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Abstract

We prove the achronal averaged null energy condition for general quantum field theories

in the near horizon geometry of spherical extremal black holes (i.e. AdS2 × Sd−2), de

Sitter and anti-de Sitter. The derivation follows from monotonicity of relative entropy

after computing the modular hamiltonian of a null deformed region. For incomplete (but

maximally extended) achronal null geodesics in AdS2 × Sd−2, we prove the positivity of

a different light-ray operator for arbitrary CFTs. This agrees with a constraint recently

derived for the Lorentzian cylinder.
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1 Introduction

Given a particular matter distribution characterized by the stress tensor Tµν , Einstein’s gravi-

tational equations determine the space-time metric gµν . Early on it was realized that this logic

can be inverted, meaning that for any smooth metric, the equations of motion determine the

appropriate matter required to produce it. This is problematic, given that there are plenty

of unphysical space-times (e.g. metrics with closed time-like curves) that we do not want to

have as solutions of our theory. As a result, gravitational theories must be supplemented with

“reasonable” constraints (referred as Classical Energy Conditions [1]) on the allowed matter

distributions. Arguably the most interesting of these constraints is the Null Energy Condition,

given by Tµνk
µkν ≥ 0 with kµ null. Restricting to matter satisfying the Null Energy Condition
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has led to important results in classical gravity, most notably Hawking area [2] and Penrose

singularity theorems [3] (see [4] for a review).

The situation gets more interesting in the context of semiclassical gravity, where the clas-

sical stress tensor Tµν is replaced by the expectation value of the QFT operator 〈Tµν〉. An

old result due to Epstein, Glaser and Jaffe [5] shows that local operators in a QFT satisfying

Wightman axioms cannot be positive definite, implying that all Classical Energy Conditions

are violated as soon as we incorporate quantum effects.1 Instead of being discouraged by

this general result we should become excited, as it opens up a small window into the realm

of quantum gravity. The violation of the Null Energy Condition disqualifies Hawking’s area

theorem and allows black holes to evaporate [7], giving rise to the black hole information

paradox [8, 9], without question the most intriguing result in quantum gravity.

The spectacular consequences of the violation of the Null Energy Condition, makes essen-

tial the search of a replacement which applies in the presence of quantum correlations. In

doing so we must keep in mind the result of [5], which implies

locality + positivity 6= QFT .

A quantum generalization of the Null Energy Condition can retain either locality or positivity,

but not both. The Quantum Null Energy Condition is a proposal which sacrifies positivity in

favor of a bound on the local stress tensor, see [10–15]. The Averaged Null Energy Condition

takes the alternative route, its most refined version conjectured by Graham and Olum [16]

and stated as follows.2

Achronal Averaged Null Energy Condition: Every complete achronal null geodesic on

a self-consistent3 solution in semiclassical gravity satisfies∫ +∞

−∞
dλTλλ ≥ 0 , (1.1)

where λ is an affine parameter and Tλλ ≡ kµkνTµν , with kµ the geodesic tangent vector.

Integrating the Null Energy Condition along a complete null geodesic is the most natural

way of obtaining a non-local operator. A complete achronal null geodesic is one for which

the affine parameter λ can be extended to all real values and cannot be intersected twice

by any time-like path. The achronality condition is imposed to avoid a trivial violation due

1See appendix A of [6] for a modern presentation of the argument.
2See [27, 28] for a proposal of a non-local bound along null geodesics that is different from the achronal

ANEC.
3See [16] for a discussion regarding the self-consistency condition.
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to a negative Casmir energy contribution in space-times with a compact spatial direction,

e.g. R × Sd−1. While this might appear as an innocent addition to (1.1), it turns out to

be highly restrictive, given that complete achronal null geodesics are extremely special and

non-generic (see section 8 of [4]). The main known examples of space-times with complete

achronal null geodesics are: Minkowski and (A)dS, where all complete null geodesics are

achronal, and geodesics along the horizon of typical black hole solutions. Let us stress that we

are not implying these to be the only cases with complete achronal null geodesics, they simply

correspond to the main known examples. It is for QFTs defined on these space-times that

there is hope we might be able to explicitly prove the achronal ANEC for arbitrary QFTs, as

recently done for Minkowski [17–19].4

This is the observation motivating this paper. We show it is possible to adapt the flat

space calculations of [17] and prove the achronal ANEC for arbitrary QFTs in de Sitter, anti-

de Sitter and AdS2×Sd−2. For incomplete (but maximally extended5) achronal null geodesics

in AdS2 × Sd−2 and arbitrary CFTs, we prove a bound similar to (1.1), which coincides

with a recent result in R × Sd−1 derived in [26] (see (1.4) below). We hope this provides

solid evidence in favor of the achronal ANEC as a true statement of semiclassical gravity.

The achronal ANEC has been used as a hypothesis to derive a variety of important results:

topological censorship [29], conformal collider bounds [30] and related results in gravity [31, 32]

and quantum theories [6, 33–37].

1.1 Summary of results

We start in section 2 by considering the achronal ANEC for an arbitrary QFT in the fixed

space-time AdS2×Sd−2. There are several reasons this background geometry is an interesting

setup to study the ANEC: it arises from the near horizon limit of extremal black holes, plays

a central role in the transversable wormhole constructed in [38] and contains both achronal

and chronal null geodesics. This provides a simple yet rich enough setup to fully test the

achronality condition proposed in [16]. We give three independent proofs of the achronal

ANEC in AdS2× Sd−2 with distinct regimes of validity: for general QFTs, general CFTs and

free scalars in subsections 2.1, 2.2 and 2.3 respectively. Let us briefly review the most salient

features of each derivation.

The proof for general QFTs in subsection 2.1 follows the same approach used in [17]

to prove the ANEC in Minkowski. More precisely, we consider a suitable half-space A0 in

AdS2 × Sd−2 (see (2.5) and (2.7)) and compute the vacuum modular hamiltonian associated

4See [20–26] for previous work on the ANEC in curved space-times.
5By this we mean that if the geodesic were to be extended any further, the achronality condition would be

violated.
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to a null deformation of A0, parametrized by a vector ζµ = ζ−δµ−. We show that the full

vacuum modular hamiltonian K̂A ≡ KA −KAc to first order in ζµ is given by

K̂A = K̂A0 + πrd−2
h

∫
Sd−2

dΩ(~x⊥)ζ−(~x⊥)E(~x⊥) +O(ζµ)2 , (1.2)

where ~x⊥ ∈ Rd−2 parametrizes the unit sphere Sd−2 of radius rh. We have defined E(~x⊥) as

the ANEC operator

E(~x⊥) ≡
∫ +∞

−∞
dλTλλ(λ, ~x⊥) . (1.3)

The integral is over the only complete achronal null geodesics in AdS2 × Sd−2, which travel

between the two boundaries of AdS2 at a fixed coordinate in Sd−2. From this result, a simple

calculation using monotonicity of relative entropy [17, 39] gives the ANEC E(~x⊥) ≥ 0.

In subsection 2.2 we apply the methods used in [26] and independently derive the positivity

of E(~x⊥) for CFTs. The basic idea is to start from the null deformed modular hamiltonian for

the Minkowski half-space (computed in [40, 41] to all orders in the deformation) and apply a

conformal transformation to AdS2 × Sd−2 (using a recent observation made in [42]). In this

way we derive (1.2) for any CFT, to every order in ζµ, i.e. we can drop O(ζµ)2 from (1.2).

Monotonicity of relative entropy again implies the ANEC, in this case for arbitrary CFTs.

We finish in subsection 2.3 with our final proof of the achronal ANEC in AdS2×Sd−2 for a

free scalar field non-minimally coupled to the metric. We show E(~x⊥) is positive by writing it

as E(~x⊥) = WW † ≥ 0 for some operator W . The explicit proof in this simple setup provides

a sanity check for the previous more general and abstract derivations.

Section 3 gives a proof of the achronal ANEC for arbitrary QFTs in de Sitter and anti-de

Sitter, establishing the ANEC for general QFTs in Lorentzian maximally symmetric space-

times. This extends the recent derivation for conformal theories in (A)dS given in [26]. The

proofs follow after computing the vacuum modular hamiltonian associated to a null deformed

region to first order in the deformation parameter and obtaining a result analogous to (1.2)

(see (3.7) and (3.16)). In both cases the details of the computations are very similar to those

leading to (1.2) in AdS2 × Sd−2. For de Sitter, the modular hamiltonian coincides with the

one obtained in (1.3) of [26] for CFTs, to all orders in the deformation parameter.

In section 4 we derive a constraint for more general null geodesics in AdS2×Sd−2, that are

achronal but not complete. Starting from the ANEC in Minkowski and applying a conformal

transformation we show that a large family of geodesics satisfy the following condition∫ π/2

−π/2
dλ cosd(λ)

(
Tλλ − 〈Tλλ〉0

)
≥ 0 , (1.4)

where 〈Tλλ〉0 is the vacuum expectation value of the stress tensor. This ensures the inequality

is not violated by a negative Casimir contribution. The null geodesics with affine parameter λ
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are incomplete, travel between the antipodal points of the Sd−2 and can have non-trivial

motion along all the directions in AdS2 × Sd−2. These geodesics are achronal and maximally

extended, meaning that going beyond |λ| = π/2 would result in a chronal curve. See figure 8

for a plot of several trajectories in the coordinates describing the AdS2 factor. The condition

in (1.4), which holds for arbitrary CFTs, is essentially equivalent to the one derived in [26]

for the Lorentzian cylinder R× Sd−1.6

The appendices contain some details and extensions not included in the main text. In

particular, appendix A provides a generalization of the conformal transformation recently

noted in [42], which relates R × Sd−1 → AdS2 × Sd−2. We show it can be extended to the

following conformal transformation

R× Σ(k) −→ AdS(k)
n × Sd−n ,

for n ≥ 2, where Σ(k) is Rd−1, Sd−1 or Hd−1 for k = 0,±1 respectively. Accordingly, the

slicing of the AdS(k)
n factor is given in terms of these spaces. Since AdSn × Sd−n space-times

appear a lot in the AdS/CFT correspondence, we suspect this transformation might be useful

to simplify bulk calculations which incorporate quantum effects.

1.2 Future directions

There are several interesting future directions that might be worth pursuing in future work. As

briefly mentioned in the introduction, there is an alternative proposal to the achronal ANEC,

referred as the Quantum Null Energy Condition (QNEC), that gives a bound on the local

stress tensor. This constraint has been proven for general QFTs in Minkowski in [12, 13].

The derivation of [13] is particularly interesting since it shows the suprising fact that the

QNEC and the ANEC are implied by each other in Minkowski. Having established the ANEC

for general QFTs in Lorentzian maximally symmetric space-times, this raises the question

whether a general proof of the QNEC in (A)dS might be possible using the approach of [13].

In this work we have computed the vacuum modular hamiltonian associated to the null

deformed half-space in de Sitter (i.e. the dS static patch) to first order in the deformation.

The final result agrees with the computation of [26], performed for CFTs to every order in

the deformation parameter. It would be interesting to generalize the computation presented

in subsection 2.1 to arbitrary orders and analyze whether the series can be resumed to give

the result in [26] for CFTs. For null deformation of the Minkowski half-space, this calculation

was recently performed in [41].

Finally, it would be interesting to pursue the study of more general bounds on null geodesics

that are not complete and achronal. To start, we could determine whether the bound (1.4)

6See also [43] for an independent derivation of the constraint in R×Sd−1 for holographic CFTs in d = 3, 4, 5.
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for R×Sd−1 and AdS2×Sd−2 applies to QFTs that are not conformal (see footnote 21). This

can be considered by studying the simple case of a free non-conformal scalar field.

Acknowledgements
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2 Achronal ANEC and extremal horizons

In this section we study the ANEC for a QFT in the near horizon geometry of an extremal

black hole, i.e. AdS2 × Sd−2. We give three independent derivations with different regimes of

validity: for generals QFTs, general CFTs and free scalar fields in subsections 2.1, 2.2 and 2.3

respectively.

Let us start by briefly reviewing how the AdS2 × S2 geometry arises from near horizon

geometry of an extremal black hole in four dimensional Einstein-Maxwell theory

I[gµν , Aµ] =
1

16πG

∫
d4x
√
−gR− 1

4

∫
d4x
√
−g FµνF µν .

The extremal and spherically symmetric black hole solution is given by [44]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 , where f(r) =

(
r − rh
r

)2

, (2.1)

and rh > 0 is an integration constant which determines the horizon radius (related to the

mass and charge of the black hole). The line element on the unit sphere S2 is given by dΩ2.

