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Introduction

Dualities in physics have played a very important role, for
instance the electric-magnetic duality (cf. Aayush’s talk!),
S-duality, T-duality, etc.

One of the most important revolutions in theoretical high
energy physics is that of holography, or the duality between
a bulk gravitating region and a non-gravitating QFT, usually
satisfying conformal invariance.

String theory gives us a way to establish such a duality in the
case of anti-de Sitter space, where the bulk is the gravitating
AdS and the dual field theory lives on the boundary of AdS.
The original description was the duality between type IIB
superstring theory and an N = 4 SYM theory, but after that a
lot of generality has been found.
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Introduction

At that, what holography really means is very subjective. For
a string theorist, holography is a correspondence between such
kind of SUGRA and superconformal field theory.

However, the definition doesn’t at all have to be so technical!

We will try to point out the most general definition of
holography and some more technical details in this talk. In
the first half, we will discuss what holography generally means
and how to approach this phenomenon, and in the second
half, we will discuss some more details of a mathematical
background to holography.

We will generally either stick between anti-de Sitter space or
de Sitter space holographies.
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Bulk AdS

In particular, from the state-operator duality (namely, the
duality between bulk QFT states Φ and CFT single-trace
operators O), we can predict that certain subregions in the
bulk are dual to certain boundary subregions.

Strongly, from bulk reconstruction of bulk fields in the
asymptotic boundary limit r → ∞ [from the extrapolate
dictionary and HKLL], we can see that there are only certain
bulk fields that can be fully reconstructed given access to a
particular boundary subregion. This bulk subregion is called
the entanglement wedge EW (R) for a boundary subregion R.

Holographic entanglement entropy first indicated this, with
Ryu and Takayanagi’s famous derivation of the RT formula:

SR =
Area of γR

4GNℏ
. (1)

10 / 64



Bulk AdS

In particular, from the state-operator duality (namely, the
duality between bulk QFT states Φ and CFT single-trace
operators O), we can predict that certain subregions in the
bulk are dual to certain boundary subregions.

Strongly, from bulk reconstruction of bulk fields in the
asymptotic boundary limit r → ∞ [from the extrapolate
dictionary and HKLL], we can see that there are only certain
bulk fields that can be fully reconstructed given access to a
particular boundary subregion. This bulk subregion is called
the entanglement wedge EW (R) for a boundary subregion R.

Holographic entanglement entropy first indicated this, with
Ryu and Takayanagi’s famous derivation of the RT formula:

SR =
Area of γR

4GNℏ
. (1)

11 / 64



Bulk AdS

In particular, from the state-operator duality (namely, the
duality between bulk QFT states Φ and CFT single-trace
operators O), we can predict that certain subregions in the
bulk are dual to certain boundary subregions.

Strongly, from bulk reconstruction of bulk fields in the
asymptotic boundary limit r → ∞ [from the extrapolate
dictionary and HKLL], we can see that there are only certain
bulk fields that can be fully reconstructed given access to a
particular boundary subregion. This bulk subregion is called
the entanglement wedge EW (R) for a boundary subregion R.

Holographic entanglement entropy first indicated this, with
Ryu and Takayanagi’s famous derivation of the RT formula:

SR =
Area of γR

4GNℏ
. (1)

12 / 64



Boundary CFT

On the boundary side, we have a better understanding of
things. In general, the large N limit of the CFT gives a bulk
description of type IIB strings.

More generally, the bulk is emergent from the boundary. A
useful result is that the bulk dual to the thermofeld double
state |TFD⟩ is the two-sided eternal AdS black hole.

In light of this, it is obvious to ask what other general
statements we can make about this duality in a more
mathematical sense, appealing to as much “bulk”-side of
things as possible.

Note that usually the bulk is the side we are more ignorant
about. But here, we are trying to understand how these
subregions imply deeper mathematics.
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Axiomatic QFT

Alongside physicists, mathematicians were interested in QFTs
for obvious reasons. One of the primary goals was to
axiomatise QFTs in a way that would be generally applicable.
(Many reasons why physical QFTs are not mathematically
clear.)

The general prescription to making sense of QFTs is to define
a QFT Z as a monoidal functor from a geometric/topological
category to an abstract category.

