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A novel method for deriving energy conditions in stable field theories is described. In a local
classical theory with one spatial dimension, a local energy condition always exists. For a relativistic
field theory, one obtains the dominant energy condition. In a quantum field theory, there instead
exists a quantum energy condition, i.e. a lower bound on the energy density that depends on
information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

INTRODUCTION

Perhaps the most important and powerful concept in
physics is “energy”. In addition to being closely asso-
ciated with time evolution and conservation laws, the
energy must normally be bounded below, in order for a
physical system to possess a stable ground state.

In a local field theory, the energy H is the integral of
a canonical energy density h, calculated using Noether’s
theorem. In many classical field theories, h is itself a pos-
itive quantity; for example in the Klein-Gordon theory,
the Hamiltonian takes the form h = 1

2
(∂tφ)

2+ 1

2
(∂iφ)

2 ≥
0. However, in certain theories such as Maxwell, the
canonical energy density is not gauge invariant or posi-
tive, and it is necessary to add an “improvement term”
in order to obtain a suitable energy density [1–4]. Since
these improvement terms are total derivatives, they do
not affect the integrated energy if the fields fall off fast
enough at infinity.

In general relativity (GR), there is no covariant posi-
tive stress-tensor for the gravitational field itself, and the
proof of the global positive energy theorem—which re-
quires the matter fields to obey the dominant energy con-
dition: Tab t

aub ≥ 0, for ta, ua in the future lightcone—
is more subtle [5–7]. However, the physical motivation
for assuming that any particular energy condition holds
generally is unclear [8] (but cf. [9]) Worse, quantum field
theory (QFT) violates all positive energy conditions writ-
ten in terms of local quantum fields [10]. Once these field
theories are coupled to gravity, this raises grave questions
[11, 12] about whether global results such as singularity
theorems [13–15] and theorems ruling out causality vio-
lations [16–22] still apply. Yet some of these results can
still be proven from plausible nonlocal inequalities, in-
volving integrals of the energy [23–31] and/or entropic
quantities associated with various regions of spacetime
[32–35].

This letter outlines a general method for proving that
stable local field theories will necessarily possess geomet-
rically localized energy conditions. That is, given the
fact that an integrated energy density is positive, we will
show that there always exists a lower bound on the energy
density at any point. The nature of this lower bound will
depend on the dimension, and also whether the theory is

classical or quantum.

For a classical theory with d spatial dimensions, the
lower bound on the energy density may depend on fields
localized to a d−1 dimensional surface. When d = 1, this
proves the existence of a strictly local energy condition.
There is a potential loophole for gravitational theories,
arising from the fact that the Hamiltonian energy density
vanishes on-shell. But the result still applies if one re-
stricts attention to the matter sector, on any background
spacetime admitting a positive global energy.

The quantum case is more subtle. Here, the en-
ergy condition also depends on some purely information-
theoretic quantities defined on one side of the d − 1 di-
mensional surface. More precisely, the energy condition
is “semilocal”, meaning that it is invariant under all uni-
tary transformations on one side (and does not depend
at all on the other side). A classic example of a semilocal
quantity is the entanglement entropy of a region [36–39].
As we shall see, the stability of a QFT is closely related
to Strong Subadditivity [40] of the entanglement entropy
(which implies that the more strongly a quantum system
A is entangled with a system B, the less strongly it can
be entangled with another system C).

In many (perhaps all) QFT’s, this lower bound on the
stress-energy tensor is given simply by a second derivative
of the entanglement entropy. This suggests that a “quan-
tum dominant energy condition” (QDEC) holds in ev-
ery Lorentz-invariant QFT. A special case—the quantum
null energy condition (QNEC)—has already been conjec-
tured on the basis of quantum gravity arguments [35, 41],
and proven for conformal vacua [41], free or superrenor-
malizable bosonic field theories [35, 42] and in certain
holographic contexts [43, 44] (cf. [45]) However, this let-
ter cannot rule out the possibility that in more compli-
cated field theories, additional semilocal terms may need
to be added to the QNEC to obtain the correct bound.