To analyze the causal structure we first define the tortoise coordinate r∗(r)

dr∗

dr
=

1

f(r)
=⇒ r∗

rh
=

(
rh

r − rh

)
+ 2 ln

(
rh

r − rh

)
−
(
r

rh

)
, (2.2)

where r∗(r) ∈ R. The advantage of this coordinate is that the (t, r∗) sector is conformally flat.

Further defining the coordinates (σ, θ) as r∗± t = rh tan(θ±/2) with |θ±| = |θ±σ/rh| ≤ π, we

find

ds2 =
f(r(r∗(θ±)))

4 cos2(θ+/2) cos2(θ−/2)

(
−dσ2 + r2

hdθ
2
)

+ r(r∗)2dΩ2
2 . (2.3)

The Penrose diagram of the outer region of the extremal black hole is obtained by taking

fixed values in the S2 and disregarding the conformal factor in (σ, θ). This give the diamond in

the (σ, θ) plane seen in the left diagram of figure 1. The future and past black hole horizonsH±

are given by θ± = π, while the asymptotic null infinity of Minkowski by θ± = −π. In gray we
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Figure 1: The left diagram corresponds to the Penrose diagram of the exterior region of the

extremal black hole in the coordinates (σ, θ) (2.3). The Minkowski null infinity I± is indicated

in green, while the future and past horizon of the black hole H± in blue. Several fixed r

trajectories are plotted in gray. The right diagram gives the maximally extended space-time,

with the time-like singularity in red.

plot some constant r curves. The maximal extension of the space-time is shown in the right

diagram of this figure.

The near horizon limit is obtained by taking (r − rh) � rh, where the tortoise coordi-

nate r∗(r) in (2.2) is particularly simple r∗(r) = r2
h/(r − rh) and the black hole metric in (2.3)

becomes

ds2 ' −dσ
2 + r2

hdθ
2

sin2(θ)
+ r2

hdΩ2
2 = AdS2 × Sd−2 , (2.4)

where we recognize an AdS2 factor in global coordinates. Since in this limit r∗(r) only takes

positive values, the coordinate θ is now restricted to θ ∈ (0, π), with θ = 0, π corresponding

to the two AdS2 boundaries.

In the left diagram of figure 2 we plot the AdS2 factor of the metric, with some constant r

trajectories in gray. The near horizon geometry of the extremal black hole corresponds to the

Poincare patch of AdS2, with the black hole horizon H± given by the Poincare horizon. The

near horizon geometry can be maximally extended to the right diagram of figure 2, which

is global AdS2. Comparing with the full black hole Penrose diagram in figure 1, we see the

near horizon limit corresponds to cutting the diagram in half, placing one AdS2 boundary at

the singularity and the other in the middle.7 Since the study of QFTs in the full black hole

background in (2.1) is complicated, it is useful to consider the simpler near horizon instead,

hoping the most relevant quantum aspects of the horizon are captured in this approximation.

7In a slightly different way, the space-time AdS2 × Sd−2 also arises from the near horizon limit of near

extremal black holes, see [45].
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AdS 
Boundary

AdS 
Boundary

Figure 2: Penrose diagram of the near horizon limit of the exterior region of an extremal

black hole, which corresponds to the Poincare patch of AdS2. The boundaries are located at

θ = 0, π while the black horizon H± at θ± = π. We have plotted several constant r curves in

gray. To the right we have the maximal extension, corresponding to global AdS2.

An analogous calculation for the extremal black hole in arbitrary dimensions shows the

near horizon metric is given by

ds2

r2
h

=
−dσ2 + dθ2

sin2(θ)
+ dΩd−2(~v ) , dΩ2

d−2(~v ) =
4d~v.d~v

(1 + |~v |)2
, (2.5)

where the unit sphere Sd−2 is parametrized in stereographic coordinates8 ~v ∈ Rd−2. We have

also conveniently rescaled the time coordinate σ → σ/rh. Complete achronal null geodesics

in this space-time correspond to paths going between the two AdS2 boundaries with fixed

coordinates on Sd−2. These geodesics can be described in terms of an affine parameter λ as

xµ(λ, ~x⊥) = (θ+, θ−, ~v ) = (π/2, 2 arccot(λ)− π/2, ~x⊥) , (λ, ~x⊥) ∈ R× Rd−2 . (2.6)

It is for these geodesics that we prove the achronal ANEC. The null surface obtained from

~x⊥ ∈ Rd−2 goes between the AdS2 boundaries at σ = ±π/2 and coincides with H+ in figure 2

after a rigid time translation.

2.1 Relative entropy and null deformed modular hamiltonian

In this subsection we prove the achronal ANEC for general QFTs, where the null geodesics

move between the AdS2 boundaries according to (2.6). Our approach follows the derivation

8We can write this in the usual angles of Sd−2 by describing the vector ~v ∈ Rd−2 in spherical coordinates

and parametrizing its radius according to |~v | = tan(φ/2) with φ ∈ [0, π].
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Figure 3: On the left diagram we sketch the region D(A0) described in (2.7). The deformed

region D(A) shown in the right diagram contains the additional green section of size ζ−(~v ).

of the ANEC in Minkowski presented in [17]. The analogous region to the Rindler wedge in

Minkowski for AdS2 × Sd−2 is given by

D(A0) =
{

(σ, θ, ~v ) ∈ R× (0, π)× Rd−2 : θ+ < π/2 , θ− < π/2
}
, (2.7)

plotted in the left diagram of figure 3. More generally, we consider a deformation of this region

in the null direction θ−, parametrized by ζµ(~v ) = ζ−(~v )δµ− as

D(A) =
{

(σ, θ, ~v ) ∈ R× (0, π)× Rd−2 : θ+ < π/2 , θ− < π/2 + ζ−(~v )
}
, (2.8)

plotted on the right diagram of figure 3. For this setup, we compute the vacuum modular

hamiltonian KA ≡ − ln(ρA) in a perturbative expansion in ζµ(~v ). The technical result proven

in the main part of this subsection is

KA = KA0 + πrd−2
h

∫
Sd−2

dΩ(~x⊥) ζ−(~x⊥)

∫ +∞

0

dλTλλ(λ, ~x⊥) +O(ζµ)2 , (2.9)

where Tλλ(λ, ~x⊥) is the stress tensor projected along the tangent vector dxµ/dλ to the geodesic

in (2.6).

From this expression the ANEC follows very easily. The first order correction in the

deformation vector ζµ(~v ) already contains “half” the ANEC operator. We can obtain the

other half by constructing the full modular hamiltonian K̂A ≡ KA −KAc , which gives

K̂A = K̂A0 + πrd−2
h

∫
Sd−2

dΩ(~x⊥) ζ−(~x⊥)E(~x⊥) +O(ζµ)2 , (2.10)

where we have defined the ANEC operator E(~x⊥) in (1.3). It is now that monotonicity of

relative entropy (see [46] for a review) becomes useful. Some simple manipulations show that

9



it implies the following constraint on the full modular hamiltonian [39]

K̂B − K̂C ≥ 0 ⇐⇒ C ⊆ B ,

for any two regions B and C. Fixing B = D(A) and C = D(A0), together with (2.10) gives

the ANEC

K̂A − K̂A0 ≥ 0 ⇐⇒ D(A0) ⊆ D(A) ⇐⇒ ζ−(~v ) ≥ 0 ⇐⇒ E(~x⊥) ≥ 0 . (2.11)

In the remaining parts of this subsection we show that the modular hamiltonian is given by KA

in (2.9) for arbitrary QFTs, completing the proof of the ANEC in AdS2 × Sd−2.

2.1.1 Undeformed region

Let us start by computing the vacuum modular hamiltonian associated to the undeformed

region D(A0) in (2.7). We do this by following the same approach as the calculation for

the Rindler region in Minkowski, pedagogically explained in [46]. Since the computation

requires a path integral formulation we first analytically continue the metric (2.5) to Euclidean

time σE = iσ. This gives a useful representation of the vacuum state in terms of a path integral

over the lower half σE < 0 of the Euclidean space

|0〉 =

∫
σE<0

DΦ e−IE [Φ,σE<0] = (2.12)

where Φ(σE, x) represents all the fields in the theory.9 The state |0〉 is a functional, which

provides a number once we specify the boundary conditions of the path integral at σE = 0−

(green dashed line) according to 〈Φ(σE = 0−, x)|0〉.10 Analogously, the hermitian conjugate

〈0| is given by the integral over the future region σE > 0.

Following standard arguments [47, 48], the reduced density operator corresponding to the

vacuum reduced to A0 is obtained from the path integral by sewing the regions σE < 0 and

9The extra spatial directions parametrizing the Sd−2 are implicit in this pictorial description of the path

integral. In describing the ground state as in (2.12) we are setting the vacuum energy to zero (by shifting the

hamiltonian) and assuming no degeneracy.
10There is no need to specify boundary conditions at θ = 0, π since this is not a real boundary of the manifold,

but a conformal boundary of Euclidean AdS2. Redefining the radial coordinate according to % = − cot(θ) the

regions θ = 0, π are pushed to infinity %→ ±∞.
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σE > 0 but only for θ > π/2. This gives the following path integral representation of ρA0

ρA0 = (2.13)

Specifying the boundary condition at σE = 0+ (red dotted line) gives the ket

ρA0 |Φ(σE = 0+, x)〉, which after fixing the field configuration at σE = 0− (green dotted line)

gives a number 〈Φ(σE = 0−, x′)| ρA0 |Φ(σE = 0+, x)〉. The path integral in (2.13) “propagates”

the boundary conditions from either side of the cut along the Euclidean manifold, from the

top red boundary to the bottom green one.

Since the geometrical setup is very simple and there are no operator insertions in the

path integral, we might hope that the “propagation” between the boundary conditions can

be realized geometrically by an isometry of the space-time. This is certainly the case for the

Rindler region in Minkowski, where such isometry simply corresponds to a rotation. Luckily,

this is also the case in our setup, although the transformation is much less trivial and can be

written as

coth(σE(τ)) =
cosh(σE)

cos(τ) sinh(σE) + sin(τ) cos(θ)
,

tan(θ(τ)) =
sin(θ)

cos(τ) cos(θ)− sin(τ) sinh(σE)
,

(2.14)

where τ ∈ [0, 2π] is the parameter in the transformation. The simplest way of obtaining this

isometry is using the embedding description of Euclidean AdS2. It is also straightforward

to check that the Euclidean metric (2.5) stays invariant. When applying this map to the

surface σE = 0+ in (2.13) we find that for τ = 2π the surface is rotated in a non-trivial way

to σE = 0− (see left diagram in figure 4), doing precisely as we require by the path integral

in (2.13). This means we can write the reduced density operator ρA0 as

ρA0 = U(τ = 2π) , (2.15)

where U(τ) is the unitary operator implementing the Euclidean transformation (2.14). Ana-

lytically continuing back to Lorentzian time σ = −iσE the isometry becomes

cot(σ(s)) =
cos(σ)

cosh(s) sin(σ) + sinh(s) cos(θ)
,

tan(θ(s)) =
sin(θ)

cosh(s) cos(θ) + sinh(s) sin(σ)
,

(2.16)

where we have defined a real Lorentzian parameter s ≡ −iτ . The flow generated by this

transformation for s ∈ R is plotted in the right diagram of figure 4, where we see that its
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Figure 4: On the left diagram we have the Euclidean flow generated by (2.14) applied on the

surface at σE = 0+ for τ ∈ (0, 2π). When we analytically continue to Lorentzian time σE = iσ

we obtain the flow on the right diagram.

action is analogous to that of a boost in Minkowski: it is time-like in the wedge and mapsD(A0)

into itself. This is nothing more than the vacuum modular flow associated to the region.

Using (2.15) we can write a concrete representation for ρA0 as the operator implementing

the transformation (2.16) with parameter s = −i(2π). The generator of the transformation is

easily written in terms of the stress tensor Tµν , so that we find

ρA0 = U(s = −2πi) =
1

Z
exp

[
−i (−2πi)

∫
Σ

dSµTµνξ
ν

]
, (2.17)

where Z is a normalization constant and the integral gives the conserved charge associated

to (2.16). The integral is over a Cauchy surface Σ in D(A0) with future directed surface

element dSµ. The Killing vector ξµ is obtained by expanding (2.16) for small s and has a

simple expression when written in null coordinates θ± = θ ± σ

ξµ = cos(θ+)∂+ − cos(θ−)∂− . (2.18)

Its magnitude vanishes at the boundaries θ± = π/2.

Let us write the integral in (2.17) explicitly. Although we can choose any Cauchy surface Σ

in the region D(A0) (left diagram in figure 3) it is instructive to pick the future null horizon

of D(A0), which can be parametrized in terms of the affine parameter λ in (2.6) with λ ≥ 0.

