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Abstract: We expand our recent work on the outer entropy, a holographic coarse-

grained entropy defined by maximizing the boundary entropy while fixing the classical

bulk data outside some surface. When the surface is marginally trapped and satisfies

certain “minimar” conditions, we prove that the outer entropy is exactly equal to

a quarter the area (while for other classes of surfaces, the area gives an upper or

lower bound). We explicitly construct the entropy-maximizing interior of a minimar

surface, and show that it satisfies the appropriate junction conditions. This provides a

statistical explanation for the area-increase law for spacelike holographic screens foliated

by minimar surfaces. Our construction also provides an interpretation of the area for

a class of non-minimal extremal surfaces.

On the boundary side, we define an increasing simple entropy by maximizing the

entropy subject to a set of “simple experiments” performed after some time. We show

(to all orders in perturbation theory around equilibrium) that the simple entropy is the

boundary dual to our bulk construction.
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1 Introduction

One of the primary goals of quantum gravity is a complete description of the black hole

interior. This description is being pursued via numerous methods, from the AdS/CFT

correspondence [1–3], to black hole microstate counting (see literature starting with [4]),

and the generalized holographic principle [5–7] among others (see [8] for a review). As

an ostensible nonperturbative quantum theory of gravity, AdS/CFT in particular has

tremendous potential for shedding light on the physics inside the black hole.

The fine-grained entropy of a holographic black hole is given by the HRT formula

[9, 10]. As applied to the case of an eternal black hole (which represents an entangled

state of two boundary CFT’s [11]), the HRT formula tells us that the von Neumann

entropy SvN of either CFT is given by the area of a certain compact “extremal” surface

X (whose area is stationary under variations) lodged inside the throat, which separates

the two boundaries:

SvN =
Area[X]

4G~
. (1.1)

The HRT entropy is time-independent (in the sense that it is independent of the choice

of Cauchy slice), so it does not evolve even if we send matter into the black hole. And

for a classical black hole that forms from collapse, X is given by the empty set so SvN

vanishes. This is because the HRT is a fine-grained quantity, i.e. it does not involve

any kind of coarse-graining over the thermalized degrees of freedom. Hence, it does

not allow us to define a nontrivial second law, nor does it allow us to interpret the

changing area of a black hole horizon as an entropy. For this, we need a definition of

coarse-grained entropy.

A natural framework of coarse-graining, advocated by Jaynes [12, 13], is to max-

imize the von Neumann entropy SvN = − tr(ρ ln ρ) while holding certain quantities

fixed. In our case, we wish to hold fixed the classical bulk data outside of some sur-

face σ. The information outside of σ will play the role of the “macrostate”, i.e. the

information that is accessible to an exterior observer. The information inside of σ will

play the role of the “microstate”, i.e. the forgotten information which must be coarse-

grained over1. From a bulk perspective, this is justified insofar as an observer living

outside of σ will find the data in the exterior of σ easy to measure, while the data in

the interior of σ is hard to measure. Although in principle, the data in the interior

must be holographically encoded in the boundary CFT, in practice recovery is difficult

1Our coarse-grained entropy depends on the choice of the surface σ. We believe that this is

analogous to the ambiguity in thermodynamics, where it is also necessary to devise a prescription

for a demarcation between macrostate and microstate, which to some extent is dependent on the

scheme.
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Figure 1. A conformal diagram of an asymptotically AdS black hole formed from collapse.

The figure shows a compact, spacelike, codimension-2 surface σ (purple dot), and the decom-

position of the spacetime into the future of σ, I+[σ], the past of σ, I−[σ], the exterior of σ,

OW [σ], and the interior of σ, IW [σ].

since the data is encoded in subtle thermalized correlations. This explains why, at the

level of the classical bulk, there is an effective notion of causality in which information

appears to be lost once it falls behind a black hole horizon. As we will see, this notion

of causal coarse-graining is holographically dual to a thermodynamic coarse-graining

on the boundary.

To be a little more precise, any compact surface σ that splits a time slice into two

pieces induces a natural division of the spacetime into four components: the past of σ,

denoted I−[σ], the future of σ, denoted I+[σ], inner wedge of σ, IW [σ] and outer wedge

OW [σ] [14]. This is illustrated in Fig. 1 for a surface inside a black hole.

We will now define the outer entropy as the maximum of the boundary von Neu-

mann entropy given ignorance of the interior:

S(outer)[σ] ≡ max
ρ∈C

(SvN), (1.2)

where the C is the set of all density matrices in the CFT whose classical bulk dual

exists and contains the fixed region OW [σ]. The classical “microstates” of S(outer)[σ]

are all possible spacetime regions that are allowed in IW [σ] given that OW [σ] is fixed.

But which surface σ should we use? At this point, we need to define more carefully

what we mean by the interior of a black hole. The event horizon of a black hole is

defined as the boundary of the region which is inaccesible to future infinity. Hawking
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proved that the area of the event horizon is increasing with time [15]. But the event

horizon is teleological, in the sense that its location can depend on what is going to

happen in the future.

There have been a number of proposed definitions of a more local version of a black

hole horizon (and consequently, a black hole interior) in classical gravity [16–19]. These

definitions all exploit the concept of a marginally trapped surfaces, for which the area of

outgoing lightrays is stationary to first order. Classically, marginally trapped surfaces

always lie inside of event horizons. The local horizons in [16–19] are all defined so that

they are always foliated by marginally trapped surfaces, satisfying certain additional

inequalties. These definitions are nonunique (on the same black hole spacetime, one

can usually find infinitely many surfaces satisfying the criteria), but they do obey laws

of thermodynamics similar to the event horizon (see [20] for a review); in particular,

these local horizons obey various area-increase theorems [17–19].

In previous work, we showed that the outer entropy of a slice of the event horizon

is not, in general, given by its area [21]; in fact in some situations the outer entropy

vanishes, while the area of the event horizon does not. Although the area of the event

horizon is generically greater than the HRT surface [22], it remains unclear what coarse

graining procedure, if any, corresponds to its area [23, 24].

More happily, in [25] we showed that for an apparent horizon (a codimension-two

outermost marginally trapped surface on a time slice) the outer entropy is proportional

to its area. This allowed us to explain the area increase theorem for certain spacelike

or null holographic screens. Besides providing a holographic interpretation for the

area of non-minimal extremal surfaces, this shows that there is a natural notion of

coarse graining associated with the area of the apparent horizon. We also proposed a

boundary dual to the outer entropy of the apparent horizon, called the simple entropy.

This article will give a more detailed and formal version of these arguments.

We extend [25] by generalizing the notion of an apparent horizon to a “minimar

surface” µ, satisfying weaker conditions than an apparent horizon. In addition to

being a compact marginally trapped surface, a minimar surface must satisfy certain

minimality inequalities given in Section 2. The main result of this article is that for

a minimar surface, the outer entropy of µ equals its Bekenstein-Hawking entropy, i.e.

the area over four in Planck units:

S(outer)[µ] =
Area[µ]

4G~
, (1.3)

where SvN will be calculated using the HRT formula (1.1).

This equality automatically implies a second law for certain kinds of local horizons.

Suppose we have a spacelike (or null) local horizon foliated by minimar surfaces. We will
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show from Eq. (1.3) that S(outer)[µ] is monotonically increasing as we move spatially

outwards, since we are maximizing SvN subject to fewer constraints. This gives a

statistical explanation for the area increase theorem obeyed by such local horizons.

We now briefly summarize our derivation of (1.3) in the main text. We must show

that, among all bulk states whose classical gravity dual contains OW [µ], the maximum

possibe area of the HRT surface X is equal to the area of µ. This is done in two steps:

1. We show that in any spacetime, the area of the HRT surface is bounded from

above by the area of any minimar surface µ. Thus, even if we vary the interior

of µ, the von Neumann entropy remains bounded by the area of µ:

S[ρ′] ≤ Area[µ]

4G~
, (1.4)

for any state ρ′ with a bulk dual whose outer wedge OW [µ] agrees with ρ.

2. We explicitly construct an interior for µ in which this bound is saturated; we do

this by patching an interior of µ to OW [µ] such that the resulting spacetime has

an HRT surface whose intrinsic geometry (and hence area) is the same as that of

µ. Because S(outer) is defined as the maximum of the von Neumann entropy, the

fact that (1.4) is saturated immediately implies that

S(outer)[µ] =
Area[µ]

4G~
. (1.5)

Point (1) is a simple consequence of the focusing theorem and the maximin formula-

tion of covariant holographic entanglement entropy [22]. Point (2) is more involved;

to execute it, we will make use of the initial data problem on characteristic surfaces

(i.e. lightfronts) in General Relativity. This will require us to develop junction con-

ditions for gluing data across a codimension-two surface. As a consequence, we also

obtain a general procedure for matching two initial data sets in General Relativity at

a codimension-two boundary.2

(As a special degenerate case of this construction, we can take our minimar surface

to be an extremal surface X which is not the one of minimal area (HRT). This will

2Some techniques in numerical relativity, such as the “turducken black hole” [26, 27] or the

characteristic-Cauchy matching of [28] do use initial data matching across a surface (rather than

across a buffer region); but in the former case, the matched initial data is taken to be arbitrary, with

allowed violations of the Einstein constraint equations; in the latter case, the matching is adapted

specifically to the apparent horizon’s exterior (and to finding the apparent horizon). While some case-

by-case examples of initial data matching exist (see [29] for an example), we are not aware of existing

algorithmic junction conditions besides the specialized ones of [28].
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satisfy our minimar conditions as long as there are no extremal surfaces with lesser area

closer to the boundary. In this case X = µ and we construct a new spacetime in which

X is the HRT surface. This spacetime is simply OW [X] glued to its CPT conjugate.

This provides an interpretation for the area of a class of non-minimal extremal surfaces

as the von Neumann entropy in a coarse-grained state, or equivalently the outer entropy

in the original state.3)

So far, our coarse graining has been defined almost entirely on the bulk side. The

only part of the construction which is “holographic” was the interpretation of the HRT

surface as the fine-grained entropy of the modified spacetime (and hence, as the coarse-

grained entropy of the original spacetime).

However, under certain assumptions, we can also provide a boundary dual, the sim-

ple entropy. The term “simple” denotes operators or sources whose corresponding bulk

excitations propagate locally into the bulk4. (In the classical regime, we can restrict

attention to cases where these sources and operators are integrals of local operators,

i.e. one-point functions.) We then define the simple entropy as the maximum of the

von Neumann entropy subject to fixing the expectation values of all simple operators O
after some initial time ti, where we are also allowed to turn on arbitrary simple sources

J after ti:

S(simple)[ti] ≡ max
ρ′, J(t>ti)

[S[ρ′] : 〈O(t > ti)〉 fixed] . (1.6)

This simple entropy automatically obeys a second law when the slice ti is pushed to

the future.

We can associate a particular minimar surface to a time slice ti by following in

lightrays from ti until they reach a marginally trapped surface. For a black hole near

equilibrium, OW [µ] can be identified with the exterior of the event horizon up to per-

turbative corrections due to matter falling across the horizon. As we shall show in

Section 7, we can remove this matter by turning on some “simple” operators in the

bulk, which allows us to measure all of the information in the outer wedge OW [µ]

from the one-point functions on the boundary after time ti. Since it is not possible

to measure the information behind µ by turning on simple sources, this proves that

S(simple)[ti] = Souter)[µ] at least to all orders in perturbation theory.

This paper is structured as follows: Section 2 introduces assumptions and con-

ventions, reviews some of the relevant geometric constructions, and defines minimar

surfaces. In Section 3, we review the Israel junction conditions and then derive match-

3We will also extend this construction to the case of nonminimal extremal surfaces anchored to the

boundary, in order to define a coarse-grained entropy for subregions of the CFT.
4This is in contrast with complicated nonlocal CFT operators that could modify fields deep in the

bulk. For this reason we call these operators “simple”.
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ing conditions for a codimension-two surface. Section 4 defines the outer entropy.

Section 5 is the main bulk construction containing the proof that the outer entropy

is proportional to area of minimar surfaces. Section 6 discusses the outer entropy of

extremal surfaces and non-minimar surfaces. In Section 7, we define the simple entropy

and argue that it is equal to the outer entropy of a minimar surface. Finally, Section 8

gives an explanation of the second law for holographic screens foliated by minimar sur-

faces. We also motivate a new perspective on how to think about coarse-graining and

the second law in ordinary (non-holographic) field theories. Finally, Section 9 discusses

the prospects for extending our work beyond classical AdS/CFT.

2 Preliminaries

This section establishes terminology, definitions, and assumptions that will be used

throughout the paper.