The core argument is simple yet novel. Whenever you
have a global energy condition, the knowledge of all the
information in a given region places a lower bound on
the energy in the complementary region. Now when you
learn more about this quantity, its range of allowed val-
ues narrows and hence the lower bound is nondecreasing.
This basic logical truth turns out to imply the nontrivial
field theory results stated above.

http://arxiv.org/abs/1701.03196v3


2

CLASSICAL d = 1 CASE

Suppose we have a classical field theory with one spa-
tial dimension, parameterized by some coordinate x, and
a set of fields φ1(x) . . . φn(x), optionally satisfying certain
local constraints of the form

C(φi, φ
′
i, φ

′′
i . . .) = 0 (1)

involving some finite maximum number D of x-
derivatives. The field data may be specified arbitrarily,
as long as one satisfies these constraints, some choice of
fall-off conditions at x = ±∞, and suitable differentia-
bility conditions on the fields φi. It will be important
that there are no nonlocal constraints on the data. We
will not assume any kind of translation invariance, and
everything that follows may be generalized to the case of
a theory defined on a finite spatial interval in an obvious
way.
In practice, such problems often arise when there is a

1+1 dimensional theory with a well-defined Cauchy prob-
lem, so that we may identify a 1 dimensional Cauchy slice
Σ (either spacelike or null) on which data may be spec-
ified, subject only to local constraints. In this way the
results that follow may be applied to field theories in 1+1
spacetime dimensions; however the time evolution of the
initial data plays no role in what follows.
Let us assume that we can define an “energy density”

T (φi, φ
′
i, φ

′′
i . . .), locally defined as a function of at most

K derivatives of φi, which satisfies a global or integrated
energy condition:

E =

∫ +∞

−∞

T dx ≥ 0. (2)

(This notation is schematic, covering many possible sta-
bility integrals such as

∫

Σ

Tab u
adΣb ≥ 0, (3)

where ua is a vector in the future lightcone, Σ is a Cauchy
slice, and dΣa is the natural integration measure for
fluxes crossing Σ.)
Does any such theory also obey a local energy condi-

tion? The answer is yes. However, the local energy condi-
tion may require the energy density to be improved by the
addition of a total derivative term, i.e. T (x)+M ′(x) ≥ 0,
for some M . This integrates to the same total energy E,
so long as M → 0 as x → ±∞.
In order to derive the energy condition, we must iden-

tify the correct choice of M . We illustrate our method
with the following parable: suppose that an ant is march-
ing along the x axis from x = −∞ towards x = +∞,
making note of all the field values she observes along the
way. Partway through the journey, having arrived at the
point x = x0, the ant asks herself, “Given everything I

have observed so far (from −∞ to x0), what is the mini-
mum possible energy I might encounter in the remaining
part of my journey (from x0 to +∞)?” Let us write this
quantity as

M(x0) = inf

(
∫ +∞

x0

T dx

∣

∣

∣

∣

φi(x < x0)

)

, (4)

where the inf(A|B) symbol means the lower bound on
A, consistent with the knowledge in B. The stability
condition (2) places a lower bound on M , ensuring it is
well-defined (this is our sole use of global stability in this
section).
Since the constraints and differentiability conditions

are local, M can depend only on the local field data at
x0. The jump conditions constrain only max(D−1,K−1)
derivatives of φi, so only that many derivatives of φi can
appear in M . Thus the ant does not actually require any
long-term memory to calculate M ; knowledge of a finite
number of derivatives at the point x0 suffices.
As the ant continues her journey to higher values of

x, she learns more about the value of the fields, placing
further constraints on the allowed states of the system.
Now the minimum value of any quantity cannot decrease
upon learning more information. Hence, for any point
x1 = x0 +∆x further along the journey (∆x > 0):

M(x0) ≤ inf

(
∫ +∞

x0

T dx

∣

∣

∣

∣

φi(x < x1)

)

(5)

=

∫ x1

x0

T dx+M(x1), (6)

Thus, while M can increase due to the ant learning more,
it can only decrease when the ant actually passes some
energy and leaves it behind. By taking ∆x to be infinites-
imal, one obtains the desired local inequality:

T +M ′ ≥ 0. (7)