In this way we find

KA0 = 2πrd−2
h

∫
Sd−2

dΩ(~x⊥)

∫ +∞

0

dλ λTλλ(λ, ~x⊥) + const , (2.19)
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where the constant comes from Z in (2.17). In writing this expression we have chosen the

canonical normalization for the future directed normal null vector, given by nµ = −2 sin2(θ)δµ−.

The modular hamiltonian has a similar structure to that of the Rindler region in Minkowski.

Before moving on to the null deformed region let us mention that it is straightforward to

generalize this construction to a wedge D(A0) of any size, not necessarily π/2. We do this in

appendix C where we explicitly write the modular flow and modular hamiltonian for a wedge

of size θ0 ∈ (0, π).

2.1.2 First order null deformation

We now compute the first order perturbation associated to the null deformation given in (2.8).

We do so by adapting the methods used for Minkowski in [17, 41, 49, 50] to the curved

background AdS2 × Sd−2.

The basic idea is simple: since dealing with the vacuum reduced to the deformed re-

gion D(A) is complicated, we apply a diffeomorphism mapping D(A) → D(A0). From (2.7)

and (2.8) we see this is given by θ̃− = θ− − ζ−(~v ), written covariantly as x̃µ = xµ − ζµ(~v ).

Since ζµ is not a Killing vector, the metric in the coordinates x̃µ is no longer AdS2×Sd−2 but

is given by

g̃αβ =
∂xµ

∂x̃α
∂xν

∂x̃β
gµν = gαβ + Lζ(gαβ) +O(ζµ)2 , (2.20)

where gµν is the AdS2× Sd−2 metric and Lζ(gαβ) = 2∇(αζβ) the Lie derivative along ζµ. This

approach allows us to trade the deformed region D(A) in the space-time gµν by the simpler

region D(A0) in the more complicated metric g̃αβ (2.20).

The diffeomorphism is implemented in the Hilbert space of the Euclidean theory by a

unitary operator U(ζ), that can be explicitly written as11

U(ζ) = exp

[∫
σE=0

dSµTµν(x)ζν(~v )

]
, (2.21)

where dSµ is the induced surface element on σE = 0, with future directed unit normal.

Splitting the integral over A0 and Ac0 we can write it as U(ζ) = UA0 ⊗ UAc0 . The reduced

density operator ρA,g
12 in the deformed region is mapped by UA0 according to

ρA,g = U−1
A0
ρA0,g̃ UA0 = ρA0,g +

[
ρA0,g, δUA0

]
+ δρA0,g +O(ζµ)2 , (2.22)

where in the second equality we have expanded both U(ζ) and ρA0,g̃ to linear order in ζµ.

While the first two terms on the right-hand side are simple and can be written from (2.19)

11There is no i factor in the exponent since it is the Euclidean generator and no minus sign since the

parameter in the diffeomorphism is −ζµ(~v ). See [17, 49] for a path integral representation of U(ζ).
12The subscript g indicates the background metric.
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and (2.21), the third is more complicated. It can still be written explicitly using the path

integral representation of ρA0,g as (see eq. (21) in [50])

δρA0,g = ρA0,g

∫
ME

ddx
√
g (T µν − 〈T µν〉0)∇(µζν) , (2.23)

where the integral is over the Euclidean space-timeME with a branch cut along θ ∈ (0, π/2).

The vacuum expectation value of the stress tensor 〈T µν〉0 comes from the variation of the

normalization constant of ρA0,g̃, and we shall leave implicit in what follows.

An analogous perturbative expansion to (2.22) holds for the modular hamiltonian KA,g.

This can be written explicitly using (2.23) and the smart identity proven in eq. (2.14) of [41],13

which results in

KA,g = U−1
A0
KA0,g̃ UA0 = KA0,g +

[
KA0,g, δUA0

]
+ δKA0,g +O(ζµ)2 , (2.24)

where

δKA0,g =

∫ +∞+iα

−∞+iα

dz

4 sinh2(z/2)
ρ
− iz

2π
A0

[∫
ME

ddx
√
g T µν(x)∇(µζν)

]
ρ
iz
2π
A0

, (2.25)

with α a free parameter in the range α ∈ (0, 2π) that will be conveniently fixed further ahead.

We crucially get complex powers of the reduced density operator ρA0 , which generates the

modular flow of the undeformed region D(A0) (sketched in figure 4) on the Hilbert space.

Using the conservation of the stress tensor ∇µ(
√
g T µν) = 0, the integral over ME can be

reduced to its boundary ∂ME
14

δKA0 =

∫ +∞+iα

−∞+iα

dz

4 sinh2(z/2)

∫
∂ME

dSµζνρ
− iz

2π
A0

Tµν(x)ρ
iz
2π
A0

, (2.26)

where we drop the sub-index g for notation convenience. This is the non-trivial integral

we must solve to compute the first order contribution to the modular hamiltonian. The

boundary ∂ME does not get contributions from the conformal boundary of Euclidean AdS2,

but from the branch cut along σE = 0 and θ ∈ (0, π/2) (red wiggly line in figure 5).15

To describe the region ∂ME let us introduce two useful set of coordinates. First, we

consider θE± = θ ∓ iσE which upon analytic continuation yield the ordinary null coordinates

13The Baker-Campbell-Hausdorff formula used to derive eq. (2.14) in [41] can be found in (4.173) of [51].

One must be careful with the sign convention of the Bernoulli numbers Bn, since they disagree between these

references by a minus sign in B1. In the convention of [41] the Bn are written in terms of the Riemann zeta

function as Bn = −nζ(1− n), which can be written as an integral using (35) of [52].
14In appendix B we show that ∇µ〈Tµν〉0 = 0, as required to obtain this relation.
15What we usually called the AdS boundary is really a conformal boundary, meaning that the distance

between any fixed point and θ = 0, π is always infinity. When considering the region ∂ME we can drop

contributions from θ = 0, π in the same way we do for spatial infinity in Minkowski.
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θ± = θ ± σ. In addition, it is also convenient to take the parameter τ ∈ [0, 2π] describing the

Euclidean modular flow in (2.14) as a coordinate. An associated spatial coordinate which cov-

ers the entire Euclidean section can be chosen by parametrizing the surface (σE = 0, θ < π/2).

This corresponds to the red or green lines in figure 4, which propagate over the whole space-

time as we vary τ ∈ [0, 2π]. A convenient parametrization of the initial surface at σE = 0 is

given by ρ(θ) = ln(cot(θ/2)) ∈ R≥0. From (2.14) we see that the coordinates (τ, ρ) and (σE, θ)

are related according to{
tanh(σE) = sin(τ) tanh(ρ)

cot(θ) = cos(τ) sinh(ρ)
=⇒ tan(θE±) =

cos(τ)∓ i sin(τ) cosh(ρ)

sinh(ρ)
, (2.27)

so that the Euclidean metric is

ds2
E

r2
h

=
dθE+dθ

E
−

sin2(θ)
+ dΩ2

d−2 = dρ2 + sinh2(ρ)dτ 2 + dΩ2
d−2 . (2.28)

Using these coordinates we can describe the boundary ∂ME, as the union of the surfaces C

and R± in the limit of ε, b→ 0

C =
{

(τ, ρ) ∈ [0, 2π]× R≥0 : 2π − ε ≥ τ ≥ ε , ρ = b
}
,

R+ =
{

(τ, ρ) ∈ [0, 2π]× R≥0 : τ = ε , ρ ≥ b
}
,

R− =
{

(τ, ρ) ∈ [0, 2π]× R≥0 : τ = 2π − ε , ρ ≥ b
}
,

(2.29)

sketched in figure 5. We now proceed to compute the contributions of these surfaces to

the integral in δKA0 (2.26). We refer to C and R± as “branch point” and “branch cut”

contributions respectively.

Branch point contribution: Let us start by computing the branch point contribution,

given by the integral over the (green) surface C in figure 5. The induced metric and inward

pointing unit normal vector nµ are

ds2

r2
h

∣∣∣∣
ρ=b

= sinh2(b)dτ 2 + dΩ2
d−2 , nµ = − 1

rh
δµρ = − 1

rh

[
∂θE+
∂ρ

δµ+ +
∂θE−
∂ρ

δµ−

]
,

where the derivatives in the normal vector can be easily computed from (2.27)

∂θE±
∂ρ

=
−1

cos(τ) cosh(ρ)∓ i sin(τ)
. (2.30)

Before using this to write the integral in (2.26), consider the action of the modular flow

on the stress tensor, given by

ρ
− iz

2π
A0

Tµν(θ
E
±)ρ

iz
2π
A0

=

(
∂xµ̄

∂xµ
∂xν̄

∂xν

)
Tµ̄ν̄(θ

E
±(z)) , (2.31)
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Figure 5: Sketch of the boundary ∂ME obtained from the regions R± (in blue) and C (in

green) described in (2.29) as ε, b → 0. The red wiggly line corresponds to the branch cut in

the Euclidean space-time located at σE = 0 and θ ∈ (0, π/2).

where the indices (µ, ν) correspond to θE±, while (µ̄, ν̄) to the modular translated coordinates

θE±(z). The complex parameter z along the integral in (2.26) can be written as z = s + iα

with s ∈ R. In the (τ, ρ) coordinates the modular flow is particularly simple and given by

a rigid translation τ(z) = τ + iz, while ρ is unchanged. Moreover, since α ∈ (0, 2π) is a

free parameter we can fix it to α = τ , so that the translated coordinate is τ(z) = is, purely

imaginary and independent of τ . This crucially means the operator on the right-hand side

of (2.31) is inserted only in Lorentzian time. For this value of α the modular flow in the θE±
coordinates can be found using (2.27)

tan(θE±(z)) =
cosh(s)± sinh(s) cosh(ρ)

sinh(ρ)
, (2.32)

which is equivalent to the Lorentzian modular flow (2.16). The derivatives appearing in the

Jacobian expression in (2.31) can be computed from

∂θE±(z)

∂θE±
=

∂ρ

∂θE±

∂θE±(z)

∂ρ
+

∂τ

∂θE±

∂θE±(z)

∂τ
=

cos(τ) cosh(ρ)∓ i sin(τ)

cosh(s) cosh(ρ)± sinh(s)
, (2.33)

where we used that θE±(z) in (2.32) is independent of τ .

Putting everything together in (2.26) we write the contribution coming from the surface C

as

δKA0

∣∣
C

= 2πrd−2
h

∫
Sd−2

dΩ(~v ) ζ−(~v )

∫ +∞

−∞
ds I(b, s)

[
sinh(b)T−−(θE±(z))

(cosh(b) cosh(s)− sinh(s))2

+
sinh(b)T+−(θE±(z))

cosh2(b) cosh2(s)− sinh2(s)

]
,

(2.34)

where we have defined

I(b, s) =

∫ 2π−ε

ε

dτ

2π

cosh(b) cos(τ) + i sin(τ)

4 sinh2( s+iτ
2

)
= cosh2(b/2)e−sΘ(s)+sinh2(b/2)esΘ(−s)−cosh(b)δ(s) .
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Figure 6: Plot of the two kernels in the integral in (2.35) for several values of b. The left

(right) diagram corresponds to the integral with positive (negative) s.

This integral is solved by taking the limit ε→ 0, changing the integration coordinate to w = eiτ

and computing a residue. Using this in (2.34), the integral in s involving the component T−−

of the stress tensor is∫ +∞

0

ds sinh(b) cosh2(b/2)e−s

(cosh(b) cosh(s)− sinh(s))2
T−−(θE±(z)) +

∫ 0

−∞

ds sinh(b) sinh2(b/2)es

(cosh(b) cosh(s)− sinh(s))2
T−−(θE±(z)) ,

(2.35)

where we have omitted the contribution coming from the Dirac delta since it vanishes in the

limit b→ 0. Although the remaining terms also seem to vanish as b→ 0, we must be careful

since the integration region goes to infinity. Plotting the two kernels in each integral for

several values of b we obtain the plots in figure 6. The left (right) diagram corresponds to the

integral with positive (negative) s.

While the diagram in the right goes to zero as b → 0 for every value of s, the plot in

the left contains a contribution that is not suppressed in the limit but merely translated to

larger values of s. The position of the maximum is given by smax(b) = ln(coth(b/2)/
√

3).

Both integrals in s coming from the contributions to T+− in (2.34) show the same behavior

as the right diagram in figure 6, and therefore vanish in the limit b → 0. Thus, the only

non-vanishing contribution to (2.34) is given by the first integral in (2.35). To extract the

surviving piece as b→ 0, we redefine the integration variable to u(s) = θE−(z) in (2.32)

u(s) = arctan

[
cosh(s)− sinh(s) cosh(b)

sinh(b)

]
, with inverse s(u) = ln

[
1− sin(u)

tanh(b/2) cos(u)

]
.