2.1 Assumptions, Conventions, and Definitions

We will assume the AdS/CFT correspondence, and we work in the large-N , large-λ

limit, in which the bulk M is well-approximated by classical gravity and the RT [9] and

HRT [10] proposals are valid. We will further assume the Null Convergence Condition

(NCC): the requirement that

Rabk
akb ≥ 0, (2.1)

where Rab is the spacetime Ricci tensor, for every null vector field ka on M . For

a spacetime satisfying the Einstein equation, this is equivalent to the Null Energy

Condition, which requires positivity of null energy:

Tabk
akb ≥ 0, (2.2)

where Tab is the stress-energy tensor in M and as before, ka is any null vector field.

We will use the following terminology:

• A spacetime (M, g) is a D-dimensional Lorentzian manifold, whose metric g is

continuous everywhere and smooth almost everywhere.5 For shorthand, we will

often refer to (M, g) as just M .

• A surface will refer to a connected codimension-2 spacelike (embedded) subman-

ifold of M which is compact in the topological interior Int[M ].

5i.e. except on a measure zero subset. This will be important to allow the gluing constructions

that are an essential part of this paper.
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• A hypersurface will refer to a connected codimension-1 (embedded) submanifold

of M which is smooth almost everywhere. A hypersurface will be splitting if it

divides M into two disjoint components.

• Two surfaces s1, s2 are homologous if there exists a hypersurface H such that

∂H = s1 ∪ s2.

• A hypersurface N is achronal if no two points on N are timelike separated.

• An achronal hypersurface N is null if there exists a null vector field ka which

is tangent to N at every point where N is smooth. One way of obtaining a

null hypersurface is by firing geodesics in a null direction ka from a surface and

allowing the geodesics to leave the hypersurface after intersections and caustics.

We will call such hypersurfaces null congruences.

• The causal future (past) of p, denoted J+(p) (J−(p)), is the union of all past-

(future) directed causal curves fired from p. The chronological future (past) of p,

denoted I+(p) (I−(p)) is the union of all past- (future-) directed timelike curves

fired from p. We can similarly talk about the past or future of a set S: I±[S] =

∪p∈SI±(p).

• M is said to be globally hyperbolic if there are no closed causal curves in M and

for every pair p, q in M , the intersection J−(p) ∩ J+(q) is compact. Note that

by this definition, an asymptotically AdS spacetime M fails to be globally hy-

perbolic. This is easily circumvented by applying this definition to the conformal

compactification of M [30] on its asymptotically AdS boundaries. Thus, in this

paper we will refer to such spacetimes as globally hyperbolic.

• The domain of dependence of an achronal hypersurface Σ, denoted D[Σ], is the

smallest region satisfying the criterion that every timelike curve that enters D[Σ]

must intersect Σ. We will always take D[Σ] to be an open set.

• A Cauchy slice Σ of a globally hyperbolic spacetimeM is an achronal hypersurface

whose domain of dependence is M : D[Σ] = M . One can also define a Cauchy

slice of a globally hyperbolic region R ⊂M .

• A surface σ is said to be Cauchy-splitting if it divides a Cauchy slice Σ into two

disjoint components, which we shall call InΣ[σ] and OutΣ[σ]. A Cauchy-splitting

surface induces a natural division of the spacetime M into four regions: I+[σ],

I−[σ], D[InΣ[σ]] and D[OutΣ[σ]] [14]. In the introduction, we discussed the outer
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wedge of σ: OW [σ] ≡ D[OutΣ[σ]] and the inner wedge of σ: IW [σ] ≡ D[InΣ[σ]].

Henceforth, we will take all surfaces to be Cauchy-splitting.

2.2 Geometry of Null Hypersurfaces

Here we review some properties and definitions in the geometry of null hypersurfaces.

LetNk be a null hypersurface with generating vector field ka in a globally hyperbolic

spacetime (M, g). By definition, kaka = 0. Let `a be a null vector field satisfying

`aka = −1. The vector field `a, often called the “rigging” vector field, captures a

notion of transversality to N . Note that in general `a is not unique.

The induced metric on Nk is degenerate; the induced metric on spacelike slices of

Nk orthogonal to `a is given by:

hab = gab + 2`(akb). (2.3)

This metric allows us to define the null and transverse extrinsic curvatures of Nk,

respectively:

Bab (k) = hcah
d
b∇akb (2.4)

Bab (`) = hcah
d
b∇a`b. (2.5)

The null extrinsic curvature Bab (k) can be decomposed into its trace and traceless

parts:

Bab (k) =
1

D − 2
θ(k)hab + ςab (k), (2.6)

where ςab (k) = Bab (k) − 1
D−2

θ(k)hab is a rank-2 tensor that measures the shearing of

the congruence with evolution along ka; the expansion θ(k) = Tr(Bab (k)) is a scalar

that measures the rate of change the cross-sectional area of Nk with evolution along an

affinely-parametrized ka:

θ(k) = habBab (k) =
1

2
habLkhab =

1√
h
Lk
√
h =

1

δA

dδA

dλ
, (2.7)

where λ is a parameter along the ka geodesics generating Nk, δA is the infinitesimal

area element of cross-sections of Nk, and Lk is the Lie derivative in the ka direction.

The shear and expansion are related via the Raychaudhuri equation6:

∇kθ(k) = −κ(k)θ(k) −
1

D − 2
(θ(k))

2 − ςab (k)ςab (k) −Rabk
akb. (2.8)

6This equation assumes, as stated in section 2.1, that ka is orthogonal to the hypersurface, i.e. that

the vorticity ωab vanishes.
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σ

Figure 2. A cartoon showing the different ways of denoting the orthogonal null vector fields

and hypersurfaces generated from a surface σ. The left panel figure shows the vectors `a and

ka at a point on σ in D = 3 dimensions. In the center panel, the null congruences N` and

Nk are shown with (D − 2) spacetime dimensions suppressed. The final panel figure shows

N` (orange) and Nk (purple) in D = 3.

Here Rab is the spacetime Ricci tensor and κk is the inaffinity of the ka congruence: it

measures the failure of the ka geodesics to be affinely parametrized:

ka∇ak
b = κ(k)k

b. (2.9)

For null geodesic congruences that are affinely parametrized, κ(k) = 0. In such cases, the

NCC (2.1) is sufficient by the Raychaudhuri equation to guarantee that gravitational

curvature can only cause θ(k) to decrease. The physical interpretation is that gravity

satisfying the NCC can only cause light rays to focus, as A′(λ) can only decrease. In

a spacetime satisfying the Einstein equation, the NEC guarantees that once light rays

begin to focus, they must continue to do so: the derivative ka∇aθ(k) is monotonically

nonincreasing.

One final player remains missing: the extrinsic twist potential (a.k.a. the normal

fundamental form), twist for short. It is a 1-form defined using both `a and ka:

χa (k) =
1

2
hca`

d∇ckd. (2.10)

Intuitively the twist measures the spacetime dragging of a rotating mass; it is simple to

see this in the Lense-Thirring effect in the weak field limit (see e.g. [31] for a derivation).

Note that the twist is antisymmetric under exchange of ` and k: χa (k) = −χa (`), so it

can also be written χa = (χa (k) − χa (`))/2.

2.3 Marginal, Extremal, and Minimar Surfaces

A surface σ has by definition two linearly independent null normals `a and ka. Along

each of these null vector fields, we may fire congruences of null geodesics N` and Nk.

These are illustrated in Fig. 2.

It is convenient to classify surfaces based on the expansions θ(`) and θ(k) at σ. When

θ(`) and θ(k) are both positive or both negative, under the right assumptions (including
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Surface type θ(`) θ(k)

Untrapped − +

Trapped − −
Marginally Trapped − 0

Anti-Trapped + +

Marginally Anti-Trapped + 0

Extremal 0 0

Figure 3. A table summarizing the classification of surfaces by the expansion of null con-

gruences fired from them. Our conventions are such that whenever one expansion van-

ishes, we take ka to be the corresponding generating null vector, and for untrapped surfaces

θ(k) > 0 > θ(`).

the NCC), we are guaranteed that the spacetime is geodesically incomplete [32–35].

When both expansions are negative, this corresponds to a crunching geometry, where

null geodesics are trapped; when both expansions are positive, this corresponds to

an expanding geometry, where null geodesics are “anti-trapped”. “Untrapped” sur-

faces have positive θ(k) and negative θ(`) or vice versa. The natural boundary between

untrapped and trapped or anti-trapped regions are “marginal” surfaces with one expan-

sion identically zero on the whole surface. The terminology is summarized in Table 3.

Fig. 4 illustrates the different types of surfaces in the Schwarzschild black hole space-

time. Note that we will largely confine the discussion to marginally trapped surfaces

(MTSs), with the understanding that the same statements apply in the time reverse to

marginally anti-trapped surfaces, which are more useful in cosmology.

We now launch into a discussion of the most oft-used type of surface in holography:

Extremal Surface: A surface X is extremal if the expansions of the two null orthog-

onal congruences fired from it both vanish:

θ(`) = 0 (2.11)

θ(k) = 0. (2.12)

Since any vector orthogonal to X can be written as a linear combination of `a and ka,

it immediately follows that the area of X is stationary to first order perturbations in

any direction. The HRT surface of a connected component of the asymptotic boundary

B is the minimal area surface homologous to B satisfying Eq. (2.11) & (2.12).

The HRT prescription [9, 10, 36, 37] for computing the von Neumann entropy of
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Figure 4. A conformal diagram of maximally-extended Schwarzschild-AdS, which contains

spherically-symmetric surfaces of all types under the classification of Table 3. There are

trapped surfaces in the black hole region, anti-trapped surfaces in the white hole region, and

untrapped surfaces in each asymptotic region. As with all stationary black holes, the future

event horizons are foliated by marginally trapped surfaces; the past event horizons are foliated

by marginally anti-trapped surfaces. The bifurcation surface (black dot) is extremal.

an entire connected component B of the CFT at one time is the following formula:

SvN = −tr(ρB ln ρB) =
Area[X]

4G~
, (2.13)

where ρB is the density matrix of B, and X is the minimal area extremal surface

homologous to B.7 Note that in the case of a one-sided black hole (e.g. a black hole

formed from collapse), X is given by the empty set so SvN = 0 at classical order.

An equivalent formulation of the HRT surface of which we will make frequent use

is the maximin construction [22]. In the maximin construction, one first identifies

of the minimal area surface homologous to B on a given Cauchy slice Σ; we shall

denote this surface by min(B,Σ). One then chooses Σ so as to maximize the area of

the minimal area surface over all possible Cauchy slices. Using the NCC together with

some global assumptions,8 one can show that this is equivalent to the HRT surface [22].

7The HRT prescription can also be used to calculate the von Neumann entropy of subregions of the

boundary that do not constitute a complete connected component, but except in Sec.6.1 our results

will be shown in the case where R = B. However, we believe that much of what we say could be

extended to the case of a general region R.
8This excludes spacetimes featuring e.g. an inflating de Sitter asymptotic region behind the hori-

zon (see [38]), where maximin/HRT surfaces do not necessarily exist in the (real, nonconformally

compactified) spacetime geometry, and the holographic interpretation is unclear.

– 12 –



The following is a very useful consequence of the maximin formalism:

Lemma: [22] An HRT surface X is the minimal area surface homologous to B on

some Cauchy slice containing X.

The region between X and B is commonly referred to as the entanglement wedge:

Entanglement Wedge: The entanglement wedge EW [B] of B, referred to also as

the exterior of the HRT surface X, is defined as the domain of dependence of any

hypersurface OutΣ[X] connecting X to B [22, 39, 40]:

EW [B] = D[OutΣ[σ]]. (2.14)

It is now understood that EW [B] is the region dual to the CFT density matrix ρB,

so that field data in EW [B] can be fully reconstructed from operators in B, and it

commutes with operators on the complementary boundary B̃ [41, 42].

More generally, for any surface σ homologous to B, we can give a natural general-

ization of the entanglement wedge to the region bounded between arbitrary surfaces σ

and B, which we shall call the outer wedge of σ:

Outer Wedge: Let σ be a surface homologous to B. Let Σ be a Cauchy slice

containing σ, with decomposition into disjoint components as given in Sec. 2.1. Then

Σ = InΣ[σ]∪ σ ∪OutΣ[σ] where OutΣ[σ] is any homology slice connecting σ to B. The

outer wedge of σ, denoted OW [σ] is the domain of dependence of OutΣ[σ]:

OW [σ] = D[OutΣ[σ]]. (2.15)

We define the inner wedge of a surface in an analogous way, as the domain of

dependence of InΣ[σ]:

Inner Wedge: Let σ be as above. The inner wedge of σ is defined as the domain of

dependence of InΣ[σ]:

IW [σ] = D[InΣ[σ]]. (2.16)

The outer and inner wedges of a surface σ are illustrated in Fig. 5. Note that the

union of the outer and inner wedges with σ necessarily contains a complete Cauchy

slice of the spacetime: specifying data in the two wedges is sufficient to fix the entire

spacetime, and the data can be independently specified so long as one solves the con-

straint equations across σ. Note that spacetime points that are timelike to σ do not lie

in either wedge; these are the points that are causally related to both wedges.