A very good example is that of topological QFTs, which are
monoidal functors from the category of n-bordisms Bordn to
the category of a K-vector space VectK.

In general, these are referred to as functorial QFTs. Locally
covariant QFTs are functorial QFTs that are functors from
the category of globally hyperbolic manifolds to the category
of C ∗-algebras, satisfying some conditions like causality,
isotony, covariance, etc.
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Algebraic QFT

Generally, when working with LCQFTs, we are concerned with
local nets of observables {On} associated to a bounded
subregion U . Usual QFTs have a peculiar property, that for
such U on a Cauchy slice Σ, the entanglement entropy S ,
computed by the area of ∂U , is divergent.

This is because of infinite modes of entanglement across this
entangling surface ∂U , but more mathematically, this can be
expressed as the ill-defined nature of entanglement entropy for
certain types of von Neumann algebras, called type III1 von
Neumann algebras.

Without going into the details, the idea is basically that there
are three types of von Neumann algebras (cf. Gell Mann
Murray and von Neumann), loosely based on the tracial
properties that are of concern to us.
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Bonus Slide: AQFT

To be a little more precise, we consider AQFTs as a functor
from the category of D ≥ 2 globally hyperbolic manifolds
ManD to the category of unital C ∗ algebras Alg. The objects
typically are composed of smooth D-manifolds, with
orientation of nowhere vanishing n-forms and time-orientation.
The morphisms are smooth isometric embeddings that
preserve these orientations.

The objects in Alg are suitable C ∗ algebras and corresponding
morphisms in Alg are unit-preserving ∗-homomorphisms.

In general, all this really means that for every bounded
subregion, one can attribute a C ∗ algebra. More strongly, a
von Neumann algebra.

For general subregions with no asymptotic boundary
structures, this von Neumann algebra is typically type III1
with reduction to type II1 Jensen, Speranza and Sorce.
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Types of von Neumann algebras

What does this mean?

There are distinct types of von Neumann algebras, which have
different properties. But a nice way of understanding what the
intuition for these types is, would be to consider when we can
define entanglement entropy.

In QM, this was never an issue, and we happily said “let there
be entanglement entropy” and entanglement entropy-d all
over the place. However, for general QFTs, this is not the
case.

This is because a trace does not exist in local QFTs!

Naively there are three types of von Neumann algebras, but
there are sub-classifications based on some intrinsic properties
of their algebras.
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Algebraic QFT

Loosely, the three types are:

1. Type I: Well-defined trace; this is your usual quantum
mechanics with no bad problems of infinite entanglement.

2. Type II: Not very well-defined trace; type II1 has a better
defined trace, but for type II∞ there only exists a trace-class.

3. Type III: Worst of them all – this is the culprit. No
well-defined trace. (Never stopped physicists.)

Usual QFTs are, as I said before, type III algebras.

The way to define a viable entanglement entropy is to
introduce a short-distance cutoff ϵ. Lattice-ising defines a
well-defined entanglement entropy and gives us our usual type
I algebra.

Bulk QFTs are no exception, and in the Ryu-Takayanagi
formula this is rather explicitly clear.
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Algebraic QFT

The RT formula needs a short-distance cutoff to be
meaningful since it comes from the usual area law for
entanglement entropy.

For type III algebras, we can only define relative entropy from
Tomita-Takesaki modular theory. Most of AdS/CFT works
on information theoretic aspects of such entropy definitions
rely on this theory to work with relative entropy.

But, one could change this and turn the type III1 algebra
(since only those type of von Neumann algebras have
half-sided modular inclusions) into a type II∞ algebra, which
is not much better but is indeed a lot better!

This is due to a theorem in mathematics by Takesaki:

III1 ⋊Raut = II∞ . (2)
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Crossed Product Algebra

Let us discuss (2) in more detail.

III1 is the usual large N Liu-Leutheusser algebra. Raut is the
modular group of automorphisms of this algebra, and is here
the group of time translations generated by the modular
operator ∆Ψ. II∞ is the resulting algebra, which is an
extended large N algebra including the Hamiltonian.

There is a formal power series approach with 1/N corrections
that is further complicated for our purposes, and we will stick
with the large N setting. What is relevant is that this algebra
is now defined around the microcanonical ensemble.