Under this change of variables the first integral in (2.35) becomes∫ +∞

0

ds sinh(b) cosh2(b/2)e−s

(cosh(b) cosh(s)− sinh(s))2
T−−(θE±(z)) =

1

2

∫ u0(b)

−π/2
du (1 + sin(u))T−−(θE− = u, θE+(u, b)) .

where u0(b) = arcccot(sinh(b)). The kernel is now independent of b, meaning we can safely

take b → 0, which gives u0 → π/2. Moreover, the complicated function θE+(u, b) simplifies
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to θE+ → π/2. Putting everything together in (2.34) we find that the only surviving contribu-

tion as ε, b→ 0 is

δKA0

∣∣
C

= πrd−2
h

∫
Sd−2

dΩ(~v ) ζ−(~v )

∫ π/2

−π/2
du (1 + sin(u))T−−(θE− = u, θE+ = π/2) . (2.36)

The u integral is over the future horizon of the undeformed region D(A0). Changing the

integration variable to the affine parameter λ in (2.6) we find

δKA0

∣∣
C

= πrd−2
h

∫
Sd−2

dΩ(~x⊥) ζ−(~x⊥)

∫ +∞

0

dλTλλ(λ, ~x⊥) , (2.37)

where we recognize half the ANEC operator.

Branch cut contribution: Let us now compute the two additional contributions coming

from the integrals over the surfaces R± in figure 5. The induced metric and unit normal

vectors are easily found from (2.28) and (2.29) as

ds2

r2
h

∣∣∣∣
τ=τ0

= dρ2 + dΩ2
d−2 , nµ± = ∓ δµτ

rh sinh(ρ)
, (2.38)

where nµ± corresponds to the (inward) unit normal vector to R±.

Similarly to (2.31) we can write the stress tensor insertions evolved under the modular flow,

appropriately choosing the parameter α so that the resulting operator is inserted at τ = 0. In

each case we obtain the following expressions

R+ : ρ
− i(s+iα+)

2π
A0

Tµν(τ = ε, ρ)ρ
i(s+iα+)

2π
A0

=

(
∂xµ̄

∂xµ
∂xν̄

∂xν

)
ρ
− is

2π
A0

Tµ̄ν̄(τ = 0, ρ)ρ
is
2π
A0
,

R− : ρ
− i(s+iα−)

2π
A0

Tµν(τ = 2π − ε, ρ)ρ
i(s+iα−)

2π
A0

=

(
∂xµ̄

∂xµ
∂xν̄

∂xν

)
ρ
− is

2π
A0

Tµ̄ν̄(τ = 0, ρ)ρ
is
2π
A0
,

(2.39)

where α+ = ε and α− = 2π − ε. We have only applied the modular flow explicitly in the

Euclidean direction, while left the flow in s still written in terms of a complex power of ρA0 .

The Jacobian matrices on the right-hand side of (2.39) are computed from (2.33) with

s = 0 and τ = α±. Their behavior for small ε is always given by ∂θE±(z)/∂θE± = 1 + O(ε),

where higher orders in ε drop out since they do not contribute in the limit ε→ 0. This means

the Jacobian matrices appearing in (2.39) are effectively equal to the identity and can be

ignored.

Putting everything together, the contributions from R± to δKA0 in (2.26) are given by

δKA0

∣∣
R+

= rd−1
h

∫
Sd−2

dΩ ζν(~v )

∫ +∞

b

dρ nµ−

∫ +∞

−∞

−ds
4 sinh2( s+iε

2
)
ρ
− is

2π
A0

Tµν(τ = 0, ρ)ρ
is
2π
A0

,

δKA0

∣∣
R−

= rd−1
h

∫
Sd−2

dΩ ζν(~v )

∫ +∞

b

dρ nµ−

∫ +∞

−∞

ds

4 sinh2( s−iε
2

)
ρ
− is

2π
A0

Tµν(τ = 0, ρ)ρ
is
2π
A0

,

(2.40)
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where the overall sign difference comes from nµ+ = −nµ−. While there is no easy way of solving

each integral separately, the contribution of both regions R+ ∪ R− results in a path in the

complex s plane which simply picks the residue of the double pole at s = 0. This can be easily

computed and written as

δKA0

∣∣
R+∪R−

= rd−1
h

∫
Sd−2

dΩ ζν(~v )

∫ +∞

0

dρ nµ−
[
Tµν(τ = 0, ρ), KA0

]
.

where we have safely taken the ε, b→ 0 limits. The unit normal vector nµ now points vertically

upward in the Euclidean time direction ∂σE . The resulting integral only involves the stress

tensor over the undeformed region A0 and we recognize it as the exponent of the unitary

operator UA0(ζ) in (2.21), i.e.

δKA0

∣∣
R+∪R−

=

[∫
A0

dSµTµν(x)ζν(~v ), KA0

]
=
[
δUA0 , KA0

]
. (2.41)

All first order contributions: We can now put everything together in (2.24) to obtain an

explicit expression for the modular hamiltonian KA. Using (2.37) and (2.41) we find

KA = KA0 + πrd−2
h

∫
Sd−2

dΩ(~x⊥) ζ−(~x⊥)

∫ +∞

0

dλTλλ(λ, ~x⊥) +O(ζµ)2 ,

which is precisely the result given in (2.9) used to prove the ANEC. Notice that the terms

coming from the branch cut R+ ∪ R− in (2.41) crucially canceled the contributions from the

variation of the unitary UA0 in (2.24). This concludes the proof of the achronal ANEC for

arbitrary QFTs in AdS2 × Sd−2.

2.2 Proof for conformal theories

In this subsection we give an alternative proof of the achronal ANEC in AdS2 × Sd−2 that

is valid for CFTs. Using a conformal transformation from Minkowski to the near horizon

geometry we show that the full modular hamiltonian K̂A is given by (2.9) to all orders in ζµ,

which from (2.11) implies the ANEC. This subsection heavily relies on the calculations of [26].

Let us start by describing the setup in Minkowski, by taking Cartesian coordinates

Xµ = (T,X, ~Y ) and parametrizing the null plane X − T = 0 as

Xµ(λ, ~x⊥) = (λ, λ, ~x⊥) , (λ, ~x⊥) ∈ R× Rd−2 , (2.42)

where λ is an affine parameter. For the Rindler region R0 described as X± ≡ X ± T ≥ 0,

we consider a null deformation given by the vector ζµ = R(~x⊥)δµ+. The vacuum full modular

19



hamiltonian associated to the null deformed region R can be computed to every order in ζµ

and is given by [40, 41]

K̂R = 2π

∫
Rd−2

d~x⊥

∫ +∞

−∞
dλ (λ−R(~x⊥))T̄λλ(λ, ~x⊥) . (2.43)

The idea is to apply a conformal transformation mapping the null plane (2.42) to the future

horizon of D(A) in (2.8) and obtain the operator K̂A. See section 3 of [26] for other examples

and a more detailed analysis involving conformal transformations of this modular hamiltonian.

A conformal transformation is applied by first considering a change of coordinatesXµ → xµ

which puts the Minkowski metric in the form ds2
Mink = w2(xµ)ds2, followed by a Weyl rescaling

removing the factor w2(xµ). The end result is a transformation from Minkowski to some other

space-time ds2. When mapping the geodesics in the null plane (2.42) there is no need to change

the parametrization coordinates (λ, ~x⊥). It is however important to note that λ might not

be affine in the new space-time (see subsection 2.1 of [26]). The conformal transformation is

implemented on the Hilbert space H̄ of the Minkowski CFT by a unitary operator U : H̄ → H.

The stress tensor in T̄λλ in (2.43) transforms according to (see subsection 2.2 of [26])

UT̄λλU
† =

Tλλ − 〈Tλλ〉0
w(λ)d−2

, (2.44)

where w(λ) is the conformal factor evaluated along on the null plane (2.42). The term

〈Tλλ〉0 = 〈0|Tλλ |0〉, where |0〉 the vacuum state of the mapped CFT, arises from the anomalous

transformation of the stress tensor for even d.

Let us now specialize to the conformal transformation relating Minkowski to AdS2×Sd−2.

We split the mapping in two steps (A) and (B), given by

R× Rd−1 (A)−−→ R× Sd−1 (B)−−→ AdS2 × Sd−2 , (2.45)

where R× Sd−1 is the Lorentzian cylinder. This way of applying the transformation has the

advantage that the first step (A) was already considered in subsection 3.1 of [26].16 Writing

the metric in the cylinder as

ds2
cyl

r2
h

= −dσ2 + dθ2 + sin2(θ)dΩ2
d−2(~v ) , (2.46)

16The convenience of the mapping described in subsection 3.1 of [26] is that it first applies a special conformal

transformation mapping the Minkowski null plane to the Minkowski null cone. The necessity of considering the

Lorentzian cylinder comes from the fact that special conformal transformations are not globally well defined

in Minkowski, see [26] for details.
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with dΩd−2 in (2.5), it was shown that the null plane in (2.42) is mapped to the following

surface in the cylinder17

xµ(λ, ~x⊥) = (θ+, θ−, ~v ) = (π/2, 2 arccot(λ)− π/2, ~x⊥) , (2.47)

where the conformal factor wA(x) defined from ds2
Mink = w2

A(x)ds2
cyl and evaluated on the null

surface is

w2
A(λ) =

(
1 + |~x⊥|2

2rh

)2

(1 + λ2) .

Once we have the surface in the cylinder it is straightforward to apply the mapping (B)

in (2.45). As noted in [42], writing the metric in the cylinder (2.46) as

ds2
cyl

r2
h

= sin2(θ)

[
−dσ2 + dθ2

sin2(θ)
+ dΩ2

d−2(~v )

]
,

we can perform a simple Weyl rescaling w2
B(xµ) = sin2(θ) to obtain AdS2×Sd−2. The overall

conformal factor resulting from both transformations in (2.45) evaluated on the null plane is

w2(λ) = w2
A(λ)w2

B(λ) =

(
1 + |~x⊥|2

2rh

)2

(1 + λ2) sin2(θ(λ)) =

(
1 + |~x⊥|2

2rh

)2

, (2.48)

that is independent of λ! This is crucial, since it implies that the affine parameter in the

null plane λ is also affine for the surface (2.47) in AdS2 × Sd−2. This becomes evident after

comparing (2.47) with (2.6).

Using this on the transformation of the stress tensor (2.44), we can map the Rindler null

deformed modular hamiltonian (2.43) to K̂A in AdS2 × Sd−2 as

K̂A = UK̂RU
† = 2πrd−2

h

∫
Rd−2

d~x⊥

(
2

1 + |~x⊥|2

)d−2 ∫ +∞

−∞
dλ (λ−R(~x⊥))Tλλ(λ, ~x⊥) . (2.49)

We have used that since the geodesics (2.47) only have a non-trivial motion along the directions

of AdS2, the vacuum contribution 〈Tλλ〉0 vanishes (see appendix B for details). Moreover,

notice that the transverse integral over ~x⊥ rearranged itself in just the appropriate way to

give the integration measure over the unit sphere Sd−2 in stereographic coordinates (2.5).

17These expressions are given in (3.17) and (3.15) of [26] after making some redefinitions to match

with the conventions used in this paper. The time coordinate σ in each case are related according to

σhere = σthere/rh + π/2. The function p(~x⊥), defining the stereographic coordinates on Sd−2 in (3.8) of [26],

is considered with R = 1/2, so that 2p(~x⊥) = |~x⊥|2 + 1, matching with our definition in (2.5). Finally, here

we are using a different affine parameter λ, that is related by an affine transformation according to the one

used in [26] λhere = (λthere + p(~x⊥))/2p(~x⊥).
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To compare with the previous result obtained for K̂A in (2.10), we must relate the function

R(~x⊥) and the null vector ζµ = ζ−(~v )δµ−, characterizing D(A) in (2.8). Expanding (2.47) for

small λ = R(~x⊥) we find

θ−(λ, ~x⊥)
∣∣
λ=R(~x⊥)

= π/2− 2R(~x⊥) +O(R(~x⊥))2 .

Comparing with (2.8) we identify ζ−(~x⊥) = −2R(~x⊥). Putting everything together we can

write (2.49), the null deformed full modular hamiltonian in AdS2 × Sd−2, as

K̂A = K̂A0 + πrd−2
h

∫
Sd−2

dΩ(~x⊥)ζ−(~x⊥)E(~x⊥) .

with K̂A0 given by the first term in (2.49). This shows that for conformal theories, the result

in (2.10) to first order in perturbation theory is exact to every order. Moreover, monotonicity

of relative entropy (2.11) gives an independent proof of the achronal ANEC for CFTs in

AdS2 × Sd−2.