– 13 –



outer wedge  
  

inner wedge  
     

σ

Σ  
     

Σ  
     

In [σ]  
     

Out [σ]  
     

Σ  
     

A
dS boundary

Figure 5. Decomposition of the outer and inner wedges of σ. Σ is a Cauchy slice of the full

spacetime, and InΣ[σ], OutΣ[σ] are the components of Σ as split by σ.

We now consider a natural generalization of extremal surfaces: namely marginal

surfaces. Rather than requiring stationarity of the area in both orthogonal null di-

rections as is the case when the surface is extremal (cf. Eq. (2.11)&(2.12)), marginal

surfaces are only required to be stationary in one null direction.

Marginal Surface: A surface µ is marginal if the expansions of the two null orthog-

onal congruences fired from µ satisfy:

θ(`) ≤ 0 or θ(`) ≥ 0 (2.17)

θ(k) = 0 (2.18)

where the degenerate case in which θ(`) = 0 is simply the situation in which µ is an

extremal surface. The first equation requires θ(`) to have the same sign on all of µ; i.e.

the “or” is exclusive. When θ(`) ≤ 0, µ is said to be marginally trapped, and when

θ(`) ≥ 0, µ is said to be marginally anti-trapped.

Guided by intuitions from the the entanglement picture, we define a minimal

marginal surface, or minimar for short; as in the case of the HRT surface, the area

of this surface will turn out to measure the entropy associated with ignorance about

its interior. Whereas the HRT surface measures the fine-grained entropy of B (i.e. the

only ignorance is that of anything outside of B), this defines a coarse-grained entropy

of B (i.e. we are also forgetting some of the information in B itself).

Minimar surface: A marginal surface µ will be called a minimar surface if it addi-

tionally satisfies the following criteria:

1. µ is homologous to B, and there exists a Cauchy slice Σmin[µ] of OW [µ] on which

µ is a minimal area surface homologous to B.
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2. There exists a choice of normalization for `a such that ∇kθ(`) ≡ ka∇aθ(`) ≤ 0 on

µ, with equality allowed only if θ(`) = 0 everywhere on µ.

Condition (1) is a weaker version of the global HRT minimality: we do not require

that µ be the minimal area marginal surface homologous to the boundary (this will in

general not be well-defined); instead we require that it be minimal on a partial Cauchy

slice.

Condition (2) may appear to be a new additional condition with no parallel in the

minimality condition of HRT surfaces. However, we will prove in Appendix A that

∇kθ(`) ≤ 0 on HRT surface with equality being highly nongeneric. When µ is only

marginal, we must impose condition (2) separately. Condition (2) is also known as

“strict spacetime stability” of a marginal surface [43]; it guarantees that small defor-

mations of the surface inwards in a null direction can result in a trapped (anti-trapped)

surface, while small deformations outwards in a null direction can result in an untrapped

surface.

It is possible to prove that generic apparent horizons are minimar surfaces, so that

our results apply to generic apparent horizons, the case originally investigated in our

earlier work.

3 Junction Conditions for Initial Data

A description of the possible spacetimes that can constitute IW [σ] requires a set of con-

ditions that dictate whether a given spacetime region V can be sewed onto σ in such a

way that the resulting patched spacetime of V and OW [σ] is a manifold with a contin-

uous metric and a well-behaved causal structure, which solves the distributionally-well

defined Einstein equation with a stress-energy tensor that satisfies the NEC.

The procedure is twofold: first, the region V is patched onto OW [σ], then the initial

data on a Cauchy slice of the patching (see Fig. 6 for an illustration) must be evolved

to give rise to a new spacetime M̃ . Note that because V and OW [σ] are by definition

spacelike-separated, they must separately satisfy the Einstein equation; the constraints

on V must come from the junction at σ itself.

The task at hand is thus a problem of both junction conditions of spacetime regions

and initial data engineering. The problem of gluing together two spacetimes satisfying

the Einstein equation has been studied extensively for junctions across codimension-

one hypersurfaces [44–53], but as far as we are aware, gluing across a codimension-two

surface has received relatively little attention: initial data set patching conditions are

normally given via an intermediate region rather than over a surface.
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Figure 6. A cartoon illustrating the construction of gluing conditions for an interior of a

codimension-2 surface σout. 6(a) The first step of the construction describes when a spacetime

V with Cauchy slice VΣ[σin] whose boundary is σin can be consistently identified with OW [σout]

across σin; this requires topological consistency across σout to σin as well as data sufficiently

smooth that VΣ[σin] ∪ OutΣ[σout] satisfies the Einstein constraint equations. 6(b): the data

on the slice VΣ[σin] ∪OutΣ[σout] is then evolved via the equations of motion.

To derive the constraints imposed on IW [σ] by OW [σ], we instead employ a twofold

application of the junction conditions across two codimension-one null hypersurfaces,

and then invoke the initial data formulation of general relativity. A rough sketch is as

follows: let M̃ be a consistent spacetime containing OW [σ]. Using the decomposition

of M̃ induced by σ, we can divide M̃ into two spacetime regions: OW [σ] ∪ J+[σ] and

IW [σ] ∪ J−[σ]. This is illustrated in Fig. 7. As explained above, the two regions are

separated by a null hypersurface N1; the Barrabès-Israel junction conditions [52] give

the requisite constraints on N1 for M̃ to be consistent. Repeating the procedure, but

this time breaking up M̃ into OW [σ]∪ J−[σ] and OW [σ]∪ J+[σ]. This gives conditions

that must be satisfied byN2. Together, these give junction conditions at the intersection

N1∩N2 = σ. The conditions give a precise constraint on the spacetimes that are allowed

to be inside σ. Finally, to obtain a full spacetime, we invoke the initial data formulation

of general relativity on an achronal slice containing σ; this guarantees that M̃ exists9.

9Technically, the proofs of the initial data problem guarantee only local existence and normally

assume a somewhat higher differentiability order than we do. We will discuss these subtleties in

Sec. 3.2.
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I [σ]
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(a)

σ OW[σ]IW[σ]

I+[σ]

I [σ]

N2
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Figure 7. The junction conditions for gluing together two globally hyperbolic spacetime

regions IW [σ] and OW [σ] across a codimension-two hypersurface are derived via a twofold

application of junction conditions across a null hypersurface. We postulate the existence of

I±[σ]; 7(a) shows the first set of junction conditions, obtained by dividing the spacetime up so

that I+[σ] and OW [σ] are on the same side of the null hypersurface N1 (orange); 7(b) shows

the second set of junction conditions, obtained by dividing the spacetime so that OW [σ] and

I+[σ] are on opposite sides of the null hypersurface N2 (orange).

3.1 Review: the Barrabès-Israel Junction Conditions

Let (M+, g+), (M−, g−) be two C3 globally hyperbolic spacetimes satisfying the Ein-

stein equation, and let N+ ⊂ M+, N− ⊂ M− be two splitting null hypersurfaces. Let

V + = J+[N+] and V − = J−[V −]. These are illustrated in Fig. 8. Suppose that we

wanted to construct a new spacetime by identifying N+ and N−. What conditions must

be imposed across the junction so the new geometry satisfies the Einstein equation?

The most basic requirement for a patched spacetime of V + and V − across N+ and

N− is that the resulting set be smooth as a topological manifold: N+ and N− must

be diffeomorphic so that they can be identified as one (embedded) submanifold N of a

joined smooth topological space M ≡ V + ∪ V −. The second requirement is that this

submanifold N have a well-defined intrinsic geometry. This requires hab|N+ = hab|N− ,

where hab is the induced metric on a spatial slice of N . As differences in quantities

across N will be appearing a lot, we will use the standard convention to denote them:

[F ] ≡ F |N+ − F |N− , (3.1)
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V+

V¯

N¯
N+

Figure 8. The Barrabès-Israel junction conditions prescribe when two spacetime regions V +,

V − with null boundaries N+, N− can be sewn together by identifying N+ with N−.

where F is any spacetime field. In this convention, [hab] = 0. Thus N− and N+ must

be isometric. This is the first junction condition:

First Junction Condition: The null hypersurfaces N+ ⊂ M+ and N− ⊂ M− are iso-

metric (with respect to their induced metrics from g+ and g−, respectively).

A theorem by Clarke and Dray [51] then guarantees that the joined topological

space M is a smooth manifold with metric g which is continuous on all of M and C2

everywhere except possibly on N itself.

Recall that the end goal is a spacetime that satisfies the Einstein equation. To

understand the conditions imposed by the Einstein equation, we must study derivatives

of the metric across N .

We expect that we can always choose the vectors `a and ka to be continuous when

V ± are sufficiently regular and the first junction condition is satisfied: [`a] = [ka] = 0;

furthermore, derivatives of gab along directions tangential to N are continuous as well.

In particular:

[gab,c]k
c = 0. (3.2)

Any junction conditions would therefore have to result from derivatives in the transverse

direction `a, as defined in Sec. 2.2. The quantity of interest is therefore the change of

gab,c`
c across N . As this is the primary quantity of study, it is worthwhile to give it a

– 18 –



name:

γab ≡ [gab,c]`
c. (3.3)

Let us now pause and ask what behavior would be desirable for us to call (M, g)

a physical spacetime. At a minimum, the stress-energy tensor sourcing this geometry

should be well-defined as a distribution: the worst singularities allowed would be Dirac

δ-functions. However, we will be stricter and require all stress-energy tensors to be

finite, while still allowing finite discontinuities.

We now ask the question: what are the contributions of γab to the Einstein equa-

tion? This requires a straightforward if tedious computation of the discontinuities in

the connection coefficients across N :

[Γabc] = kcγ
a
b + kbγ

a
c − kaγbc, (3.4)

which allows us to compute the discontinuities in the stress-energy tensor via the Ein-

stein equation. The expression is easiest to parse in terms of geometric quantities of

the null congruence generated by the `a vector field on a spacelike slice S of Nk. In

terms of the expansion θ(`) and twist χ(`) a of the transverse null congruence N` and the

inaffinity κ(k) of the null congruence Nk:

The Second Junction Condition [44–53]:

Tab(x)shell = −([θ(`)]kakb + [χ(`) (a]kb) + [κ(k)]hab) (3.5)

here T shell
ab is the stress-energy tensor that supports the junction. It is also possible to

rewrite Tab in terms of intrinsic coordinates on Nk; that form is independent of the

choice of `a [53].

The reader may notice that not all components of γab must vanish for the stress

tensor to be finite; in particular, the shear ς of either N` or Nk does not appear in

the above equation. This is special to a junction across a null hypersurface; if there

is nonvanishing shear across the junction, the spacetime may include an impulsive

gravitational wave (which is not sourced by Tab) [54].

The stress-energy tensor on Nk has a physical interpretation as a surface layer of

a shell of null matter. If [θ(`)] + [κ(k)] ≥ 0, this shell will satisfy the NEC (Eq. 2.2).

Such shells are used to construct new solutions in General Relativity, including in the

context of AdS/CFT (see e.g. [38, 55]).

If we now demand that the stress tensor be finite, we obtain the following junction

conditions:

[θ(`)] = [χ(`) a] = [κ(k)] = 0 (3.6)

The last condition in particular guarantees that N is an affinely parametrizable null

geodesic congruence in the full patched spacetime M .
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Figure 9. The patching construction illustrated in detail. On the left panel, a surface σin

(purple) splits a Cauchy slice Σin (not shown) in two. The side InΣin [σin] is on the interior of

σin; the region Vin, which is the interior of σin, is obtained by taking the domain of dependence

of InΣin [σin]. The middle panel illustrates the same construction in Mout for σout. The right

panel shows the gluing, with F and P the fiduciary spacetime regions that exist only when

the junction conditions are satisfied.

3.2 Multiple Junctions

We can now make use of the Barrabès-Israel junction conditions to derive conditions

on initial data matching. Instead of taking V + and V − to be spacetime regions in

the future and past of a null hypersurface, we take Vout and Vin to be domains of

dependence of initial data in Mout and Min. More precisely, let Σout, Σin be Cauchy

slices of Mout, Min (which are maximally extended) and let σout ⊂ Σout, σin ⊂ Σin be

two surfaces, as defined in Sec. 2.1. We take Vout, Vin to be the domains of dependence

of one side of Σout, Σin each:

Vout = D [OutΣout [σout]] (3.7a)

Vin = D [InΣin
[σin]] (3.7b)

where In and Out are chosen arbitrarily. This is illustrated in Fig. 9. Suppose now

that we want to patch Vout onto Vin across the codimension-2 surface σout, σin. To

determine the appropriate conditions at this surface, we will make use of the Barrabès-

Israel junction conditions twice.