What happens now?
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Crossed Product Algebra

We no longer have to work solely with relative entropy – we
can define entropies of subalgebras (well, with a subtlety) so
that the bulk dual is the generalized entropy.

This gives us the usual generalized entropy monotonicity
property, as found by Aron Wall in his relative entropy
argument.

Further, there are ways of working with free products of
algebras, although this is not entirely relevant for us.

Important thing: we don’t have to rely on Euclidean path
integrals! (Path integrals are complicated...)
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de Sitter!

de Sitter is the positive Λ family of solutions to the Einstein
field equations.

By the cosmic No-Hair theorem, almost every class of
cosmological models become asymptotically de Sitter. In the
context of quantum gravity, this has many interesting
consequences, since we can have a general future description
of information (see Suvrat et al’s Hilbert space work!)

Kind of problematic in string theory: vacuas,
Maldacena-Nunez, etc. But exciting nonetheless!
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What about de Sitter?

de Sitter holography has been a dream for many physicists
because it describes our cosmology.

Strominger had a paper on dS/CFT, which is the most
popular de Sitter holography setting. The boundary dual to
the bulk de Sitter space is the conformal null boundary at I±.
Seems straightforward, right?

Wrong. Many issues, most of them having to do with the fact
that the dual theory is non-unitary, and in general nice things
in AdS/CFT like modular flows are non-trivial (or
non-sensical) in dS/CFT. Entanglement entropy is also
complex-valued (referred to as pseudo entropy) and we have
to work with transition matrices instead of density matrices.

Too many people were leaving everything to double Wick
rotations. “Do Wick rotations” they said, “it’ll be fun” they
said.

Spoiler alert: It isn’t fun.
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de Sitter...

Perhaps static patch is the better setting for these things,
because we know that an algebra of observables is clear in this
setting. Chandrasekharan, Longo, Penington and Witten

Overall, de Sitter has many subtleties, due to which we don’t
really know precisely what “the right” notion of holography is.

Which brings us back to the origianl question: what is the
most general definition of holography?
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It’s All Relative!

It is very subjective! But there are two possibilities:

One: duality between a gravitating region and a precisely
defined dual field theory living on the “boundary”. Operator
algebras are also dual to each other, and correspond to
subregions on both sides. That is,

HFock = HQFT , (3)

with completion on the QFT side (which invokes GNS
construction).

Two: Similar idea, but holography of information, which is a
little different. Usually involves violating the split property, but
in general lets us have a duality of operators at asymptotics.

So far the de Sitter picture is not clear in either case, but
there are many things to look out for.

60 / 64



It’s All Relative!

It is very subjective! But there are two possibilities:

One: duality between a gravitating region and a precisely
defined dual field theory living on the “boundary”. Operator
algebras are also dual to each other, and correspond to
subregions on both sides. That is,

HFock = HQFT , (3)

with completion on the QFT side (which invokes GNS
construction).

Two: Similar idea, but holography of information, which is a
little different. Usually involves violating the split property, but
in general lets us have a duality of operators at asymptotics.

So far the de Sitter picture is not clear in either case, but
there are many things to look out for.

61 / 64



It’s All Relative!

It is very subjective! But there are two possibilities:

One: duality between a gravitating region and a precisely
defined dual field theory living on the “boundary”. Operator
algebras are also dual to each other, and correspond to
subregions on both sides. That is,

HFock = HQFT , (3)

with completion on the QFT side (which invokes GNS
construction).

Two: Similar idea, but holography of information, which is a
little different. Usually involves violating the split property, but
in general lets us have a duality of operators at asymptotics.

So far the de Sitter picture is not clear in either case, but
there are many things to look out for.

62 / 64



It’s All Relative!

It is very subjective! But there are two possibilities:

One: duality between a gravitating region and a precisely
defined dual field theory living on the “boundary”. Operator
algebras are also dual to each other, and correspond to
subregions on both sides. That is,

HFock = HQFT , (3)

with completion on the QFT side (which invokes GNS
construction).

Two: Similar idea, but holography of information, which is a
little different. Usually involves violating the split property, but
in general lets us have a duality of operators at asymptotics.

So far the de Sitter picture is not clear in either case, but
there are many things to look out for.

63 / 64



Thank you for your
attention!
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