2.3 Proof for free scalar

In this subsection we give a third (and final) proof of the achronal ANEC in AdS2 × Sd−2

for the simple case of a free scalar field. This provides a sanity check for the previous more

general and abstract proofs. We follow the simple approach used in [53] for Minkowski, which

involves showing that E(~x⊥) = WW † ≥ 0 for some operator W .18

An arbitrary free scalar in a curved manifold is characterized by the action

I[φ] = −1

2

∫
ddx
√
−g
[
gµν (∂µφ) (∂µφ) +

(
m2

0 + ξR
)
φ2
]
, (2.50)

where m0 is the bare mass and ξ the non-minimal coupling to the space-time geometry.

Varying the action with respect to the metric it is straightforward to compute the stress

tensor and find

Tµν = (∂µφ) (∂νφ)+ξ (Rµν −∇µ∇ν)φ
2 +gµν (2ξ − 1/2)

[
(∂αφ) (∂αφ)+(m2

0 +ξR)φ2
]
, (2.51)

where we have used the equations of motion to write it in this way.

The tangent vector kµ to the complete achronal null geodesics is obtained by differentiat-

ing (2.6) with respect to λ. Projecting the stress tensor in the kµ direction, we can drop the

third term. Since kµ only has non-trivial components in the AdS2 sector, which is maximally

symmetric, we have Rλλ ≡ 0. The covariant derivatives in the second term are replaced by

18I am grateful to Joan La Madrid for discussions and collaboration regarding this subsection.
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ordinary λ derivatives after using that kµ satisfies the geodesic equation kν∇νk
µ = 0. The

null component of the stress tensor is written as

Tλλ(λ, ~x⊥) = φ′(λ)2 − ξ∂2
λφ(λ)2 .

Integrating over λ ∈ R to get the ANEC operator, the second term gives a boundary contri-

bution which drops and we find

E(~x⊥) ≡
∫ +∞

−∞
dλTλλ(λ, ~x⊥) =

∫ +∞

−∞
dλφ′(λ)2 . (2.52)

All classical scalar fields in AdS2 × Sd−2 trivially satisfy the achronal ANEC.

This property is not obviously true after we quantize the theory, since the the operator

φ′(λ)2 only makes sense after regularization, which spoils its positivity. Given that the scalar

is free and hermitian it can be written as φ(xµ) = φ+(xµ) + φ−(xµ) where φ+(xµ) = φ−(xµ)†

is expanded in terms of creation and annihilation operators as

φ+(xµ) =
∑
i

Hi(x
µ)ai ,

[
ai, a

†
i′

]
= δii′ . (2.53)

The label i goes over the linearly independent and orthogonal functions Hi(x
µ) solving the

equations of motion. Using this expansion we can write the ANEC operator in (2.52) as

E(~x⊥) =

∫ +∞

−∞
dλ 〈Tλλ〉0 +

∫ +∞

−∞
dλ
[
(∂λφ

+)†(∂λφ
+) + (∂λφ

+)(∂λφ
+) + h.c.

]
, (2.54)

where h.c. is the hermitian conjugate and we have identified the vacuum contribution as

〈Tλλ〉0 =
[
(∂λφ

+), (∂λφ
+)†
]
.

This is divergent and requires a regularization procedure. After regularization, the vacuum

contribution vanishes 〈Tλλ〉0 = 0 due to the general arguments given in appendix B. While

the first term in the second integral (2.54) is an explicitly positive operator, the other is not.

This means the ANEC holds if and only if the integral over λ of this additional term vanishes,

which gives the following condition

E(~x⊥) ≥ 0 ⇐⇒ Cii′ =

∫ +∞

−∞
dλH ′i(λ)H ′i′(λ) = 0 , ∀ (i, i′) . (2.55)

The proof of the ANEC is reduced to computing some integrals. Let us do this by first

writing H(xµ) obtained from solving the equation of motion, given by(
∇2

AdS2
+∇2

Sd−2

)
H(xµ) = (m2

0 + ξR)H(xµ) . (2.56)
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Writing an ansatz with H(xµ) = f(σ, θ)Y`(~v ) with Y`(~v ), the eigenfunctions of the Sd−2

Laplacian, we find

∇2
AdS2

f(σ, θ) = µ2f(σ, θ) , where µ2 =
`(`+ d− 3)

r2
h

+ (m2
0 + ξR) , (2.57)

with ` ∈ N0. The function f(σ, θ) satisfies the differential equation of a scalar field in AdS2

with an effective mass µ2. The solution can be written as

fn,∆(σ, θ) = sin∆(θ)F21

(
−n,∆ + n, 1/2, cos2(θ)

)
e−i(∆+2n)σ ,

where n ∈ N0 and

∆ =
1 +

√
1 + (2rhµ)2

2
≥ 1 . (2.58)

To prove the achronal ANEC using (2.55) we can forget about the dependence of H(xµ)

on the Sd−2 coordinates, since the complete achronal null geodesic in (2.47) has fixed values

of ~x⊥. Moreover, it is convenient to translate the geodesics in (2.47) by redefining σ → σ−π/2.

Changing the integration variable in (2.55) to β(λ) = arccot(λ) we get

C(n,∆)(n′,∆′) =

∫ π

0

dβ sin2(β)f ′n,∆(−β, β)f ′n′,∆′(−β, β) , (2.59)

where the derivatives are now with respect to β. The ANEC is proven by showing

C(n,∆)(n′,∆′) = 0.

Let us start by considering the simple case in which n = n′ = 0, so that the integral can

be easily written and solved analytically as

C(0,∆)(0,∆′) = ∆∆′
∫ π

0

dβ sin(β)∆+∆′e−iβ(2+∆+∆′) = 0 . (2.60)

For the first few values of (n, n′) the integral can still be solved analytically and shown to

vanish, as we have explicitly checked for all combinations involving n, n′ < 3. For higher

values the analytic computation becomes very complicated and its convenient to integrate

numerically. We have checked that the integral still vanishes with a numerical precision of up

to eleven digits, for ∆ = ∆′ and all combinations (n, n′) up to n, n′ ≤ 10 and for ∆ = 1/2 to

∆ = 20 in half-integer steps. An analytic result which holds for arbitrary values of (n, n′) can

be obtained for the particular case of ∆ = ∆′ = 1, where the integral simplifies to

C(n,1)(n′,1) = (−1)n+n′(1 + 2n)(1 + 2n′)

∫ π

0

dβ sin2(β)ei4β(1+n+n′) = 0 .

We have also solved the integral numerically for random values of all the parameters and found

always a vanishing answer. Overall, we have found enough analytic and numerical evidence
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to safely conclude the integral in (2.59) is identically zero, meaning the achronal ANEC holds

for any free scalar in AdS2 × Sd−2.

While there might be a general analytic result showing the integral vanishes in full gener-

ality, we have not been able to find it. Using the equations of motion to simplify and solve the

integral has not been useful. An experimental observation is that after solving the indefinite

integral the result seems to always be given by sin(β)1+∆+∆′gnn′(β) where gnn′(β) is a regular

function at β = 0, π. The integral vanishes after evaluating at β = 0, π.

3 Achronal ANEC for maximally symmetric space-

times

In this section we show how the previous calculations can be generalized to prove the ANEC for

arbitrary QFTs in de Sitter and anti-de Sitter. More precisely we find that the computation of

the null deformed modular hamiltonian in subsection 2.1 can be adapted to these space-times.

This generalizes the recent proof of the ANEC for CFTs in (A)dS given in [26].

3.1 De Sitter

Let us start by considering an arbitrary QFT defined on de Sitter, which is described in global

coordinates as
ds2

L2
=
−dσ2 + dθ2 + sin2(θ)dΩ2

d−2

cos2(σ)
, (3.1)

where L is the de Sitter length scale and θ ∈ [0, π]. The time coordinate is constrained to

|σ| < π/2, with the spatial dS boundaries located at σ = ±π/2.

Following the calculations in subsection 2.1, we consider the vacuum state |0〉 and reduce

it to the half-space A0 at σ = 0. Since the topology of dS is that of R× Sd−1, the half-space

in this case corresponds to the spherical cap given by θ ∈ [0, π/2]. Its causal domain D(A0)

is easily described in terms of the null coordinates θ± = θ ± σ as

D(A0) =
{

(σ, θ, ~v ) ∈ (−π/2, π/2)× [0, π]× Rd−2 : θ+ < π/2 , θ− < π/2
}
.

This region is equivalent to the static patch of de Sitter. Its null deformation in the direction θ−

can be parametrized by the vector ζµ = ζ−(~v )δµ− as

D(A) =
{

(σ, θ, ~v ) ∈ (−π/2, π/2)× [0, π]× Rd−2 : θ+ < π/2 , θ− < π/2 + ζ−(~v )
}
.

(3.2)

The diagrams of these regions are the same as the ones given in figure 3 for AdS2×Sd−2. The

difference is that the time coordinate is restricted to |σ| < π/2 and there are no boundaries at
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θ = 0, π, since in (3.1) these correspond to the North and South pole of the spatial Sd−1.19 Let

us now compute the first order contribution to the modular hamiltonian associated to D(A).

Undeformed region: We start by considering the vacuum modular hamiltonian associated

to the undeformed region D(A0). Analytically continuing to Euclidean time σE = iσ the de

Sitter metric (3.1) becomes

ds2
E

L2
=
dσ2

E + dθ2 + sin2(θ)dΩ2
d−2

cosh2(σE)
. (3.3)

Since the function in the denominator does not vanish, the Euclidean time is free to take any

real value σE ∈ R.

As in (2.12), the path integral over the region σE < 0 gives a representation of the vacuum

state |0〉, so that the reduced density operator ρA0 is obtained from the path integral with the

boundary conditions given in (2.13). We should now look for an isometry of the Euclidean

manifold (3.3) that smoothly maps between the surfaces θ ∈ [0, π/2) at σE = 0±. Quite

surprisingly, the appropriate isometry is exactly the same as in AdS2×Sd−2 (given by (2.14))

whose action in the (σE, θ) plane is shown in figure 4. It is straightforward to check that (3.3) is

invariant under this transformation. The fact that the modular flow of both these space-times

is the same is not trivial to us.

The modular hamiltonian is obtained from the generator of the Lorentzian isometry (2.16)

according to (2.17)

KA0 = 2π

∫
Σ

dSµTµνξ
ν + const , ξµ = cos(θ+)∂+ − cos(θ−)∂− , (3.4)

where Σ is a Cauchy surface on D(A0). We can write this explicitly by taking Σ as the future

null horizon of D(A0), which can be parametrized as

xµ(λ, ~x⊥) = (θ+, θ−, ~v ) = (π/2, 2 arccot(λ)− π/2, ~x⊥) , (λ, ~x⊥) ∈ R× Rd−2 , (3.5)

where for fixed ~x⊥ the parameter λ is affine in the dS metric (3.1). This description coincides

with the null surface in (2.6) for AdS2 × Sd−2, where λ is also affine. While the coordinate

description of the null curves coincides, the geodesics travel along very different space-times.

From (3.4), the modular hamiltonian for D(A0) is written along this null surface as

KA0 = 2πLd−2

∫
Sd−2

dΩ(~x⊥)

∫ +∞

0

dλ λTλλ(λ, ~x⊥) + const ,

which has the same structure as for AdS2 × Sd−2 in (2.19).

19Since the time coordinate in dS is constrained to |σ| < π/2 the region D(A) for ζ−(~v ) intersects with the

spatial boundary at σ = −π/2, see figure 3. The full modular hamiltonian we use to prove the ANEC is not

affected by this.
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First order deformation: Given that the modular flow and affine parameter λ on de Sitter

and AdS2 × Sd−2 coincide for the undeformed region, the computation of the first order null

deformation is almost exactly equivalent the one in subsection 2.1. The series expansion

in ζ−(~v ) is given by (2.24) with δKA0,g in (2.26), which we rewrite here for convenience

δKA0 =

∫ +∞+iα

−∞+iα

dz

4 sinh2(z/2)

∫
∂ME

dSµζνρ
− iz

2π
A0

Tµν(x)ρ
iz
2π
A0

. (3.6)

Since the undeformed modular flow is the same, so is its action on the stress tensor Tµν(x).

The difference comes from the integral ∂ME, which can be described in terms of the surfaces

C ∪ R± (2.29) plotted in figure 5. Writing the Euclidean dS metric in the coordinates (τ, ρ)

in (2.27) we find
ds2

E

L2
=

sinh2(ρ)dτ 2 + dρ2 + dΩ2
d−2

cosh2(ρ)
.