Thus, the theory obeys a local energy condition.
Now consider a relativistic field theory satisfying the

stability condition (3), with causal propagation of infor-
mation, and no fluxes of 2-momentum through spatial
infinity. Let Σ be a partial Cauchy slice extending from
spacelike infinity to a point x0. Define Ma(x0) for null a
as the lower bound of pa in the complement to Σ, given
the data on Σ. Then Ma(x0) is well defined and satis-
fies a monotonicity property like (7) if x0 is shifted in a
spacelike direction. So we obtain a covariantly improved
dominant energy condition: (Tab + ǫca∂cMb) t

aub ≥ 0,
where ta and ua point in the future lightcone. (The im-
provement term is conserved on the first index, but is not
manifestly symmetric.)

GRAVITATIONAL THEORIES

The above result may be applied on any curved back-
ground spacetime, as long as it admits a positive global
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energy.
However, in diffeomorphism invariant theories such as

GR (or dilaton gravity [46], which is better behaved than
GR when d = 1) the constraint equations imply that
the Hamiltonian density vanishes on-shell, up to a total
derivative term [47]. Thus, the argument of the previ-
ous section has a potential loophole: since T is itself a
total derivative, conceivably T + M ′ = 0, and 0 ≥ 0 is
not an interesting energy condition! But see [48] for a
construction that might work (outside event horizons).

QUANTUM FIELD THEORY

Suppose we try to apply the same argument to QFT,
where there are no local energy conditions [10]. Instead
we obtain a semilocal condition, which can depend on
information-theoretic quantities on one side of the point.
Let us begin by considering a (possibly mixed) density

matrix ρ describing the state at a given moment of time
in a 1+1 field theory. This state may be restricted to
any region R to obtain ρR. However, we cannot recover
the full state just from knowing the states in R and its
complementary region R, because we also have to know
how they are entangled.
We can still define the quantity M as a bound on the

expectation value of the energy on the right of a point
x0, given the density matrix ρx<x0

in the causal wedge
to the left of x0:

M(x0) = inf

(
∫ +∞

x0

〈T 〉 dx

∣

∣

∣

∣

ρx<x0

)

, (8)

and it still follows that 〈T 〉+M ′ ≥ 0 at every point.
However, it is no longer the case that M is a local

function of the quantum fields in the vicinity of x0. In
particular, there are various entropy inequalities; for ex-
ample Strong Subadditivity [40] states that for any 3
quantum subsystems A,B,C, the von Neumann entropy
S(R) = − tr(ρR ln ρR)

1 satisfies

S(AB) + S(BC) ≥ S(ABC) + S(B), (9)

S(AB) + S(BC) ≥ S(A) + S(C). (10)

If we choose B to be a neighborhood of the point x0,
and let A and C be the regions to the left and right
of that neighborhood, then the second form of Strong
Subadditivity (10) implies that the more strongly the
local fields near x0 are entangled with data to their left,
the less strongly they can be entangled with data to the
right (and vice versa).
Thus, when stitching together the local density matri-

ces into a consistent state of the whole system, there are

1 For axiomatic characterizations of the von Neumann entropy, see
[49–52].

nonlocal constraints. Suppose we are handed some den-
sity matrices ρA, ρB, and ρC , and we ask whether we can
find a consistent global state ρABC with finite energy that
restricts to these states in the respective regions A,B,C.
Eq. (9) tells us that we might be able to find a consistent
entangled state ρAB and also a consistent state ρBC , yet
be unable to combine them into a consistent state of the
entire line ρABC . Because these constraints are nonlocal,
M can depend on information arbitrarily far to the left of
the point x0. This explains how a QFT can obey global,
but not local energy conditions.
This motivates us to identify M = −(~/2π)S′(ρx<x0

),
so that

〈T 〉 ≥ ~

2π
S′′, (11)

where c = kB = 1. Although S is divergent, its deriva-
tives are normally finite.2 When evaluated along a null
Cauchy slice, this inequality is called the QNEC, and
was derived in special cases in [35, 41–44]. But we will
argue that more generally, (11) probably holds more in
all states of all Lorentz-invariant field theories, on all
Cauchy slices. In passing, we will rederive the fact that
(11) is saturated for first order perturbations to the vac-
uum [42, 54, 55].
We now justify our choice of M . Although M is non-

local, it is still highly constrained. For example, M must
be invariant under any unitary operator U acting in a
region strictly to the left of x0:

M(Uρx<x0
U †) = M(ρx<x0

), (12)

because a unitary acting on the left does not change the
set of states allowed on the right. (Of course it is also
unchanged by a unitary acting to the right of x0, since by
construction M depends only on the left region x < x0.)
This tells us that the dependence of M on the physics

to the left of x0 must in a certain sense be purely
information-theoretic; it is sensitive only to the entan-
glement of information, not to the details of the material
in which the information is encoded. However, M may
depend in a more detailed way on the physics right at
x0, i.e. it need not be invariant under unitaries acting in
an interval that includes x0. Let us refer to a functional
of the density matrix satisfying these properties as (left)
semilocal.
More generally, we can imagine acting with a unitary

that couples the region x < x0 to some auxiliary system
Q whose initial state ρQ is unentangled with the QFT
state. Such transformations are equivalent [56, 57] to
trace-preserving, completely positive3 maps: ρ → F [ρ].

2 In nonsmooth conformal vacua, T may diverge [29, 53], but S′′

compensates [41]. An additional (S′)2 term explains the limit
on how far the negative and positive pulses may be separated.

3 A ‘completely positive’ map is one which preserves positivity of
the density matrix even if it is entangled with another system.
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These transformations are usually not invertible and do
not preserve the information to the left of x0. But by
construction, this new state F [ρx<x0

] must still be com-
patible with the state to the right of x0. Hence the lower
bound on the energy to the right cannot increase under
such a transformation (because we could imagine starting
with a state arbitrarily near the lower bound, and then
acting with F ). We conclude that M is monotonically
decreasing under such maps:

M(F [ρx<x0
]) ≤ M(ρx<x0

). (13)

We can also place a constraint on M from dimensional
analysis, assuming that T (the energy density) is iden-
tified with the stress tensor (which is weight 2 in a 1+1
dimensional theory). In a CFT, M(x) must be weight 1
under scale-invariance. Or, if we choose our Cauchy slice
to be null, M(v) must be weight 1 under a Lorentz boost
v → av + b.
Up to a multiplicative constant, the only entity I know

of which satisfies all of these constraints is −S′. This
is indeed monotonically decreasing under all completely
positive maps, as can be seen by replacing the deriva-
tive with a finite difference to get the conditional entropy
on two subsystems S(AB) − S(A). By the first form of
Strong Subadditivity (9) we now have

SAB − SA ≥ SABQ − SAQ, (14)

hence S′(ρx<x0
) ≥ S′(F [ρx<x0

]) (15)

Furthermore, in a relativistic theory, S′ places a lower
bound on the energy integral:

2π

~

∫ +∞

x0

〈T 〉 dx ≥ −S′(ρx>x0
) ≥ −S′(ρx<x0

), (16)

where the first inequality follows [44, 58, 59] from mono-
tonicity of relative entropy [60, 61] together with the Un-
ruh effect [62, 63],4 while the second inequality follows
from the second form of Strong Subadditivity (10).
For a state that is a first order perturbation to the

vacuum state (ρ = ρ0 + δρ), one can in fact prove that
M = −~S′/2π (fixing the multiplicative constant): since
both inequalities in (16) are saturated for ρ0, and sat-
isfied in all states, they must also be saturated at first
order in δρ (cf. [42, 54, 55]).
It is hard to think of any other quantity which would

satisfy the desired criteria. For example we cannot sub-
stitute the derivative of the Renyi entropy Sn ∝ ln tr(ρn),
since this does not satisfy Strong Subadditivity. More
generally, let us suppose that the greatest lower bound is

M = − ~

2π
S′ +G, (17)

4 Here T must be the canonical (Noetherian) energy density, with
respect to which the vacuum state is thermal in

∫
T (x − x0) dx

when restricted to the Rindler wedge x > x0 [64]. Otherwise the
addition of a local improvement term may also be necessary.