Let us imagine that there is some fiducial spacetime region F such that F =

J+[σout], and some fiducial spacetime P such that P = J−[σin]. What conditions must

F ∩ P satisfy so that the entire spacetime F ∪ Vout ∪ P ∪ Vin is consistent and satisfies

the Einstein equation?
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In order for the topological space F ∪ Vout ∪ P ∪ Vin to be a manifold with a

continuous metric, the boundaries of all touching sets must be isometric by the Clarke-

Dray theorem. This is equivalent to requiring that σout and σin be isometric. This is

our first multi-junction condition; we now identify σout and σin as a single surface σ.

The second condition requires an application of the Barrabès-Israel junction condi-

tions twice. First, we consider joining Vout∪F and Vin∪P along their mutual boundary.

Let us call this hypersurface Nk, and as above we require that the generator ka be C0

across σ. We pick the rigging vector `a so it is normal to σ and C0. Then Eq. 3.5 tells

us that in order to have a a regular stress-energy tensor in the null-null directions, we

must require that θ(`), χa (`), and κ(k) all be continuous across Nk. Next, we consider

joining Vout ∪ P and Vin ∪ F along the new boundary, which is the null hypersurface

generated by the vector `a, which we take to be C0 across σ as well. The Barrabès-Israel

junction condition requires that θ(k), χa (k), and κ(`) all be continuous across N`. This

is illustrated in Fig. 7. However, unlike in the case of codimension-one hypersurfaces,

the condition on the inaffinities is actually vacuous: by an appropriate rescaling, we

can always pick the inaffinity to be continuous at σ.

Because we now consider differences when crossing two null hypersurfaces simulta-

neously at a codimension-2 surface, the symbol [F ] will now denote the discontinuities

of a quantity F across σ in crossing from OW [σ] to IW [σ] in the following way:

[F ] ≡ F |σout − F |σin . (3.8)

Finally, the conditions on Vout and Vin are:

Codimension-Two Junction Conditions: Let (Vout, gout), (Vin, gin) be defined as

in (3.7a): gout, gin are smooth. Then we may glue Vout and Vin to one another with a

finite stress-energy tensor under the following conditions:

1. The surfaces σout and σin are isometric and can thus be identified as a single

surface (σ, h).

2. There exists a choice of ka and `a null normals (satisfying Eq. (2.3)) defined on

both sides of σ such that the following conditions hold:

[θ(k)] = 0 (3.9a)

[θ(`)] = 0 (3.9b)

[χa (k)
] = −[χa (`)] = 0 (3.9c)

for some ka and `a that are C0 on Nk and N` respectively. As before, no continuity

condition is imposed on the shear.
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Then the null-null components of the stress tensor are finite, and the Einstein equation

is distributionally well-defined. Now, because the data on OutΣout [σout] and on InΣin
[σin]

is guaranteed to satisfy the constraint equations separately, the conditions Eqs. (3.9a)-

(3.9c) guarantee that the entire slice Σ = OutΣout [σout] ∪ σ ∪ InΣin
[σin] satisfies the

constraint equations with a finite stress-energy tensor. Because there is no contribution

to the stress-energy tensor from σ, the initial data on Σ has a stress-energy tensor that

satisfies the NEC whenever (Mout, gout) and (Min, gin) do. 10

We should now ensure that the data available is sufficient to prescribe a Cauchy

evolution of our data into the “fiducial” spacetime regions F and P . It is simplest

to see that the specified data is sufficient via the characteristic initial data formalism,

in which data is specified on a piecewise null hypersurface and evolved forward, as

illustrated in Fig. 6. This differs from the standard Cauchy evolution, which requires

a smooth spacelike hypersurface. For our purposes here, the characteristic initial data

problem of interest is that of two intersecting cones: Nk and N` intersect on σ. The

requisite geometric data for a characteristic initial data evolution is precisely the data

at hand: a conformal metric on Nk and N`, an intrinsic metric hab on σ, the twist χa

on σ, expansions θ(`) and θ(k) on σ, and the inaffinities κ(`) and κ(k) on σ [56–59].

We are not quite done yet, as we have not yet addressed the issue of existence of

evolution of the initial data. Here we may take the approach of either the characteristic

or Cauchy initial data problem. Rigorous theorems for the local existence and unique-

ness of evolution of initial data often impose certain regularity conditions on the initial

data.

Consider first the standard (spacelike) Cauchy problem. Choquet-Bruhat’s original

1952 theorem for (vacuum) Cauchy evolution [60] required a triplet (Σ, γab, Kab), where

Σ is the initial (spacelike) Cauchy slice, γab its induced metric, and Kab its extrinsic

curvature tensor, where γab is C5 and Kab is C4. Since then, these requirements have

been progressively reduced to the requirement that the second partial weak derivatives

of gab be square integrable and of Kab once differentiable [61–68]; the precise statement

is that gab is in the Sobolev space H
3/2+ε
loc and Kab in H

1/2+ε
loc for ε > 0. More recently,

studies of low-regularity metrics in the context of junction conditions have produced

limited proofs of local well-posedness for metrics with only first partial weak derivatives

being square integrable: gab ∈ H1
loc and Kab ∈ H0

loc [69–73]. This is precisely the

regularity regime of our desired results, and we will assume existence, in accordance

with expectations partially borne out in this class of cases for the Cauchy problem.

10As a sanity check, one could test our initial data against the null constraint equations on Nk.

Eqs. (3.9a)- (3.9c) and continuity of quantities tangent to Nk and N` together with the constraint

equations imply that the stress-energy tensor has at most step-function discontinuities, as desired.
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For the characteristic problem (where only local existence and uniqueness results

are rigorously established in broad generality, but see [74, 75] for some limited global

results), the original proof of Rendall for existence of a neighborhood at the intersection

of two null hypersurfaces is given for C∞ data, but the expectation is that rougher

initial data should behave similarly [56], while Hayward’s proof in [57] shows that a

unique solution exists up to caustics. More recently, Luk proved the existence of a

neighborhood of the union of both null hypersurfaces assuming the data is C∞ [59],

although followup work on impulsive gravitational waves in the characteristic problem

has been able to accommodate a curvature with a Dirac δ-function singularity in the

vacuum [76].

Note that uniqueness of the Cauchy evolution may be more questionable than

existence, as it is possible that the initial data could develop into a Cauchy horizon

(this is not expected to occur for vacuum initial data [77]). In that case, we simply

adopt the approach in [78] and use the maximal Cauchy development.

Finally, a brief comment on the constraint equations for matter fields. The original

approach of Rendall [56] for proving (local) well-posedness of the characteristic initial

data extends to scalar, Maxwell, and Yang-Mills fields coupled to gravity [77]; a gen-

eralization of the method also works for Vlasov fields [79]. This works well when the

matter fields in IW [σ] and OW [σ] have the same matter Lagrangian.

4 The Outer Entropy

We have thus far focused on giving a precise definition of minimar surfaces as general-

izations of HRT surfaces. In what follows, we will give a definition of our generalization

of the von Neumann entropy to the outer entropy. Like the outer wedge, the outer en-

tropy is defined for any bulk surface homologous to the boundary. Although this is a

purely classical bulk construction, its relation to the boundary entropy via the HRT

formula will justify its interpretation as a coarse-grained entropy.

We are interested in the entropy associated to our ignorance of the inner wedge

IW [σ] subject to knowledge of all of the field data (including the metric) in the outer

wedge OW [σ]. Consider all possible field data {α} for possible inner wedges I
(α)
W [σ] that

could be patched onto σ without altering OW [σ] (in such a way as to preserve all global

conditions on the spacetime necessary to define the HRT/maximin surface). This is of

course constrained by the matching conditions at σ itself, derived in Sec. 3.2.

By AdS/CFT, each allowed spacetime obtained by some interior I
(α)
W [σ] then cor-

responds to some boundary state ρ
(α)
B whose von Neumann entropy is given by:

S[ρ(α)] = −tr(ρ
(α)
B ln ρ(α)) =

Area[X(α)]

4G~
, (4.1)
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where X(α) is the HRT surface homologous to the boundary component B in the space-

time with I
(α)
W [µ]. We would like to define an entropy associated with coarse graining

over all such states ρ
(α)
B . A simple way to do this is via a maximization of Eq. (4.1)

over all states ρ
(α)
B :

Outer Entropy: The outer entropy associated to a surface σ homologous to B is

defined by maximizing the von Neumann entropy over the possible inner wedge data

{α}:
S(outer)[σ] ≡ max

{α}
[−tr(ρ

(α)
B ln ρ

(α)
B )]. (4.2)

In other words, for any spacetime with OW [σ], we minimize the area of extremal

surfaces homologous to B, and we then maximize over all possible inner wedges. This

follows a familiar theme of min-max proposals for computing entropy in AdS/CFT [22,

80].

A priori, the outer entropy of a surface is not related to that surface’s area.

However, for an HRT surface XB, S(outer)[XB] = −tr(ρB ln ρB) = Area[XB]/4G~.

Our main result, derived in Sec. 5, is an analogous relation for minimar surfaces µ:

S(outer)[µ] = Area[µ]/4G~. On the other hand, for a large class of trapped and un-

trapped surfaces, we will show in Sec. 6.2 that S(outer) is, respectively, larger and smaller

than the area of the surfaces. This shows that minimar surfaces play a very special

role in gravitational thermodynamics.

5 Main Construction

In this section, we prove that the outer entropy of a minimar surface is proportional

to the area of that surface. We do this in three steps: first, we show that the outer

entropy of a minimar surface µ is bounded from above by the area of µ. This is done

by showing that

S[ρ
(α)
B ] =

Area[X
(α)
B ]

4G~
≤ Area[µ]

4G~
, (5.1)

where as before X
(α)
B is the HRT surface of the connected component B in the modified

spacetime dual to ρ(α). We will drop the superscript when the context is clear. The

first equality follows by HRT, and the inequality will be shown via maximin techniques

below.

Next, we show that for some choice of α, there exists a spacetime (M ′, g′) with

outer wedge OW [µ] and an extremal surface X whose area is exactly the same as the

area of µ.
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Finally, we prove that X is in fact the HRT surface of (M ′, g′). This constructs a

spacetime dual to a boundary state ρ′ whose von Neumann entropy S[ρ′] is given by

the area of µ. We conclude that Eq. (5.1) is in fact an equality.

5.1 Bounding the Outer Entropy

To show that S(outer)[µ] is bounded from above by Area[µ]/4G~, we use a technique

from [22] of representing a marginal surface (e.g. µ) on any Cauchy slice of the space-

time via a null congruence fired from µ. We will assume for the rest of this section

that µ is marginally trapped (θ(`) ≤ 0, θ(k) = 0); the construction when µ is marginally

anti-trapped (θ(`) ≥ 0, θ(k) = 0) is simply a time reverse.

Representative: Let µ be a minimar surface in M , and let Σ be a Cauchy slice of

M , not necessarily containing µ. Let Nk(µ) be the null congruence generated from µ

by firing null geodesics in the +ka and −ka directions. Since we are assuming global

hyperbolicity, Nk(µ) splits M into two pieces. The representative of µ on Σ can then

be defined as

µ(Σ) = N±k(µ) ∩ Σ. (5.2)

where by construction µ(Σ) is homologous to µ, B, and the HRT surface XB. (In some

cases, when the generators of Nk(µ) all intersect prior to reaching Σ, µ(Σ) may be the

empty set. In these cases, the HRT surface is also the empty set, and the following

result will hold trivially.)

An immediate consequence of the NCC is that the area of µ̃(Σ) is bounded from

above by the area of µ [22]:

Area[µ(Σ)] ≤ Area[µ]. (5.3)

Consider now any spacetime (M (α), g(α)) containing OW [µ]. As before, let X
(α)
B be

the HRT surface of B. By the maximin formulation [22] there exists a Cauchy slice

Σ of (M (α), g(α)) on which X
(α)
B is the minimal area surface homologous to B. This

immediately implies that the representative µ[Σ] has greater area than that of XB.

Using Eq. 5.3 and HRT, we obtain

S[ρ
(α)
B ] =

Area[XB]

4G~
≤ Area[µ[Σ]]

4G~
≤ Area[µ]

4G~
. (5.4)

This establishes that for any spacetime (M (α), g(α)) with fixed outer wedge OW [µ], the

von Neumann entropy of ρ
(α)
B is bounded from above by one quarter of the area of µ.

