.3) and (∇̄2 −m2)2 on (C.7), respectively. d
dm2φ

1
k(z) and

(

d
dm2

)2
φ1k(z) take

the forms

d

dm2
φ1k(z) = − 1

2νH
√
2k3

√

π

2
ei(

πν
2
+π

4 )z3/2
{

π
( i

2
− cot[νπ]

)

H(1)
ν + i csc[νπ]×

(

e−νπi ∂

∂ν
Jν −

∂

∂ν
J−ν − πie−νπiJν

)}

(C.9)

and

(

d

dm2

)2

φ1k(z) =
1

4ν2H3
√
2k3

√

π

2
ei(

πν
2
+π

4 )z3/2
[{(π

ν
− π2i

)

cot[νπ]− 5

4
π2 − π

2ν
i
}

H(1)
ν

−i csc[νπ]
{(1

ν
+ πi+ 2π cot[νπ]

)

e−νπi ∂

∂ν
Jν −

(1

ν
− πi+ 2π cot[νπ]

) ∂

∂ν
J−ν

−
(1

ν
+ 2π cot[νπ]

)

πie−νπiJν − e−νπi ∂
2

∂ν2
Jν +

∂2

∂ν2
J−ν

}]

. (C.10)
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Here one has to use the relation to find log-solutions as

∂

∂ν
Jν(z) = Jν ln

[z

2

]

−
(z

2

)ν
∞
∑

k=0

(−1)k
ψ(ν + k + 1)

Γ(ν + k + 1)

(z
2

4 )
k

k!
(C.11)

with the digamma function ψ(x) = ∂ ln[Γ(x)]/∂x. We observe the appearance of ln[z]-term
in (C.9) and ln2[z]-term in (C.10) when differentiating the Bessel function once and twice
with respect to ν. It turns out that taking into account J±ν → Γ(±ν + 1)−1(z/2)±ν in the
superhorizon limit of z → 0, φ2k(z) and φ

3
k(z) take the form as

φ2k(z) ∼ zw ln[z] and φ3k(z) ∼ zw ln2[z] (C.12)

which recover (4.15) and (4.23), respectively. We point out that ∂
∂νJ−ν in (C.9) and ∂2

∂ν2
J−ν

in (C.10) contribute to making (C.12) because they behave as z−ν ln[z] and z−ν ln2[z] in the
superhorizon limit of z → 0. However, it is noted that in the subhorizon limit of z → ∞,
one cannot extract (4.28) from (C.9) and (C.10) because this trick works in the superhorizon
region only.
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