where G is a positive (by (16)) semilocal quantity of
weight 1, that vanishes for all first order peturbations
to the vacuum. Then the semilocal quantum energy con-
dition will take the form:

〈T 〉 ≥ ~

2π
S′′ −G′. (18)

Note that G cannot be constructed out of any smooth
functional of Sn (including S) and their derivatives, be-
cause in order for the quantity to be weight 1, there
would have to be a single derivative. But in pure states,
Sn(ρx<x0

) = Sn(ρx>x0
), which implies that S′

n is odd
under spatial reflections, and hence cannot have a con-
sistent sign.
Also, G = 0 whenever the QNEC has already been

proved [35, 41–44], suggesting it vanishes generally. That
would imply that (16) is the strongest possible bound
on the energy to the right of x0. If you start with an
excited state, this tells you the maximum amount of en-
ergy extractable from that region (without using classical
communication to teleport information [65–67]).
Applying the same arguments covariantly using (3),

it is natural to conjecture a quantum dominant energy
condition (QDEC):

〈Tab〉 t
aub ≥ ~

2π

(

ǫcaǫ
d
b ∂c∂dS

)

taub, (19)

where ta and ua are restricted to the forwards lightcone.
(The QDEC implies the QNEC, by taking ta, ua to be the
same null vector.) The improvement term is symmetric
and conserved.

HIGHER DIMENSIONS

We can also generalize the argument to the case of
d > 1 spatial dimensions. But now the analogue of x0

will be a d− 1 dimensional surface ς , and it may be that
M depends in a nonlocal way on the fields on ς .
We have a choice of which “global” energy condi-

tion to use. One possibility is (3), the positivity of the
energy-momentum vector, found by integrating Tab along
a Cauchy slice Σ. A more interesting choice is the ‘av-
erage null energy condition’ (ANEC), which states that
for any null geodesic γ,

∫ ∞

−∞

Tvv dv ≥ 0, (20)

where v is an affine null parameter along γ. (Recent
arguments suggest that any reasonable QFT will satisfy
the ANEC [68–71], cf. [72–77]).
In either case, let us define M(ς) as the lower bound

of the energy to the “right” side of ς , given the state of
all the fields on the “left” side. We can now derive an
energy condition at a point p ∈ ς in a similar manner
as before. We will do this by considering a variation δς
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with support only in a small neighborhood of the point p.
By applying the same monotonicity argument as in the
previous section, one can show that there exists a positive
function of the form T (p) +M ′(ς, δς) ≥ 0. But now the
improvement term M might depend on fields anywhere
along ς ! So the improved energy condition might not be
local, even classically.

In the case where we start with (20) in a QFT, an
argument similar to the previous section suggests that the
QNEC [35] holds for ς lying on a stationary null surface:

〈Tvv(p)〉 ≥
~

2πA
(δv)

2S(ς) (21)

where v is an affine null coordinate and A is the trans-
verse area along which the slice ς is translated by δv. But
further work is needed to show that there is no additional
correction term in general interacting field theories.

Acknowledgements I am grateful for conversations
with Jason Koeller, Stefan Leichenauer, Zachary Fisher,
Raphael Bousso, Maulik Parikh, William Donnelly, Xi
Dong, Nima Arkani-Hamed, Netta Engelhardt, Don
Marolf, Ted Jacobson, Juan Maldacena, Tom Hartman,
Gary Horowitz, Tom Roman, and Erik Curiel, and for
support from the Institute for Advanced Study, the Mar-
tin A. and Helen Chooljian Membership Fund, the Ray-
mond and Beverly Sackler Foundation Fund, and NSF
grant PHY-1314311.

∗ aroncwall@gmail.com
[1] F. Belinfante, “On the spin angular momentum of

mesons,” Physica 6 no. 7, (1939) 887 – 898.
[2] F. Belinfante, “On the current and the density of the

electric charge, the energy, the linear momentum and
the angular momentum of arbitrary fields,”
Physica 7 no. 5, (1940) 449 – 474.

[3] L. J. H. C. Rosenfeld, “On the energy-momentum
tensor [1940],” in Selected Papers of Léon Rosenfeld,
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