Since S(outer)[µ] is obtained by maximizing S subject to fixed OW [µ], this immediately

implies the desired result:

S(outer)[µ] ≤ Area[µ]

4G~
. (5.5)
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Figure 10. A figure of the full maximizing spacetime, adapted from [25]. The characteristic

Cauchy slice that we construct to obtain this geometry consists of N−` ∪N−k ∪ Ñ`,

5.2 Existence of Extremal Surface

We now proceed to give an explicit construction for the inner wedge IW [µ] that maxi-

mizes S[ρB]. In this new auxiliary spacetime (M ′, g′), we first show that there exists an

extremal surface X homologous to B whose area is the same as the area of µ. (Later,

in Sec. 5.3, we will prove that X is in fact the extremal surface of least area — i.e. the

HRT surface — of (M ′, g′), so that the von Neumann entropy of the new spacetime is

Area[µ]/4G~. This shows that the maximum of Eq. (5.1) is attained, and that Eq. 5.5

is in fact an equality.)

The spacetime is constructed via the initial data gluing procedure described in

Sec. 3.2. The data in OW [µ], and hence its past boundary N−`, is already fixed. To

this (1) we glue a stationary null hypersurface N−k shot in the inwards-past direction

from µ; the assumption of stationarity fully fixes the data on N−k. We show (2) that

there exists an extremal surface X on N−k and calculate its location. Finally, (3) we

complete the spacetime on the other side of X by assuming that it is CPT-reflection

symmetric across X (this introduces an additional AdS conformal boundary B̃, and

the reflection of the outer wedge ÕW [µ̃] and its future boundary Ñ−`.

The geometry constructed so far includes a piecewise null Cauchy slice Σ composed

of three null hypersurfaces N−`, N−k, and Ñ−`; this is illustrated in Fig. 10. The

resulting hypersurface satisfies all constraint equations (and corresponding junction

conditions) derived in Sec. 3.2. We can now define the entire spacetime (M ′, g′) by

Cauchy evolution from this slice (the characteristic initial data problem).
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Recall from Sec. 3.2 that in the characteristic problem, the data needed to be

specified on Σ to yield a well-defined and (at least locally) deterministic evolution is

the following: the conformal metric on the null hypersurfaces, the null expansions of the

null hypersurfaces at µ, the twist, and the intrinsic metric on µ. All of this information

is fixed by the construction outlined above.

Step 1: Constructing N−k

Let us partially fix a gauge in null coordinates u and v and spatial coordinates {yi}d−1
i=1 .

Our choices below will not fully fix the gauge – we still have some gauge freedom left in

the spatial directions. The indices {a, b} will run over all spacetime, while the indices

{i, j} are restricted to the transverse yi directions.

We fix µ to be at u = 0 and v = 0, so N−k is at u = 0 and N−` is at v = 0. In

terms of the covariant definitions above, `a = (∂/∂u)a and ka = (∂/∂v)a. We will use

θu and θv below to emphasize our choice of gauge. Our gauge conditions are:

guv = −1 (5.6)

guu = gui = 0 (5.7)

gvv|u=0 = gvi|u=0 = gvv,u|u=0 = 0. (5.8)

In this gauge, the twist and null extrinsic curvatures are:

gvi,u = 2χi (5.9)

gij,u|v=const = 2Bij(u) (5.10)

gij,v|u=0 = 2Bij(v) (5.11)

where χi is the (gauge-dependent) twist and Bij(q) is the null extrinsic curvature in the

q = u or q = v direction, which is related to the expansion and shear via Eq. (2.6).

In this gauge, the constraint equations reduce to (see e.g. [31, 81–84] for the gauge-

independent constraints):

θu,v = −1

2
R+∇ · χ− θuθv + 8πGTuv + χ2, (5.12)

θv,v = − 1

D − 2
θ2

v − ς2
v − 8πGNTvv, (5.13)

χi,v = −θvχi +

(
D − 3

D − 2

)
∇iθv − (∇ · ςv)i + 8πTiv (5.14)

where θu,v is the v derivative of θu for constant v slices and Tvv denotes the v − v
component of Tab.
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We now specify initial data on N−k. Because we are fixing OW [µ] and will imple-

ment a symmetry transformation to complete the spacetime, this is the only hypersur-

face on which we need to specify initial data. We will require:

ςv[N−k] = 0, (5.15)

Tvv[N−k] = 0, (5.16)

Tiv[N−k] = 0, (5.17)

Tuv[N−k] = const. (5.18)

Inserting the first two equalities into the Raychaudhuri Eq. (5.13) implies that θv = 0;

hence N−k is stationary, and R is also constant along N−k. Eq. (5.17) is a condition

on the twist, since on N−k, Tiv = χi,v; this fixes the twist to be constant along the

v-direction on N−k. Using the above, Eq. (5.18) requires θu,v|v=const to be a constant

along the v-direction via Eq. (5.12).

The reader may ask whether we can always choose the stress tensor to obey our

requirements. Let us briefly justify this in the special case where the bulk matter is a

scalar field φ (with the standard kinetic action) minimally coupled to a Maxwell field

Aa. The Lagrangian density is

L = −
√
−g
(

1

4
FabFcd g

acgbd + ∇̄aφ
∗∇̄bφ g

ab

)
, (5.19)

where ∇̄a is the covariant derivative with respect to the gauge potential Aa. With the

corresponding stress-energy tensor:

Tvv = 2∇̄vφ
∗∇̄vφ+ FviFv

i, (5.20)

Tvi = 2∇̄vφ
∗∇̄iφ+ FvjFi

j + FviFuv, (5.21)

Tuv = ∇̄iφ
∗∇̄iφ+ FijF

ij +
1

2
FuvFuv. (5.22)

By setting ∇̄vφ = Fiv = 0 on N−k, these being free data in the characteristic

problem, we immediately recover Eqs. (5.16)-(5.18). (To prove constancy of Tuv, use

the Bianchi identity and the Gauss Law on the null hypersurface.) These conditions

are analogous to Eq. (5.15) for gravitational radiation.

We expect that a similar prescription exists for other reasonable matter fields to

satisfy Eqs. (5.16)-(5.18). Assuming so, it is always possible to construct a stationary

hypersurface null N−k satisfying the constraint equations.
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We now show that we can also satisfy the junction conditions Eq. (3.9a)-(3.9c)

across µ, as well as the corresponding continuity conditions for the matter fields:11

[φ] = 0, (5.23a)

[Fij] = 0, (5.23b)

[Fuv] = 0. (5.23c)

The first junction Eq. (3.9a) for θv is already satisfied because it vanishes on both

N−k and µ. To see that we can satisfy the remaining conditions, note that so far we

have only fixed the transverse geometry gij, the twist χi and θu,v[N−k]|v=const up to

functions of the transverse yi directions. Even after fixing θu,v we can still choose θu
at v = 0 on N−k. Similarly, φ and Fij are defined up to transverse functions. We are

therefore free to choose all of these quantities to be continuous across the junction at

µ:

gij[N−k] = gij[µ], (5.24)

χi[N−k] = χi[µ], (5.25)

θu,v[N−k]|v=const = θu,v[µ], (5.26)

lim
v→0

θu[N−k]|v=const = θu[µ], (5.27)

φ[N−k] = φ[µ], (5.28)

Fij[N−k] = Fij[µ], (5.29)

Fuv[N−k] = Fuv[µ], (5.30)

where the last three conditions also imply Tuv[N−k] = Tuv[µ]. Note that the cross-

focusing constraint (5.12) continues to be satisfied because all of its terms are by con-

struction the same on N−k and µ; this is only possible because θv = 0 on µ.

These choices satisfy the junction conditions for the metric Eqs. (3.9b)&(3.9c), as

well as for matter Eqs. (5.23a)-(5.23c). We have therefore succeeded at our goal of

gluing a stationary null hypersurface N−k to µ.12

Step 2: Finding X

Let us now proceed to find an extremal surface on N−k. By construction, θ(k)[N−k] = 0.

Finding an extremal surface X therefore reduces to finding a cross-section of N−k on

11When µ is not simply connected, we should also demand matching of the integral of Ai along

noncontractible Wilson loops.
12The shear ςv may be discontinuous across µ, but such solutions are believed to be valid charac-

teristic initial data [56]; indeed, Ref. [76, 85] studied a discontinuous shear sourcing a δ-function in

the curvature, which was still distributionally well-behaved. (We expect that this continues to be true

even if the shear discontinuity reflects off of the AdS boundary.)
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which θ(`) = 0. On a constant v slice, all of the terms on the RHS of Eq. (5.12)

— including the contributions to Tuv from Eq. (5.22) — are constant, and equal to

their values at µ. By definition of a minimar surface (Requirement 2) θu,v[µ] < 0, so

θu,v|v=const is strictly negative and constant with respect to v. Hence θu|v=const increases

at a constant rate as we move to more negative v values. Since θu|v=const starts out

negative (by Eq. (2.17)), this indicates that it attains zero on some slice σ of N−k.

However, this need not be a constant-v slice, and if not, then generally θu|σ 6= θu|v=const,

since (as described explicitly below) θu is also sensitive to the derivatives of v with

respect to the transverse directions. We must therefore work harder to find the slice

X on which θu vanishes; this slice will have two vanishing null expansions, and thus by

definition it would be an extremal surface.

To find this putative slice, we first compare θu of a varying-v slice β with that of a

constant-v slice α. Let v = f(yi) be the equation for the location of β on N−k.

By definition, va is normal to both α and β, but ua is normal only to α. The second

null normal to β, denoted wa, can be computed from the defining equation for β:

wa = ua +
∑
i

yai∇if +
1

2
va�f, (5.31)

where ∇i ≡ ybi∇b. The null expansion of β in the wa direction is given by θw[β] =

hab∇aw
b, where hab is the induced metric on β. Transforming this into the coordinates

on α yields the following relation:

θw[β] = θu[α] + �f(yi) + 2χ · ∇f(yi), (5.32)

where we have used stationarity of N−k to simplify the equation. This is illustrated in

Fig. 11.

Because θu,v (i.e. ∂vθu) is independent of v on constant-v slices, θu of α can be

simply written in terms of the expansion at µ:

θu[α] = θu[µ] + v θu,v[µ]. (5.33)

Thus we obtain

θw[β] = θu[µ] + θu,v[µ]f(yi) + �f(yi) + 2χ · ∇f(yi) ≡ Lµ[f ] + θu[µ], (5.34)

where Lµ is an operator that depends only on quantities evaluated on the minimar

surface µ. This operator is known as the stability operator [43, 86].

Recall now that we are searching for an extremal surface: that is, we are looking for

a surface, which we shall call X, where θw[X] vanishes. Eq. 5.34 becomes the following

eigenvalue equation:

Lµ[f ] = −θu[µ] (5.35)
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Figure 11. A (1+1)-dimensional cartoon illustrating the hypersurface N−k, which is located

at u = 0. The minimar surface µ is at v = 0 = u. The horizontal black lines are slice of

constant v, on which θu,v < 0, and v < 0 on the entire drawn slice. The extremal surface X is

in general not a contant v slice, but rather some function v = f(yi), drawn above in orange.

It is a known result that the eigenvalue of L[f ] with the smallest real value is real;

furthermore, if and only if the marginal surface µ is “strictly stable” (equivalent to

Requirement 2 for a minimar surface) this eigenvalue is strictly larger than zero [43].

Hence, because µ is minimar, L[f ] has no zero eigenvalues, and is thus invertible. A

nontrivial solution exists, and therefore the sought-after extremal surface X exists and

may be found by solving Eq. (5.34).

A final property that we will need is that f [y] is negative (or zero): otherwise, it

could lie partly on N+k; in such a case, we would find that we need to replace data on

OW [µ] to get an extremal surface with the area of µ, which would ruin our construction.

That f must be nonpositive can be shown from stability of µ by invoking the Krein-

Rutman theorem [86–88], but a simple geometric argument proves this result as well.

Suppose that f is indeed positive somewhere, so that it lies at least partly on N+k.

Because X is compact, f has a maximum. At the maximum, ∇if = 0, �f ≤ 0, and

f > 0. But in such a case, Eq. (5.34) for an extremal β has a strictly negative quantity

on the right hand side but is zero on the left hand side. So we have a contradiction,

and thus f ≤ 0.

We conclude that there exists an extremal surface X on N−k. Because N−k is

stationary, Area[X] = Area[µ].
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Step 3: CPT Reflecting

So far we have constructed initial data on a partial Cauchy slice N−k∪N−` terminating

on X in the interior. Assuming that X is indeed an HRT surface, then by evolving

from this initial data (using the AdS boundary conditions) we expect to be able to

construct the entanglement wedge EW [B] = OW [X], which is dual to some mixed state

ρ′B of the boundary CFT associated with B.