This differs only by the overall factor cosh2(ρ) with respect to the metric in AdS2 × Sd−2

(2.28), which contributes to dSµ in (3.6).

The integral over C in (2.29) is given by ρ = b with b → 0. Since cosh(b) → 1, the

calculation leading to (2.37) is identical and gives the same result

δKA0

∣∣
C

= πLd−2

∫
Sd−2

dΩ(~x⊥)ζ−(~x⊥)

∫ +∞

0

dλTλλ(λ, ~x⊥) .

For the integral over the surface R± (given essentially by τ = 0±) the factor cosh2(ρ) con-

tributes in a non-trivial way to give the induced surface element of dS at σE = 0, which

is different from that on AdS2 × Sd−2. However, this is exactly what we require so that

δKA0

∣∣
R+∪R−

in (2.41) gives δUA0 , but with the unitary UA0 defined as in (2.21) on the surface

σE = 0 in de Sitter. This contribution is essential to cancel the commutator in (2.24), so that

the end result for the null deformed modular hamiltonian in dS gives

KA = KA0 + πLd−2

∫
Sd−2

dΩ(~x⊥) ζ−(~x⊥)

∫ +∞

0

dλTλλ(λ, ~x⊥) +O(ζµ)2 . (3.7)

Using relative entropy, the same calculation leading to (2.11) gives the ANEC for a QFT

in de Sitter. This modular hamiltonian agrees with the result of [26], which computed the

operator for arbitrary CFTs to every order in the deformation parameter ζµ, using a conformal

transformation as in subsection 2.2.

3.2 Anti-de Sitter

An analogous construction can be considered for a QFT in anti-de Sitter. There is a more

subtle aspect when it comes to finding an appropriate set of coordinates to describe the

27



half-space region of AdS, given by half a cross section of the solid cylinder. The easiest

way of parametrizing this region, is by considering some sort of spatial Cartesian coordinate

~x ∈ Rd−1, such that the boundary is located at |~x| = 1. These coordinates can be defined

from the embedding description of AdS, given by the surface

− (X0)2 − (X1)2 +
d∑
i=2

(X i)2 = −L2 , (3.8)

in the space R2 × Rd−1

ds2 = −(dX0)2 − (dX1)2 +
d∑
i=2

(dX i)2 .

The constraint (3.8) is automatically satisfied if we define the coordinates xµ = (σ, ~x ) as

X0 = L

(
1 + |~x |2

1− |~x |2

)
sin(σ) , X1 = L

(
1 + |~x |2

1− |~x |2

)
cos(σ) , X i = L

2xi

1− |~x |2
. (3.9)

where σ ∈ R and ~x ∈ Rd−1 with |~x| < 1. The induced metric on R2 × Rd−1 gives the metric

in global AdS
ds2

L2
= −

(
1 + |~x|2

1− |~x|2

)2

dσ2 +
4|d~x|2

(1− |~x|2)2
. (3.10)

The boundary is located at |~x| = 1, with the interior of the solid cylinder described by the

Cartesian coordinates ~x. This unusual way of writing the AdS metric allows for a simple

description of the half space. Picking an arbitrary direction in ~x we write ~x = (x, ~y ) with

~y ∈ Rd−2, so that the half-space A0 at σ = 0 is given by

A0 =
{

(σ, x, ~y ) ∈ R× R× Rd−2 : x2 + |~y |2 < 1 , σ = 0 , x > 0
}
.

A constant time surface for AdS3 is plotted in figure 7, where A0 corresponds to the x > 0

region.

Although the half-space A0 has a very simple description in these coordinates, they are

not well suited to describe its causal domain D(A0), given that null geodesics in (3.10) are

not given by simple straight lines. We can fix this by applying another change of coordinates

(x, |~y |)→ (θ, ψ), defined as20

x =
cos(θ)

1 + sin(θ) sin(ψ)
,

|~y | = sin(θ) cos(ψ)

1 + sin(θ) sin(ψ)
,

with inverse

cos(θ) =
2x

1 + (x2 + |~y |2)
,

cot(ψ) =
2|~y |

1− (x2 + |~y |2)
,

(3.11)

20These relations are inspired by holographic calculations of entanglement entropy in appendix B of [26].
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AdS boundary

Figure 7: Constant time section of AdS3 given by the region x2 + y2 < 1. We have plotted

the constant θ and ψ trajectories obtained from (3.11). The half space A0 defined from x > 0

corresponds to θ < π/2.

where θ ∈ (0, π) and ψ ∈ (0, π/2]. Taking stereographic coordinates ~v ∈ Rd−3 to describe the

angular direction of ~y, the AdS metric (3.10) becomes

ds2

L2
=

1

sin2(ψ)

[
−dσ2 + dθ2

sin2(θ)
+ dψ2 + cos2(ψ)dΩ2

d−3(~v )

]
. (3.12)

Although hardly recognizable, this metric describes global AdS. There are two ways we can

approach the boundary, obtained by taking ψ → 0 or θ → 0, π, which from (3.11) corresponds

to x2 + |~y |2 → 1 and x → ±1 respectively. The x direction is mainly controlled by θ, with

the half-space x > 0 given by θ < π/2. In figure 7 we plot the constant (θ, ψ) trajectories on

a fixed time slice of AdS3.

The crucial aspect of (3.12) is that null curves in the (σ, θ) direction are straight lines.

This is precisely what is needed to describe the causal domain of the half-space A0, that is

given by

D(A0) =
{

(σ, θ, ψ,~v ) ∈ R× (0, π)× (0, π/2]× Rd−3 : θ+ < π/2 , θ− < π/2
}
,

where θ± = θ ± σ. The transverse space is parametrized by (ψ,~v ), where ~v ∈ Rd−3 has one

dimension less than in the previous cases in AdS2 × Sd−2 and de Sitter. It is now easy to

consider the null deformed half-space, parametrized by ζµ = ζ−(ψ,~v )δµ− as

D(A) =
{

(σ, θ, ψ,~v ) ∈ R× (0, π)× (0, π/2]× Rd−3 : θ+ < π/2 , θ− < π/2 + ζ−(ψ,~v )
}
.

(3.13)

Plotting these regions in the (σ, θ) plane we obtain exactly the same diagrams as in figure 3,

with the AdS boundary located at θ = 0, π.
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Since the sector (σ, θ) of the AdS metric in (3.12) is exactly the same as for AdS2, the

calculation of the vacuum modular hamiltonian associated to D(A) is extremely similar to

that in AdS2 × Sd−2. Let us sketch the calculation, highlighting the most salient differences

with respect to the construction in subsection 2.1.

Undeformed region: The vacuum modular hamiltonian is obtained in exactly the same

way as for AdS2×Sd−2 in subsection 2.1: we analytically continue to Euclidean time σE = iσ,

describe ρA0 from the path integral in (2.13) and look for an isometry of the Euclidean manifold

which generates the appropriate flow. Since the (σ, θ) dependence of the AdS metric (3.12) is

the same as that of AdS2×Sd−2 in (2.5), the appropriate isometry is the same as the one given

by (2.14), which generates the flow shown in figure 4. The modular hamiltonian is related to

the generator of this isometry (2.17) according to

KA0 = 2π

∫
Σ

dSµTµνξ
ν + const. , ξµ = cos(θ+)∂+ − cos(θ−)∂− . (3.14)

We take Σ as the future null horizon of D(A0), which we can parametrize in terms of an affine

parameter λ ∈ R as

xµ(λ, ψ, ~x⊥) = (θ+, θ−, ψ,~v ) = (π/2, 2 arccot(λ)− π/2, ψ, ~x⊥) , (3.15)

where the transverse space is parametrized by (ψ, ~x⊥) ∈ (0, π/2]× Rd−3. Notice that ~x⊥ has

one less component in comparison with the previous cases. The modular hamiltonian (3.14)

along this surface can be written and we find

KA0 = 2πLd−2

∫
Sd−3

dΩ(~x⊥)

∫ π/2

0

dψ
cos(ψ)d−3

sin(ψ)d−4

∫ +∞

0

dλ λTλλ(λ, ψ, ~x⊥) + const .

While the integral over the transverse space (ψ, ~x⊥) is different, the λ sector is equivalent to

the previous cases.

First order deformation: The first order contribution in the deformation parame-

ter ζ−(ψ,~v ) in (3.13) follows exactly the same as in subsection 2.1 for AdS2 × Sd−2. The

integral we must solve is again given by (3.6). The boundary of the Euclidean AdS mani-

fold ∂ME written in the coordinates (τ, ρ) in (2.27) is given by

ds2
E

L2
=
dρ2 + sinh2(ρ)dτ 2

sin2(ψ)
+
dψ2 + cos2(ψ)dΩ2

d−3(~v )

sin2(ψ)
.

Since the (τ, ρ) dependence of the metric is the same as for AdS2 × Sd−2 we can easily solve

the integral in (3.6) and find the following result for the null deformed modular hamiltonian
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on AdS

KA = KA0 +πLd−1

∫
Sd−3

dΩ(~x⊥)

∫ π/2

0

dψ
cos(ψ)d−3

sin(ψ)d−4
ζ−(ψ, ~x⊥)

∫ +∞

0

dλTλλ(λ, ψ, ~x⊥) +O(ζµ)2 .

(3.16)

The crucial aspect of this relation is that we recover half the ANEC operator in λ. Writing

the full modular hamiltonian K̂A = KA−KAc and using relative entropy, the same calculation

leading to (2.11) gives the ANEC for a QFT in AdS for the null geodesics in (3.15).

4 Constraint for incomplete achronal geodesics

As mentioned in the introduction and discussed in section 8 of [4], complete achronal null

geodesics are very rare. As a result, the ANEC does not constraint typical null geodesics that

arise in generic space-times. This raises the question of whether we can relax some of the

conditions of the achronal ANEC and still obtain a useful constraint.

For CFTs in the Lorentzian cylinder R×Sd−1 this question was addressed in [26]. Writing

the metric as

ds2 = −dσ2 + dθ2 + sin2(θ)dΩ2
d−2(~v ) ,

consider the following family of null geodesics

xµ(λ, ~x⊥) = (θ+, θ−, ~v ) = (π/2, π/2− 2λ, ~x⊥) , (λ, ~x⊥) ∈ [−π/2, π/2]×Rd−2 . (4.1)

These curves go between antipodal points of the spatial sphere Sd−1, from the South to

the North pole at θ = π, 0 respectively. They are achronal but not complete, since the

affine parameter λ has a finite range |λ| ≤ π/2. We say these geodesics are maximally

extended, meaning that further extending the curves results in chronal trajectories. In [26]

these geodesics where shown to satisfy the following condition∫ π/2

−π/2
dλ cosd(λ)

(
Tλλ − 〈Tλλ〉0

)
≥ 0 , (4.2)

where 〈Tλλ〉0 gives the vacuum expectation value. This subtraction ensures the constraint is

not violated by a trivial Casimir contribution to the energy. The positivity condition involves

a non-local operator with the kernel cosd(λ), that is positive, smooth and vanishes at the

boundary of the integral. It is unclear whether this result can be extended to arbitrary QFTs

in the Lorentzian cylinder R× Sd−1.21

21One of the proofs of (4.2) given in [26] involves the same method using modular Hamiltonians and relative

entropy used in subsection 2.2 to prove the achronal ANEC for CFTs. However, a crucial difference in this

case is that the modular hamiltonian of the undeformed region in the cylinder (a spherical cap of size π/2)

is related to a conformal Killing vector ξµ, rather than an ordinary Killing vector ξµ as in (2.18). For this

reason, it does not seem likely that (4.2) can be extended beyond CFTs using this approach.
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In this section we show the bound generalizes to CFTs in more general backgrounds, by

deriving (4.2) for AdS2 × Sd−2. The motion of the null geodesics in this space-time is more

interesting than in the cylinder, since more complicated trajectories than (4.1) are allowed

(see (4.7) and figure 8 below).

4.1 Extremal horizons

To derive the bound (4.2) for CFTs in AdS2 × Sd−2 we follow a simple procedure. Starting

from the ANEC in Minkowski we apply a conformal transformation to AdS2 × Sd−2 which

gives (4.2). The appropriate map is a variation of the one considered in subsection 2.2 to

compute the null deformed modular hamiltonian.

We start by taking Cartesian coordinates Xµ = (T,X, ~Y ) in Minkowski and parametrizing

the null geodesics as

Xµ(λ, ~x⊥, t0) = (λ+ t0, λ, ~x⊥) , λ ∈ R , (4.3)

where λ is an affine parameter for fixed (~x⊥, t0) ∈ Rd−2×R. We have introduced the parame-

ter t0 that will have a non-trivial effect on the geodesics after the mapping. The ANEC holds

along any of these null trajectories in Minkowski [17–19]∫ +∞

−∞
dλ T̄λλ ≥ 0 , (4.4)

where we add a bar for operators defined in Minkowski. The conformal transformation is

implemented in the Hilbert space by the unitary operator U : H̄ → H.

The first step is to change the spatial coordinates in Minkowski, from Cartesian (X, ~Y ) to

spherical (r, ~v ), defined as

r = (X2 + |~Y |2)1/2 , ~v =
~Y

X + (X2 + |~Y |2)1/2
,

so that the Minkowski metric becomes ds2
Mink = −dT 2+dr2+r2dΩ2

d−2(~v ). By further redefining

r ± T = tan(θ±/2) with θ± = θ ± σ we get

ds2
Mink = w2(σ, θ)

[
−dσ2 + dθ2

sin2(θ)
+ dΩ2

d−2(~v )

]
, (4.5)

where we identified the conformal factor as

w2(σ, θ) =

(
sin(θ)

2 cos(θ+/2) cos(θ−/2)

)2

.
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The conformal transformation to AdS2 × Sd−2 is completed by performing the Weyl rescal-

ing. We can easily work out how the Minkowski null geodesics (4.3) are mapped to the

xµ = (θ+, θ−, ~v ) coordinates. Instead of using the parameter λ it is convenient to redefine it

to

λ(α) = |~x⊥| tan(α) , |α| ≤ π/2 , (4.6)

so that the null geodesics are given by

xµ(α, ~x⊥, t0) =

(
θ+(α), θ−(α),

~x⊥
|~x⊥|

cos(α)

1 + sin(α)

)
, (4.7)

with the functions θ±(α) defined from

tan(θ±/2) = |~x⊥|
(

1± sin(α)

cos(α)

)
± t0 .

It is straightforward to check that these curves satisfy the geodesic equation with affine pa-

rameter α.

Let us analyze the geodesics (4.7). For arbitrary values of (t0, ~x⊥) the curves have a non-

trivial motion along all the directions in AdS2×Sd−2, with their initial and final spatial points

determined by t0 according to

(θ, |~v |)
∣∣
initial

= (π/2 + arctan(t0),∞) , (θ, |~v |)
∣∣
final

= (π/2− arctan(t0), 0) .

The geodesics travel between the antipodal points of the Sd−2, since |~v | = 0,∞ correspond

to the South and North pole of the sphere. The geodesics are not complete, since they can

be extended beyond their initial and final points, as is manifest in the restricted range of

the affine parameter α in (4.6). However, extending the trajectories any further results in a

violation of their achronality.

The complete trajectory is in general very complicated and can be visualized more easily

by numerically plotting in the (σ, θ) plane, as seen in figure 8. The left and right diagrams

correspond to geodesics with t0 = 0 and t0 = 1 respectively, for several values of |~x⊥|. These

diagrams are not capturing the motion in the Sd−2 sector, that is non-trivial. All curves

travel between the past and future Poincare horizons H±, with their initial and final points

determined by t0. The magnitude of ~x⊥ controls how close to the AdS2 boundary the curves

travels, with |~x⊥| = 0,∞ reaching the boundary.

We can now map the Minkowski ANEC in (4.4) to AdS2×Sd−2, using the transformation

of the stress tensor in (2.44). The conformal factor (4.5) evaluated along the null curves gives

w(α) = |~x⊥|/ cos(α), so that (4.4) becomes

0 ≤
∫ +∞

−∞
dλUT̄λλU

† =
1

|~x⊥|d−1

∫ π/2

−π/2
dα cosd(α)

(
Tαα − 〈Tαα〉0

)
, (4.8)
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Figure 8: Null geodesics in (4.7) in the (σ, θ) plane describing the AdS2 sector. The left

diagram is for t0 = 0 while the right t0 = 1. For each case we have plotted several geodesics

obtained by taking different values of ~x⊥. As |~x⊥| goes to infinity, the geodesics get closer to

the Poincare horizon H± of AdS2.

where we have changed the integration variable to the affine parameter α in (4.6). This is

the constraint (4.2) previously obtained for CFTs in the cylinder. Notice that the mapping

of the operator becomes ill-defined for geodesics with |~x⊥| = 0,∞, where the geodesics reach

the AdS boundary.

A A novel conformal transformation

The results derived in subsections 2.2 and 4.1 relied on a simple conformal transformation

relating AdS2 × Sd−2 to the Lorentzian cylinder R × Sd−1, recently noted in [42]. These

manifolds are related by a simple Weyl rescaling

ds2 = −dσ2 + dθ2 + sin2(θ)dΩ2
d−2 = sin2(θ)

[
−dσ2 + dθ2

sin2(θ)
+ dΩ2

d−2

]
, (A.1)

where between brackets we recognize AdS2 in global coordinates. A similar transformation

was also used in [30] to relate Minkowski to AdS2 × Sd−2 in Poincare coordinates. In this

appendix we show how these maps can be generalized according to

R× Σ(k) −→ AdS(k)
n × Sd−n , (A.2)

where n ∈ N≥2 and Σ(k) corresponds to a maximally symmetric space with zero (k = 0),

positive (k = 1) or negative (k = −1) constant curvature. Accordingly, the AdS factor on the

right is given in flat, spherical or hyperbolic slicing.
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A.1 AdS Poincare patch

Let us start by considering the case k = 0 where the transformation is given by

R× Rd−1 −→ AdS(k=0)
n × Sd−n ,

with AdS(k=0)
n corresponding to the Poincare patch. Since the transformation for generic n

can be a little confusing, let us warm up by considering the first few values of n. For n = 2

this mapping was previously noted in [30].

Two-dimensional AdS: Taking n = 2 we can proceed in an analogous way to (A.1) and

rewrite the Minkowski metric R× Rd−1 as

ds2 = −dt2 + dr2 + r2dΩ2
d−2 = (r/L)2

[
−dt2 + dr2

(r/L2)
+ L2dΩ2

d−2

]
.

Applying a Weyl rescaling with w(r) = r/L we find

ds2

w2(r)
=
−dt2 + dr2

(r/L2)
+ L2dΩ2

d−2 ,

which is explicitly given by AdS2 × Sd−2 in Poincare coordinates (t, r). From now on we set

L = 1 to simplify the notation.

Three-dimensional AdS: To obtain the n = 3 case we first write the Minkowski metric

as

ds2 = −dt2 + dr2 + r2
(
dθ2

1 + sin2(θ1)dΩ2
d−3

)
= w2(r, θ1)

[
−dt2 + dr2 + r2dθ2

1

r2 sin2(θ1)
+ dΩ2

d−3

]
,

where we defined w2(r, θ1) = r2 sin2(θ1). Although after the Weyl rescaling we have the

appropriate contribution for the Sd−3, it is not clear that the first factor corresponds to the

Poincare patch of AdS3. We can put it in a more familiar form by defining the new coordinates

(z, x) as

z(r, θ1) = r sin(θ1) , x(r, θ1) = r cos(θ1) .

Since θ1 ∈ [0, π], the range of the new coordinates is (z, x) ∈ R≥0 × R. Implementing the

transformation we find

ds2

w2(r, θ1)
=
−dt2 + dz2 + dx2

z2
+ dΩ2

d−3 ,

which corresponds to AdS3 × Sd−3 in Poincare coordinates.
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n-dimensional AdS: Now that we have some intuition, let us consider the transformation

for arbitrary values of n ∈ N≥2. To do so, we first write the metric of a unit sphere S` in the

usual spherical angles (θ1, . . . , θ`−1, φ), where θi ∈ [0, π] and φ ∈ [0, 2π) is the only periodic

angle. The metric on the unit sphere is given by

dΩ2
` =

`−1∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j +
`−1∏
i=1

sin2(θi)dφ
2 , (A.3)

where we are using a convention in which
∏0

i=1 ai ≡ 1. Let us now split the sum in the first

term in two pieces, up to some term m

dΩ2
` =

m∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j +
m∏
i=1

sin2(θi)

[
`−1∑

j=m+1

( j−1∏
i=m+1

sin2(θi)
)
dθ2

j +
`−1∏

i=m+1

sin2(θi)dφ
2

]
.

Comparing with (A.3), we recognize the term between square brackets as the line element of

a unit sphere S`−m, so that we have the following relation

dΩ2
` =

m∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j +
m∏
i=1

sin2(θi)dΩ2
`−m . (A.4)

This way of writing the metric of S` is very useful for our purposes. Writing the Minkowski

metric in spherical coordinates and using (A.4) with ` = d− 2 and m = n− 2 we find

ds2 = −dt2 + dr2 + r2

n−2∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j + r2

n−2∏
i=1

sin2(θi)dΩ2
d−n .

To obtain a factor Sd−n, we perform a Weyl rescaling with a conformal factor w(r, θi) =

r
∏n−2

i=1 sin(θi), so that we find

ds2

w2(r, θi)
=
−dt2 + dr2 + r2

∑n−2
j=1

(∏j−1
i=1 sin2(θi)

)
dθ2

j

r2
∏n−2

i=1 sin2(θi)
+ dΩ2

d−n . (A.5)

This gives the desired line element on the unit sphere Sd−n. We can put the first factor in a

nicer form by performing the following change of coordinates

z = r

n−2∏
j=1

sin(θj) , xi = r cos(θi)
i−1∏
j=1

sin(θj) , i = 1, . . . , n− 2 . (A.6)

This is essentially the same relation going from spherical coordinates (r, θ1, . . . , θn−2) to Carte-

sian (z, x1, . . . , xn−2) in flat space. The only difference is that all the angles θi are in the range

θi ∈ [0, π], there is no azimuthal angle φ ∈ [0, 2π). This results in z ≥ 0, which is exactly

what we require for AdS, as the metric (A.5) in these coordinates becomes

ds2

w2(r, θi)
=
−dt2 + dz2 + |d~x |2

z2
+ dΩ2

d−n ,

that we immediately recognize as AdSn × Sd−n in Poincare coordinates.
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A.2 Global AdS

A similar construction can be considered for the k = 1 case, where the transformation is given

by

R× Sd−1 −→ AdS(k=1)
n × Sd−n ,

where AdS(k=1)
n corresponds to global coordinates on AdS. For the n = 2 case the transfor-

mation was considered in [42] and is given by the Weyl rescaling in (A.1). Let us see how it

works for general n.

Three-dimensional AdS: For the case with n = 3 let us write the metric in the Lorentzian

cylinder R× Sd−1 as

ds2 = −dσ2+dθ2
1+sin2(θ1)

(
dθ2

2 + sin2(θ2)dΩ2
d−3

)
= w2(θi)

[
−dσ2 + dθ2

1 + sin2(θ1)dθ2
2

sin2(θ1) sin2(θ2)
+ dΩ2

d−3

]
,

where we have defined w2(θi) = sin2(θ1) sin2(θ2). The Weyl rescaling gives the appropriate

factor for Sd−3, while the following change of coordinates

cos2(ρ) = sin2(θ1) sin2(θ2) ,

tan2(α1) = tan2(θ1) cos2(θ2) ,
with inverse

cos2(θ1) = sin2(ρ) cos2(α1) ,

cot2(θ2) = tan2(ρ) sin2(α1) ,
(A.7)

gives the metric
ds2

w2(θi)
=
−dσ2 + dρ2 + sin2(ρ)dα2

1

cos2(ρ)
+ dΩ2

d−3 .

We recognize this space-time as global AdS3 × Sd−3, where the range of the new coordinates

is given by α1 ∈ [0, 2π) and ρ ∈ [0, π/2), with the AdS boundary at ρ = π/2.

n-dimensional AdS: Let us now consider the transformation for any n ∈ N≥2. Using (A.4)

with ` = d− 1 and m = n− 1, the metric in the Lorentzian cylinder can be written as

ds2 = −dσ2 + dΩ2
d−1 = −dσ2 +

n−1∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j +
n−1∏
i=1

sin2(θi)dΩ2
d−n .