The advantage of this is that it gives us a state associated with a single spacetime

boundary region B, which is natural if our original spacetime M had only a single

boundary CFT (e.g. in the case of a collapsing black hole). However, this leads to the

oddity of a bulk spacetime which simply ends at X. In order to construct a complete

spacetime M ′, and to facilitate our proof that X is indeed an HRT surface, we will find

it convenient to construct a spacetime with an additional auxiliary boundary B̃. In the

CFT dual, this corresponds to adding a second CFT that purifies the state, similar to

the thermofield double interpretation of the Einstein-Rosen wormhole geometry [11].

Accordingly, to complete our construction, we must specify initial data on a com-

plete Cauchy slice. We will generate this slice by acting with a CPT-reflection across

X that takes v → −v, u → −u, yi → yi. This transformation acts on the initial data

at a surface as follows:

CPT Odd CPT Even

θv χi
θu φ

Fiv Fij
Fuv

All quantities that are odd under CPT vanish on X by construction.13 Therefore

the CPT-conjugate data satisfies the requisite junction conditions Eqs. (3.9a)-(3.9c)

and (5.23a)-(5.23c).14

The result is a second boundary B̃, with time running in the opposite direction from

B. B and B̃ are connected by a Cauchy slice with three null segments: Σ = N−`[µ] ∪
13Fiu is excluded from the table because it is not needed as initial data for the characteristic initial

data formulation of electromagnetism. Furthermore, continuity of Fiu and Fiv is not required as

junction conditions.
14Note that the full CPT is required for this, since the twist χi is odd under P and T separately,

while the gauge potential Aa has an extra sign in its transformation under C and T separately.
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N−k[µ]∪ Ñ−`[µ̃]. We are using tildes to represent CPT-conjugated submanifolds. This

is illustrated in Fig. 10.15

We have now specified all data necessary to uniquely evolve characteristic initial

data via the Einstein field equation. The resulting spacetime (M ′, g′) has a minimar

surface µ whose outer wedge OW [µ] is the same as in (M, g). M ′ contains an extremal

surface X on the boundary of the inner wedge IW [µ], which is homologous to µ and

therefore to the boundary B. Thus it is a candidate for the HRT surface, although

we have not yet shown it is the extremal surface of least area in M ′. That will be

accomplished in the next section.

5.3 Minimality of the Extremal Surface

We now proceed first to show that the von Neumann entropy of (M ′, g′) is actually

given by Area[µ] = Area[X]. This amounts to showing that the area of any other

extremal surface X ′ in (M ′, g′) cannot exceed the area of X. If there are no other

extremal surfaces in (M ′, g′), we are done. So suppose that there exists an extremal

surface X ′ 6= X homologous to B.

Let Σ be the Cauchy slice Σmin ∪N−k ∪ Σ̃min of (M ′, g′). Recall that Σmin[µ] is the

partial Cauchy slice on which the minimar surface µ is minimal (Requirement 1), and

Σ̃min[µ̃] is its CPT-conjugate.

Let X ′(Σ) be the representative of X ′ on Σ. We will first treat the case where

X ′(Σ) lies on just one of Σmin or N−k (the Σ̃min case is symmetrical). This is illustrated

in Fig. 12.

If X ′(Σ) lies on N−k, then:

Area[X ′(Σ)] = Area[X]. (5.36)

This follows from the fact that N−k is stationary.

If X ′(Σ) lies on Σmin, then by definition of µ, the area of X ′(Σ) must be larger

than the area of µ. Altogether, if X ′(Σ) lies on either side of µ, we have:

Area[X ′(Σ)] ≥ Area[X]. (5.37)

Since the area of a representative of an extremal surface is always larger than the area

of the extremal surface, we immediately find:

Area[X ′] ≥ Area[X]. (5.38)

15We believe that the resulting spacetime is the bulk dual of the GNS construction [89, 90] acting on

the state ρ′B in the algebra of B. The GNS construction is a natural purification of the state respecting

all symmetries, including a Z2 antiunitary symmetry relating B to a complementary system B̃.
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Figure 12. (a) The case where there is an extremal surface X ′ in OW [µ]. The representative

X ′(Σ) lies on Σout, and its area is smaller than (or equal to) that of X, but by minimality

of µ on Σ, this area must still be larger than that of µ. (b) If X ′ has a representative on

Σin = N−k, then the area of the representative is equal to the area of µ by stationarity of

N−k and again no larger than the area of X ′.

This shows that X is the minimal area extremal surface homologous to B. It is possible

X ′ has the same area, but this does not affect our conclusion, that the area of µ gives

the von Neumann entropy of (M ′, g′).

The case where X ′(Σ) intersects multiple regions is only slightly more complicated.

Suppose for example that X ′(Σ) lies on both N−k and Σmin. Let

x1 = X ′ ∩ Σmin (5.39)

x2 = X ′ ∩N−k, (5.40)

and further divide µ into two subsets, where µ1 = µ∩OW [X ′] and µ2 is the complement

in µ. See Fig. 13. Note that µ1 ∪ x2 and µ2 ∪ x1 are both homologous to µ. Then we

find:

Area[µ1] + Area[x1] ≥ Area[µ] (5.41)

Area[µ2] + Area[x2] = Area[µ], (5.42)

where the first line follows from Requirement 1, and the second follows by stationarity

of N−k. Altogether, we find:

Area[X ′] ≥ X ′(Σ) = Area[x1] + Area[x2] ≥ Area[µ]. (5.43)

– 34 –



μ
μ x

x

Σin

Σout

1

2

1

2

Figure 13. The case of a surface X ′ whose representative lies partly in Σout and partly in

Σin. This illustration is a planar projection of the spacetime and should be thought of as

being periodically identified.

(If X ′(Σ) intersects all three components of Σ, the argument works the same way.)

This completes the proof.

This shows that X is minimal among all extremal surfaces in the auxiliary space-

time (M ′, g′) and therefore by HRT (2.13):

S[ρ′] =
Area[µ]

4G~
, (5.44)

where ρ′ is the state dual to (M ′, g′).

We already established in Sec. 5.1 that the outer entropy is bounded above by

Area[µ]/4G~. This construction shows that the maximum can indeed be attained.

This proves the desired claim:

S(outer)[µ] = max
{α}

[SvN [ρ
(α)
B ] =

Area[µ]

4G~
. (5.45)
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6 Outer Entropy of Other Surfaces

6.1 Extremal Surfaces as Minimar Surfaces

A special case of our result is when the minimar surface is itself an extremal surface

X, so that θ(`) = 0 as well as θ(k) = 0. To be minimar, the surface must either be HRT

already (in which case S(outer) = SvN trivially), or else a non-minimal extremal surface

lying closer to the boundary than any other extremal surface of lesser area. (As shown

in Appendix A, in the extremal case the minimality on the partial Cauchy slice Σmin

automatically implies that θ(`),k ≤ 0.)

In this case, there is no need to construct N−k. We only need to perform the CPT-

reflection about X, which is now guaranteed by Sec. 5.3 to be the HRT surface in the

new spacetime. Hence

S(outer) =
Area[X]

4GN~
(6.1)

allowing us to interpret the area of a non-minimal extremal surface as a coarse-grained

entropy.

This construction works even if we take X to be an extremal surface anchored to

the boundary of a subregion R ∈ B. Because X and the original HRT surface are

locally minimal on some Cauchy slice Σ of the original spacetime (M, g), it follows that

the divergence structure of their areas agrees.

However, in general, as investigated in [91] the divergences in the area of general

boundary-anchored marginal surfaces are local to the boundary region in question only

at leading order. This complicates any attempt to giving a similar prescription for the

outer entropy of a non-extremal minimar surface. Hence we do not address the general

case of boundary-anchored µ’s in this paper.

6.2 Non-Marginal Surfaces

How does the outer entropy of non-minimar surfaces compare with their area? There

are no general grounds to expect a particular relationship between the area and outer

entropy of arbitrary surfaces. However, for untrapped and certain trapped surfaces,

the area turns out to be a bound on the outer entropy.

6.2.1 Untrapped Surfaces

Recall that an untrapped surface satisfies the following relation:

θ(`) < 0 (6.2)

θ(k) > 0. (6.3)
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An example of such a surface is a cross-section of a generic causal horizons, for which

θ(k) > 0 due to Hawking’s area-increase theorem [15] while θ(`) < 0 if the cross-section is

outside the past horizon. An even more special case is a (generic) casual surface, which

is the intersection of the past and future causal horizons [23]. It has been proposed

that the areas of these surfaces correspond to some notion of coarse-grained entropy

[23, 24], with specific proposals being given in [24, 92]. However, the proposal in [92]

was refuted by [24], while [24] was refuted in [21].

The counterexample in [21] involved a causal surface with Souter = 0 but Area > 0.

Hence the outer entropy was strictly greater than the area. Below we prove that this

relationship in fact holds more generally for any untrapped surface that lives outside

of the horizons16:

An Upper Bound on S(outer): If υ is an untrapped surface homologous to B and

lying outside the past and future horizons of ∂M , then:

S(outer)[υ] <
Area[υ]

4G~
. (6.4)

Proof. Because υ lies outside of the event horizons, a nontrivial compact extremal

surface can only live in IW [υ] [35]. Let X be the HRT surface corresponding to a given

choice of IW [υ], and let Σmin be the Cauchy slice on which X is minimal. We find:

Area[X] ≤ Area[Σmin ∩ ∂IW [υ]] ≤ Area[υ], (6.5)

where the first inequality follows by minimality of X on Σmin, and the second inequality

follows from the fact that υ is untrapped, so that the area decreases as we move inwards

on the null hypersurface ∂IW .

The equality in the first equation can only happen if there are multiple minima on

Σmin and Σmin∩∂IW [υ] is another of those minima; the equality in the second equation

can only happen if υ lies on Σmin since otherwise there is some focusing. But υ cannot

be a minimum area surface on any Cauchy slice, since the outward spacelike expansion

on Σ (which is a linear combination of θ(k) and −θ(`)) is nonzero. Hence the inequality

(6.4) is strict.

The situation is more complicated for untrapped surfaces inside an event horizon.

But it is likely that a maximin argument [22] can be made towards the same conclu-

sion. 17

16A similar conclusion is reached in [93].
17The argument would roughly work by constructing a surface which is maximin in IW [υ], and
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6.2.2 Trapped Surfaces

An opposite bound can be proven for a class of trapped surfaces, i.e. surfaces with:

θ(`) < 0 (6.6)

θ(k) > 0. (6.7)

Here we wish to show that S(outer) always exceeds the area, but we need some additional

assumption to rule out cases where the trapped surface lies in a “bag of gold” region

[94, 95] behind another black hole with small area. For this reason, we require our

trapped surface to be to the outward-null future of a minimar surface:

Lower Bound on S(outer): Let µ be a minimar surface (with θ(`) < 0) and let τ be a

trapped surface on the null congruence N+k fired in the +ka direction from µ. Then:

S(outer)[τ ] ≥ Area[υ]

4G~
. (6.8)

Proof. This is almost immediate from the definition of τ :

Area[τ ]

4G~
<

Area[µ]

4G~
= S(outer)[µ] ≤ S(outer)[τ ], (6.9)

where the first inequality follows by focusing, the equality follows from the fact that µ

is minimar; the second inequality follows from OW [τ ] ⊂ OW [µ], so to obtain S(outer)[τ ]

we must coarse grain over fewer constraints than we do to obtain S(outer)[µ]. Therefore

the former must be at least as large as the latter. This establishes that for all trapped

surfaces on ∂OW [µ] for a minimar surface µ, the area gives an upper bound on the

outer entropy. The construction is similar for anti-trapped surfaces (θ(`) > 0).

We expect, however, that S(outer)[τ ] cannot be made arbitrarily large, since OW [τ ]

includes a boundary slice B, and in AdS/CFT we expect that there is a maximum

entropy state compatible with a finite ADM mass.

7 Boundary Perspective: The Simple Entropy

Our focus has thus far been on proving that the outer entropy of a minimar surface µ —

the entropy associated with coarse graining over inner wedge of µ subject to knowing

its outer wedge — is proportional to the area of µ. Aside from the use of HRT to

showing that its area is smaller than that of υ; the conclusion then follows immediately. A possible

issue, however, is the equivalence of maximin and HRT if the maximin surface lies on ∂IW [µ]; a

complete proof would likely require showing that the maximin surface cannot do so.
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interpret the area of the extremal surface X as SvN , this statement has been defined

entirely on the bulk side of the duality. Yet to get a fully holographic definition of

the coarse-grained entropy of a black hole, we need to define the dual quantity on the

boundary side, using as little of the bulk physics as possible.

We therefore give a proposal for the boundary interpretation, the simple entropy,

and we prove that it holds under a set of assumptions. The simple entropy is defined as

a coarse graining of SvN obtained by maximizing SvN subject to fixing the expectation

values of “simple” boundary operators with “simple” sources turned on. We refer to

sources defined on some set of boundary points V ∈ ∂M as simple if the bulk fields

they produce propagates causally into the bulk from the points in V . We will define a

boundary operator simple if the corresponding infinitesimal sources are simple.18

The reason why we call these operators “simple” is that sufficiently complicated

operators in a region R, e.g. precursers [96, 97], should be able to access data arbitrarily

deep in the entanglement wedge of R, including in the inner wedge behind a minimar

surface µ.

In our classical bulk regime, all local operators are simple, and it should be sufficient

to fix the one-point functions of these local operators (since the higher n-point functions

are determined from these). Furthermore it is sufficient to restrict attention to local

simple sources, although not all local sources are simple, e.g. the exponentiation of the

Hamiltonian H can change the time-localization of fields acausally [98].

Our coarse-graining procedure to define the simple entropy is:

i. Choose a boundary initial time slice t = ti, and a very late-time cutoff t = tf (in

order to prevent recurrences),19

ii. Fix the one-point functions of local operators after ti (but before tf ) in the pres-

ence of all possible simple sources turned on after time ti, but without changing

the state ρ at ti (so that there is retarded propagation from the sources).

iii. Find the state ρ′ the maximizes the von Neumann entropy SvN over all of the

states with the same simple one-point functions as defined in 7 for ρ.

In short:

S(simple)[ti] ≡ max
ρ′

[
SvN [ρ′] : 〈EOE†〉ρ′ = 〈EOE†〉ρ

]
, (7.1)

18The effects of finite sized sources are given by a time-ordered exponential, whereas in the case of

operators we are only be interested in their expectation value; that is why we only require “infinitesi-

mal” causality in the definition of simplicity for operators. Thus the simple operators lie in a vector

subspace of operators, while the set of simple sources may not have a vector space structure.
19We will assume that tf − ti is much longer than any other time scale in the problem.
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where

E = T Exp

−i tf∫
ti

J [t′]OJ [t′]dt′

 , (7.2)

J [t′] is a simple source, and OJ the corresponding simple operator.20 (Note that

S(simple)[ti] is not quite a purely boundary construct, as the definition of simple sources

references the behavior of the corresponding bulk fields. We hope that in the future, a

purely boundary description of “simple” sources can be provided.)

We now wish to relate the simple entropy to the outer entropy of some minimar

surface µ in the bulk. The following construction is natural: take the slice ti and

shoot in a future-directed null hypersurface N`[ti] ≡ ∂I+[ti]. See Fig. 14. In a black

hole spacetime, there ought to exist some slice µ of N`[ti] for which the outgoing

expansion θ(k) vanishes.21 We expect that the outermost such slice µ generically satisfies

∇`θ(k) < 0;22 by focusing, µ has minimal area on the part of N` outside µ. Hence, µ

should be minimar, at least generically. Note that any such µ lies outside of any past

horizon.

In this section, we consider only minimar surfaces µ that are obtained from bound-

ary time slices ti in this manner. There can exist other minimar surfaces which cannot

be constructed in this way. Note also that if N`[ti] forms caustics before it reaches µ,

then N−`[µ] (the past boundary of OW [µ]) will not coincide with N`[ti]! But by bulk

causality, N−`[µ] lies nowhere to the future of N`[ti]. However, in this case the domains

of dependence agree: N−`[µ] = N−`[µ]. This implies that the data in OW [µ] can be

reconstructed from the part of OW [µ] which is to the future of N`[ti], so long as we also

know what the sources are between tµ = N−`[µ] ∩ ∂M and ti. See Fig. 14.

We now evaluate S(simple)[ti] by a three-step argument:

1. First we hold the sources J(t > ti) fixed, and identify the “reconstructible re-

gion” R[ti]J = D[I+[ti] ∩ I−[∂M ]] of the bulk which can be fully reconstructed

from the one-point boundary data,23 and that furthermore no bulk information

20As stated above, in the classical bulk regime, theOJ ’s can themselves be written as spatial integrals

over local operators OJ(t′, x′), but for ease of notation we have not written the spatial dependence

explicitly in Eq. (7.2).
21To prove this rigorously, we would need to analyze the analogue of Eq. (5.34) when θv 6= 0.
22On a smooth, spacelike Cauchy slice, an outermost marginally trapped surface is generically guar-

anteed to exist [99], and satisfies the “stability” property ∇`θ(k) ≤ 0 [86]. Since there always exist

spacelike slices very close to N`[ti], we therefore expect our strict form of stability to hold generically.
23This is equivalent to the one-point data of [24], where their domain of dependence is taken to

be the whole boundary. That work erroneously conjectured that, in the case where there are no

boundary sources, maximizing SvN subject to this one-point data would give Area[N`[ti]∩H+], where

H+ = ∂I−[∂M ] is the future event horizon.
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N [  ]l ti

Figure 14. Generating a minimar surface by firing a null congruence N`[ti] into the bulk

in the +`a direction from ti. This will not always coincide with N−` fired from µ, but our

procedure guarantees that there is no matter thrown into the bulk between N−`∩∂M and ti.

independent of R[ti]J can be recovered.

2. Next we allow the sources to vary; in this case the size of R[ti]J may depend

on J , but it always remains within the outer wedge OW [µ] of the new spacetime

M ′. Hence we can reconstruct at most OW [µ], and it follows that S(simple)[ti] ≥
S(outer)[µ].

3. Finally we wish to vary the sources J(t > ti) in such a way as to maximize the

extent of R[ti]J . We will argue that, for certain classes of states, there exists a

J such that R[ti]J = OW [µ], so that all of the data in ∂−OW [µ] is visible to the

boundary, and hence

S(simple)[ti] = S(outer)[µ]. (7.3)

We can prove these results to all orders of perturbation theory around equilbrium

(e.g. at late times in an AdS-Kerr ringdown process) — and also of course for

states that differ from such near-equilbrium states by the addition of large simple

sources after time ti. We therefore conjecture that the equality in fact holds for

all classical states in the holographic regime.

Step 1: R[ti]J with fixed J: Given the one-point data in a fixed state with fixed

simple sources, we make use of the HKLL prescription [100–102] to reconstruct I+[ti]∩
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I−[∂M ], the region causally accessible from the boundary after ti. Using the bulk

equations of motion, we can then reconstruct the domain of dependence of this region,

which we call R[ti]J = R[ti]J = D[I+[ti] ∩ I−[∂M ]].24

The HKLL procedure solves a non-standard Cauchy problem by evolving the

boundary one-point data “sideways” into the bulk via the bulk equations of motion;

in this way the one-point functions can be used to reconstruct all local bulk oper-

ators25 anywhere in R[ti]J . The HKLL procedure has been rigorously established for

free field evolution at least if we assume any of (a) spherical symmetry [101], (b) Killing

symmetry [103], or (c) analytic bulk sources [104].26 It is also possible to include inter-

actions, at least perturbatively in 1/N [106, 107]. Below we will assume that the HKLL

procedure can be performed perturbatively on general globally hyperbolic spacetimes,

outside of event horizons.

Aside from the information in R[ti]J , no additional independent information about

the spacetime M can be reconstructed via the one-point data to the future of ti. To

see this, consider a modification of the fields localized in the spatially complementary

region to R[ti]J , which we term Rc[ti]J . Since we are in a regime where bulk fields

propagate causally, it is clear that such a modification cannot affect local operators on

the boundary after the time ti. Hence it is not encoded in our one-point data, and all

of the reconstructible data is in R[ti]J .27

Step 2: Upper bound on R[ti]J with varying J: We now allow arbitary simple

boundary sources J to be turned on after time ti (while holding fixed all sources before

ti). Since the sources are simple, the resulting matter fields propagate causally into

the bulk. Hence the change in the geometry is localized in the region I+[ti], and in

particular the null hypersurface N`[ti] is unaffected. This allows us to compare the size

of the invariant region R[ti]J for two different choices of J , by comparing how much of

the invariant hypersurface N`[ti] is included in R[ti]J .

Turning on certain sources introduces more infalling matter and causes the event

horizon to move outwards along N`[ti]; turning on other sources removes the infalling

24In situations involving caustics, the domain of dependence is larger.
25In a regime where gravitational back-reaction is important, it is necessary to “dress” these local

bulk operators with suitable gravitational field lines extending out to the boundary B.
26There exists a counterexample to HKLL for a scalar field with evolution equation �φ = V φ, where

V is a complex potential (without analyticity, spherical symmetry, or stationarity) [105]. However,

this theory is unphysical due to V being complex.
27This does not exclude the possibility that we may be able to deduce some information outside

of R[ti]J from R[ti]J using the bulk equations of motion and/or constraint equations, but since this

information is determined by R[ti]J it is not independent data. That is why, in the argument above,

we consider only valid initial data that does not change R[ti]J .
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matter and push the event horizon inwards along N`[ti]. However, there is no set of

sources that can shift the event horizon so far inwards that µ lies outside of it [15, 108].

This is a consequence of a theorem of Hawking [15], which states that marginally

trapped surfaces always lie behind event horizons. Thus, there is no set of simple

sources J ′ that we can turn on to produce a geometry in which µ lies inside R[ti]J ′ . For

the same reason, the null hypersurface N+k[µ], which is foliated by trapped surfaces,

also lies behind the event horizon. And obviously R[ti]J ′ also cannot dip to the past of

N−`[µ]. This shows that

R(ti)J ′ ⊆ OW [µ], (7.4)

for any modified sources J ′.

So far we have defined the reconstructible region R[ti]J ′ on M ′, the geometry corre-

sponding to the modified sources J ′. Since the hypersurface N`[ti] is invariant, we can

use it to define the corresponding reconstructible region R[ti]J ′ on M , the original man-

ifold with sources J . This is simply the domain of dependence of the part of N`[ti] that

we can reconstruct, which contains the same data on both spacetimes. (This may well

be larger than the region R[ti]J ⊂ M which could have been reconstructed using the

original sources, but in no case can it be larger than OW [µ] since it still does not extend

past µ on N`[ti].) In other words, to reconstruct a field φ somewhere in R[ti]J ⊂M , we

simply evolve it back to initial data on N`[ti] using the original boundary sources J ,

and then we turn on the new sources J ′ that move the causal horizon inwards, making

it visible to the boundary after time ti.

The one-point functions 〈O〉J thus allow us to fully reconstruct (via HKLL) at

most the outer wedge OW [µ] of M . That is, the set of data used to compute the simple

entropy is a (possibly improper) subset of the set of data used to compute the outer

entropy. Since both entropies involve maximization subject to these constraints, we

conclude that S(simple)[ti] ≥ S(outer)[µ], i.e. the simple entropy is either equivalent to,

or else coarser than, the outer entropy.

Step 3: Maximizing R[ti]J : We start by considering the case where ρ is pertur-

batively close to a state ρstat of thermal equilibrium, which is dual to a stationary

geometry Mstat. In Mstat, R(ti) = OW [µ] (because µ lies on the Killing horizon). In the

perturbed state ρ, there exists matter falling across the event horizon HEH , which we

need to remove to cause µ to sit on HEH . To any order in perturbation theory, we can

regard this matter as crossing HEH on the original background Mstat. We modify the

state by removing the matter crossing HEH while keeping the data on N`[ti] fixed.28

This can be done in the bulk by attaching a stationary null hypersurface N+k[µ] to µ

28In order to comply with the No Hair Theorem [109–112], it may be necessary to leave some matter

crossing the horizon to the future of some very late time tf , but this should make an exponentially
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via a similar construction as given in Sec. 5; we call this modified spacetime M ′ (as in

the previous step). We can now use HKLL to solve for the corresponding boundary

sources J ′[t > ti], which must differ from the original sources J [t > ti] since otherwise

the spacetimes would be the same (and µ would already be a cross-section of HEH).

These are the sources that are needed to “turn off” matter falling across the horizon

HEH . Note that due to caustics and intersections, N`[ti] need not coincide with N−`[µ].

This is fine, as N−`[µ] will always lie to the past of N`[ti], and thus no new sources are

present in th region between the two congruences.

We now consider the boundary state which agrees with ρ prior to ti, but in which

we turn on the J ′[t > ti] rather than J [t > ti]. Because J ′ is simple, a classical bulk

dual exists. This bulk dual is none other than M ′, because the data on N`[ti] together

with the boundary sources J [t > ti] allows us to determine (via future-directed Cauchy

evolution) the data on the horizon HEH . This allows us to recover OW [µ] to whichever

order in perturbation theory we are working in. As explained in step 2, we can recover

the outer wedge in M as well as M ′. Thus, we find that for ρ perturbatively close to

ρstat, the outer and simple entropies agree: S(simple)[ti] = S(outer)[µ].