The conformal factor which gives a factor of Sd−n in the metric is given by w(θi) =∏n−1
i=1 sin(θi), so that the metric becomes

ds2

w2(θi)
=
−dσ2 +

∑n−1
j=1

(∏j−1
i=1 sin2(θi)

)
dθ2

j∏n−1
i=1 sin2(θi)

+ dΩ2
d−n . (A.8)

37



We now apply a change of coordinates from (θ1, . . . , θn−1) to (ρ, α1, . . . , αn−2) which general-

izes (2.56) according to

cos2(ρ) =
n−1∏
i=1

sin2(θi) ,

tan2(αi) =
tan2(θi) cos2(θi+1)

cos2(αi+1)
, i = 1, . . . , n− 2 ,

(A.9)

where αn−1 ≡ 0. Using cos2(αi+1) = 1/(1 + tan2(αi+1)) gives a recursion relation for the

coordinates αi. Although we do not recognize this as a standard change of coordinates, it is

straightforward to check for arbitrary values of n that the resulting metric in (A.8) is given

by
ds2

w2(θi)
=
−dσ2 + dρ2 + sin2(ρ)dΩ2

n−2(αi)

cos2(ρ)
+ dΩ2

d−n ,

where

dΩ2
n−2(αi) =

n−3∑
j=1

(
j−1∏
i=1

sin2(αi)

)
dα2

j +
n−3∏
i=1

sin2(αi)dα
2
n−2 ,

is the line element of a unit sphere Sn−2. The coordinate αn−2 is the only periodic one with

a range given by αn−2 ∈ [0, 2π). The resulting metric is AdSn × Sd−n in global coordinates,

with the boundary at ρ = π/2.

A.3 Rindler AdS

Finally, let us consider the k = −1 case, given by the transformation

R×Hd−1 −→ AdS(k=−1)
n × Sd−n ,

where H is the hyperbolic plane and the AdS factor is in hyperbolic slicing, sometimes called

Rindler AdS.

Two-dimensional AdS: Let us start by considering the case with n = 2, where we write

the metric in R×Hd−1 as

ds2 = −dτ 2 + du2 + sinh2(u)dΩ2
d−2 = sinh2(u)

[
−dτ 2 + du2

sinh2(u)
+ dΩ2

d−2

]
,

where u > 0. Applying a Weyl rescaling with w2(u) = sinh2(u) we find

ds2

w2(u)
=
−dτ 2 + du2

sinh2(u)
+ dΩ2

d−2 .

The first factor corresponds to Rindler AdS2, as might be clearer by redefining the spatial

coordinate to sinh2(u) = 1/(r2 − 1).
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Three-dimensional AdS: For n = 3 we write the metric in R×Hd−1 as

ds2 = −dτ 2 + du2 + sinh2(u)(dθ2
1 + sin2(θ1)dΩ2

d−3) ,

and apply a Weyl transformation given by w(u, θi) = sinh(u) sin(θ1)

ds2

w2(u, θi)
=
−dτ 2 + du2 + sinh2(u)dθ2

1

sinh2(u) sin2(θ1)
+ dΩ2

d−3 .

Changing coordinates to (%, ξ) defined from

sinh2(%) = sinh2(u) sin2(θ1) ,

tanh2(ξ) = tanh2(u) cos2(θ1) ,
with inverse

cosh2(u) = cosh2(%) cosh2(ξ) ,

tan2(θ1) =
tanh2(%)

sinh2(ξ)
,

(A.10)

the metric becomes

ds2

w2(u, θi)
=
−dτ 2 + d%2 + cosh2(%)dξ2

sinh2(%)
+ dΩ2

d−3 .

We recognize this as AdS3 × Sd−3 in Rindler coordinates, where % > 0 and ξ ∈ R.

n-dimensional AdS: For arbitrary values of n ∈ N≥2 we write the metric in R×Hd−1 as

ds2 = −dτ 2 + du2 + sinh2(u)dΩ2
d−2 ,

= −dτ 2 + du2 + sinh2(u)
n−2∑
j=1

( j−1∏
i=1

sin2(θi)
)
dθ2

j + sinh2(u)
n−2∏
i=1

sin2(θi)dΩ2
d−n ,

where in the second equality we have used (A.4) with ` = d− 2 and m = n− 2. Dividing the

metric by the conformal factor w2(u, θi) = sinh2(u)
∏n−2

i=1 sin2(θi) we get

ds2

w2(u, θi)
=
−dτ 2 + du2 + sinh2(u)

∑n−2
j=1

(∏j−1
i=1 sin2(θi)

)
dθ2

j

sinh2(u)
∏n−2

i=1 sin2(θi)
+ dΩ2

d−n .

The appropriate change of coordinates which generalizes (A.10) from (u, θ1, . . . , θn−2) to

(%, ξ, α1, . . . , αn−3) is given by

sinh2(%) = sinh2(u)
n−2∏
i=1

sin2(θi) ,

tanh2(ξ) =
tanh2(u) cos2(θ1)

cos2(α1)
,

tan2(αi) =
tan2(θi) cos2(θi+1)

cos2(αi+1)
, i = 1, . . . , n− 3 .
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Similarly to (A.9) the angles αi are defined by a recursion relation, where we define αn−2 ≡ 0.

For arbitrary values of n it is straightforward to check that the metric becomes

ds2

w2(u, θi)
=
−dτ 2 + d%2 + cosh2(%)dH2

n−2

sinh2(%)
+ dΩ2

d−n ,

where the metric of a unit hyperboloid dH2
n−2 is given by

dH2
n−2 = dξ2 + sinh2(ξ)

n−3∑
j=1

(
j−1∏
i=1

sin2(αi)

)
dα2

j = dξ2 + sinh2(ξ)dΩ2
n−3 .

This gives the space-time AdSn × Sd−n in Rindler coordinates.

B Symmetry and the vacuum stress tensor

There are several instances in the main text where we make some assumptions regarding the

vacuum stress tensor of a QFT in AdS2 × Sd−2. In this appendix we justify such claims by

analyzing how 〈Tµν〉0 is constrained by symmetry considerations.

We start by considering the simpler case of a QFT in Minkowski. Without any assump-

tions, the vacuum expectation value of the stress tensor is given in terms of an arbitrary tensor

function Aµν(x)

〈0|Tµν(x) |0〉 = Aµν(x) . (B.1)

Let us show how symmetry constraints Aµν(x). Any space-time symmetry of the metric (in

this case ηµν) manifests itself in the Hilbert space as an invariance of the vacuum state |0〉. For

instance, since the Minkowski metric is invariant under space-time translations xµ → xµ + aµ,

the state |0〉 is invariant under the unitary operator U(a) implementing this symmetry, i.e.

U(a) |0〉 = |0〉. Using this in (B.1) it is straightforward to show that Aµν(x) is indepen-

dent of the space-time coordinates. In a similar way, invariance of the metric under Lorentz

transformation Λ ∈ SO(d− 1, 1) implies

Aµν = 〈0|U †(Λ)Tµν(x)U(Λ) |0〉 = Λρ
µΛσ

ν 〈0|Tρσ(Λ−1x) |0〉 = Λρ
µΛσ

νAρσ .

This condition completely fixes the tensor Aµν (up to an overall constant) to be equal to the

Minkowski metric, i.e. 〈0|Tµν(x) |0〉 = a0 ηµν .

The vacuum stress tensor is highly constrained in Minkowski due to the fact that it is a

maximally symmetry space-time, i.e. it admits a maximal number of d(d+ 1)/2 independent

Killing vectors. The same is true for QFTs in the other Lorentzian maximally symmetric

space-times (anti-)de Sitter, where the vacuum stress tensor is also proportional to the metric.

40



Let us now consider a QFT in AdS2 × Sd−2. In this case, the space-time is the product of

two maximally symmetric manifolds. Using the Killing vectors in each factor in an analogous

way to the Minkowski case we find

〈0|Tµν(x) |0〉 =

(
a0gij NiA(x)

NAi(x) b0gAB

)
,

where the indices (i, j) and (A,B) run over AdS2 and Sd−2 respectively. Although the off-

diagonal contributions NiA(x) are naively not fixed by symmetry, they actually vanish. This

is because 〈TiA(x)〉0 has a single index in the AdS2 direction, meaning it transforms as a

vector under its isometries. A non-vanishing vacuum expectation value would have a preferred

direction in AdS2 and be inconsistent with the symmetries of the vacuum. Putting everything

together, symmetry considerations alone constraint the vacuum stress tensor of any QFT in

AdS2 × Sd−2 to

〈0|Tµν(x) |0〉 = a0 gij + b0 gAB , (B.2)

where a0 and b0 are arbitrary constants.

For conformal field theories we can show this explicitly. The vacuum stress tensor for

a conformally flat background is obtained from eq. (21) of [54], that is written in terms of

contractions of the Riemann tensor. Instead of using the expression for arbitrary dimensions,

let us consider the four dimensional case, which captures the essential features and has the

following simple expression

〈Tµν〉0 ∝ gµν

(
1

2
R2 −R2

λρ

)
+ 2R λ

µ Rλν −
4

3
RRµν . (B.3)

To compute this for AdS2 × Sd−2 we use that the Riemann tensor of any product manifold

decomposes accordingly [55]

Rµνρσ = RAdS2
ijkl +RSd−2

ABCD . (B.4)

Moreover, since both manifolds are maximally symmetric both terms are proportional to the

metric in each factor. Using this in (B.3) we obtain a decomposition of the vacuum stress

tensor that is in agreement with (B.2).

The result in (B.2) has several interesting consequences. Since the connection Γµνρ also

admits a decomposition as the Riemann tensor in (B.4), the covariant derivative of the vacuum

stress tensor becomes

∇µ〈Tµν〉0 = a0∇µgij + b0∇µgAB = a0∇kgij + b0∇CgAB = 0 .

We use this when deriving the achronal ANEC for AdS2 × Sd−2 in subsection 2.1.
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Another important application is obtained by considering a null geodesic xµ(λ) moving

entirely in AdS2, i.e. dxµ/dλ = dxi/dλ. Projecting the vacuum stress tensor along this

direction gives

〈Tλλ〉0 =
dxµ

dλ

dxν

dλ
〈Tµν〉0 = a0

dxi

dλ

dxj

dλ
gij = 0 .

Notice that as soon as we consider a null geodesic that also moves in the Sd−2 direction, this

property is no longer true, since a0 6= b0 in general.

C Modular flow for arbitrary wedge

In this appendix we generalize the computation in subsection 2.1 of the modular flow of a

wedge of size π/2 in AdS2 × Sd−2 (2.7), to a wedge of arbitrary size θ0 ∈ (0, π). We do

this by using an isometry of AdS2. Since this it is a maximally symmetric space-time, it

has three independent Killing vectors: rigid time translations in σ, the transformation given

in (2.16) and an additional one, which can be easily found from the embedding description

and compactly written in terms of the null coordinates as

tan(θ̂±) =
sin(θ±) sin(θ0)

cos(θ±) + cos(θ0)
, with inverse tan(θ±) =

sin(θ̂±) sin(θ0)

cos(θ̂±)− cos(θ0)
.

This transformation maps the wedge D(A0) of size π/2 to an arbitrary wedge D(Â0) of size θ0

in the θ̂± coordinates. We can use this to map the modular flow of the wedge of size π/2

in (2.16) to arbitrary θ0 ∈ (0, π). In practice it is much simpler to first map the Killing vector

in (2.18)

ξµ =
cos(θ̂+)− cos(θ0)

sin(θ0)
∂̂+ −

cos(θ̂−)− cos(θ0)

sin(θ0)
∂̂− , (C.1)

and then solve for its integral curves, that are given by

tan(θ±(s)/2)

tan(θ0/2)
=

sin
(
θ̂±+θ0

2

)
+ e∓s sin

(
θ̂±−θ0

2

)
sin
(
θ̂±+θ0

2

)
− e∓s sin

(
θ̂±−θ0

2

) , (C.2)

with s ∈ R. In figure 9 we plot the trajectories θ̂±(s) and see that they correspond to the

modular flow associated to a wedge of arbitrary size θ0.

Using the Killing vector in (C.1), we can easily write the modular hamiltonian using (2.17).

We choose the Cauchy surface Σ as the future null horizon of D(Â0) (marked in red in figure 9),

that is described by an affine parameter λ according to

xµ(λ, ~x⊥) = (θ̂+, θ̂−, ~v ) = (θ0, 2 arccot(λ)− θ0, ~x⊥) , λ ∈ [λ0,+∞) , (C.3)
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Figure 9: Modular flow for a wedge in AdS2 × Sd−2 with θ0 6= π/2 obtained from (C.2). In

the left wedge θ < θ0 we indicate its future horizon in red, described by (C.3).

with λ0 = cot(θ0). Using this in (2.17), the modular hamiltonian can be written as

KÂ0
= 2πrd−2

h

∫
Sd−2

dΩ(~x⊥)

∫ +∞

λ0

dλ (λ− λ0)Tλλ(λ, ~x⊥) + const .

This generalizes (2.19) to a wedge of arbitrary size θ0 ∈ (0, π).
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