To see why we only work perturbatively, consider the case where µ is a finite

distance away from HEH . In this case even if we turn off the matter on HEH , we are

not guaranteed that µ lies on HEH , as there may be another minimar surface in the

way. This is not possible in perturbation theory because on N`[ti] there is a unique

minimar surface on the Killing horizon HEH of the background spacetime Mstat, which

remains unique under small perturbations.29 Furthermore, it is possible that HKLL

is valid only perturbatively, in which case we not justified in using it when µ is deep

inside the black hole.

It is also clear that this equality holds for a state ρ′ that is prepared from the

near-equilibrium state ρ above by turning on any additional simple sources after ti,

even if these sources are large (so that perturbation theory is not valid).

8 Explanation for the Second Law

One consequence of the equivalence between area and entropy for minimar surfaces is

a statistical interpretation of the area law for certain sorts of local horizons [17–19], as

a second law of thermodynamics.

small difference to the event horizon location at early times. Note also that, since an equilbrium black

hole should be stable under small perturbations, the perturbations to the fields should not diverge at

late times.
29This last point follows from the stability requirement that ∇kθ(`) < 0 for a minimar surface.
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A hypersurface H foliated by marginally trapped surfaces (and satisfying certain

regularity conditions) is known as a future holographic screen [14, 19] (or a future

trapping horizon [17]). They can be defined in a way which is local in time, but are

highly nonunique. Such a hypersurface can be timelike, spacelike, or null in different

parts of H. But if a black hole settles down to a stationary configuration, then at

late times its causal horizon coincides with a null holographic screen H. These holo-

graphic screens obey an area law: the area of the marginally trapped surfaces increases

with evolution along H [17–19, 83, 113] when moving towards the past (on a timelike

segment) or outwards (on a spacelike segment).

To apply our results, we need to consider the case where the holographic screen is

foliated by minimar surfaces, which by Requirement 2 satisfy ∇`θ(k) < 0. From this

inequality, it follows from the NCC that H must be spacelike or null [17], in which case

they are also known as dynamical horizons [18].

In general there will be multiple holographic screens foliated by minimar surfaces

on the same black hole background. As an example, for any slicing of of a black hole

spacetime M into Cauchy hypersurfaces Σ[t], the apparent horizon (i.e. the outermost

marginally trapped surface on each Σ(t)) satisfies ∇`θ(k) ≤ 0 [16], and thus — assuming

there is no homologous surface of lesser area outside of it30 — generically satisfies the

criteria to be a minimar surface. The evolution with t would then define a holographic

screen H foliated by minimar surfaces. In general, the location of H, and hence the

outer wedges OW [µ] used for coarse graining, will depend on the choice of foliation Σ[t].

Our derivation of the second law will hold for any holographic screen H foliated by

minimar surfaces, whether or not it is obtained by one of the construction described in

this paragraph.

As stated above, the area of the minimar surfaces µ will increase as we evolve

outwards along H:

Area[µ2] ≥ Area[µ1], (8.1)

where µ2 is further outwards than µ1. This can be proven by geometrical means using

the NCC, but we will now provide an simple statistical-mechanical explanation for the

area increase in terms of the outer entropy.

First note that the corresponding outer wedges are nested: OW [µ2] ⊂ OW [µ1].

Hence there is less data in OW [µ2] than OW [µ1]. This is illustrated in Fig. 15. It

follows that

S(outer)[µ2] ≥ S(outer)[µ1], (8.2)

30This ought to be true at least for small perturbations to a stationary black hole.
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Figure 15. Reproduced from [25]. The outer wedges of the marginally trapped surfaces

constituting a holographic screen are nested: evolution along the screen from the leaves

labeled 1, 2, and 3 corresponds to progressively larger outer entropy. On the boundary, this

translates into a timelike law of outer entropy increase: S(outer)[t1] < S(outer)[t2] < S(outer)[t3].

since we are maximizing SvN with respect to fewer constraints at µ2. But S(outer)[µ] =

Area[µ] for each surface, so the area increase inequality (8.1) follows automatically.31

This second law also has an appealing interpretation on the boundary side. Suppose

that we obtain our holographic screen H shooting in null surfaces N`(t) from a Cauchy

foliation Σ[t] of the boundary ∂M , as in Sec. 7. (Such a holographic screen always lies

outside of any past horizons.) In this case, the boundary interpretation of the growth

of H is an increase in the simple entropy S(simple)[ti = t]. (Here we are holding the very

late time cutoff tf fixed as we vary ti). Consider two different initial times ti = t1 and

ti = t2, with t2 > t1. Because we can only turn on simple sources and measure simple

operators after ti, it follows that there are fewer simple experiments that can be done

after t2 than after t1. Hence,

S(simple)[t2] ≥ S(simple)[t1]. (8.3)

since the later entropy is maximized subject to fewer constraints. Since at any time

S(simple)[ti] = S(outer)[µ[ti]], this second law is equivalent to the previous ones, but now

it is expressed in terms of boundary quantities.

31Unfortunately, we do not know how to give an explanation of the area law for the timelike (or

mixed signature) parts of holographic screens. In this case, the marginally trapped surfaces on the

timelike component have ∇kθ(`) > 0 and are thus not minimar surfaces, so we cannot prove that their

area corresponds to the entropy associated to ignorance of their interior. Another obstacle is that in

the timelike case, their outer wedges OW [µ] are not nested: we cannot yet explain thermodynamically

why the entropy on the timelike component of the holographic screen increases towards the past. This

apparent contradiction with our usual intuitions about the direction of entropy increase remains a

mystery.
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Our construction suggests a natural perspective on proving the ordinary second

law of theormodynamics even in non-holographic theories. The reader may think it

odd that S(simple)[ti] has been defined relative to a set of measurements taking place

at all times later than ti (up to some very late cutoff tf ), rather than being restricted

to times near ti. But this is actually very natural from the perspective of proving the

second law.

First recall the standard (not completely satisfactory) textbook analysis of the

second law. Suppose for example we start with a pure state at time t0 and then allow

it to begin to thermalize. To define a nontrivial second law (where entropy increases

with time), we need a notion of coarse-graining such which allows us to “forget” some

information that was available at t0, once we have arrived at a later time t1 when this

information is no longer accessible to macroscropic measurements. This allows us to

define a coarse-grained entropy S(coarse)[t1] > 0. However, if the forgotten information

has not fully thermalized, then there is the danger that at a still later time t2, the

forgotten information may re-emerge into the macroscopic degrees of freedom, causing

a decrease of S(coarse) from t1 to t2! It is very hard to prove rigorously that this cannot

happen in reasonable matter systems.

Our approach neatly sidesteps this issue by defining the coarse-grained entropy

relative to observations made anywhere in the time interval (ti, tf ), with the late time

cutoff tf taken very large. That is equivalent to saying, that if any reasonable future

experiment could have recovered some piece of information, then (almost by definition)

we ought not to have coarse-grained over that piece of information for purposes of

the second law, since it has not been irreversibly thermalized into the microscopic

degrees of freedom. Maximizing SvN subject to to all information accessible in (ti, tf )

automatically excludes such pathological cases of information return, and makes it easy

to prove a second law mathematically for all systems, without the use of additional

postulates that are difficult to justify.

The price that we pay is that such an increasing coarse-grained entropy may be hard

to evaluate, in situations where it is unclear whether some information is permanently

lost. Fortunately, this turns out not to be an issue in the holographic context, since

the duality to black hole horizons makes a sharp division between the information that

is accessible, and the information that is (classically) lost forever.

9 Prospects

We have shown that in black hole physics, the area of certain marginally trapped “min-

imar surfaces” have a natural interpretation as a coarse-grained holographic entropy,
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which we have called the “outer entropy”. We have given a statistical explanation for

why the corresponding holographic screens obey a second law, and (at least perturba-

tively) have shown that this is equivalent to a second law on the boundary, expressed

in terms of the “simple entropy”. As described at the end of the previous section, this

boundary second law provides an interesting new perspective on the thermodynamics

of ordinary (not necessarily holographic) systems.

Leaving aside our proposed boundary dual, our only use of holography in the bulk

has been the HRT formula for the holographic entanglement entropy (1.1). Thus, all

of our bulk results about the outer entropy also extend to the case of asymptotically

flat bulk black holes, assuming that (as is plausible) the area of extremal surfaces also

corresponds to some von Neumann entropy in this case (perhaps, defined in terms of a

hypothetical flat space holographic dual – see [114–119] and references therein).

Another natural extension of our work is to boundary-anchored marginally trapped

surfaces in AdS. We expect that similar results will hold, but in this article we have

only covered the case of nonminimal extremal surfaces (see Sec. 6.1 for the details).

This article has not explained the second laws that are known to be obeyed by

timelike holographic screens [14, 19] and by causal horizons [15]. Although holographic

screens obey a second law in cosmology [120], it is especially unclear how to extend our

results to this case, since in a closed universe the minimal area surface dual to e.g. a

de Sitter horizon is always the empty set.

Another direction that remains to be addressed is the extension to semiclassical

settings, in which the black hole is coupled to quantum field theory. In this case, we

expect that we need to replace the area with a generalized entropy which includes bulk

entropy corrections [108, 121]. Hence, we will need to consider quantum marginally

trapped surfaces [108], and we will end up with a second law for certain Q-screens

[120]. However, in order to construct our stationary null surface N−k, we will need

a better understanding of when, given the data outside the surface, we can saturate

inequalities such as monotonicity of relative entropy. See [122] for discussion of a

relevant conjecture.

If our results can be extended to the semiclassical regime, they are likely to provide

an interesting perspective on the firewalls puzzle [123–125]. Recall that the paradox

here is that strong subadditivity seems to prevent old black holes (that are highly en-

tangled with their early Hawking radiation) from having a normal interior. A quantum

version of our result could be used to construct the “best possible” (i.e. entropy maxi-

mizing) interior of the black hole as a function of time, which might reveal interesting

behavior across the transition to the “firewall” phase.

Finally, we would like to speculate on what our results mean for nonperturbative

quantum gravity. It is natural to suppose that the Bekenstein-Hawking entropy of any
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surface σ corresponds to the entropy of some set of Planck-scale boundary qubits sitting

on σ [126–129]. If these qubits can be approximately localized, this explains why the

entropy is an extensive (geometric) intergral on σ.

Our results show that if σ is a minimar surface, it is possible to act on the state in a

way that maximally mixes the qubits, without changing the classical geometry outside

of σ. These degrees of freedom can therefore be regarded as independent degrees of

freedom. On the other hand, for an untrapped surface, it is not usually possible to

fully mix the qubits without changing the geometry outside (see Sec. 6.2.1). So these

degrees of freedom cannot become fully mixed without adding energy from outside.

Finally, in the case of a trapped surface, the outer entropy can exceed the total entropy

of the surface qubits. In this case, there must be some other source of boundary entropy

which is not fully accounted for by the Planckian qubits near σ.

For a model of holographic quantum gravity in the bulk to be successful, it must

be able to explain why there is a match between the area and the outer entropy for

minimar surfaces, but not for these other classes of surfaces.
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A HRT Surfaces are Minimar Surfaces

We prove in this section that HRT surfaces are automatically minimar.

By definition, HRT surfaces are homologous to the boundary; by the maximin

method [22], they are also minimal on a complete Cauchy slice. Hence they satisfy

Requirement 1 for a minimar surface. To show Requirement 2, that ∇kθ(`) ≤ 0 we

prove the following:

Theorem: Let X be an extremal surface homologous to B which is minimal on a

Cauchy slice Σ of OW [X]. Then ∇kθ(`) ≤ 0.
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Proof. Consider firing out the null congruence N+k[X] in the k direction from X, and

let σ be a cross-section of N+k[X]. We may now fire the null congruence N−`(σ) from

σ in the −` direction (i.e. towards the past and away from X), towards the slice Σ on

which X is the minimal area surface. We know that σ′ = N−`(σ) ∩ Σ must have area

greater than or equal to the area of X. By taking σ to be sufficiently close to X, we

can guarantee that σ′ ⊂ U , where U is any open set on Σ. Then:

Area[σ′] ≥ Area[X] ≥ Area[σ] (A.1)

where the first inequality follows from the minimality of X and the second inequality

follows by the focusing theorem. This means that the area of cross-sections of N−`(σ)

has to grow (or remain unchanged) in moving from σ to σ′, i.e. the expansion θ(`) at

some point on N−`(σ) between σ and σ′ has to be nonpositive. By the null energy

condition, once the expansion is negative, it remains nonpositive. This means that

θ[N−`(σ)]|σ ≤ 0.

Since σ may be taken to be arbitrarily close to X, we find:

θ`,k[X] ≤ 0. (A.2)
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