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In this lecture, I will provide a rather informal outlook of the statement of the Poincaré conjecture
– informal in the sense that while I could speak from a topological or PDE perspective, I will stick
with a very naive outlook of Ricci flow and the Poincaré. The next set of notes have a different
structure, and are highlighted in a particularly geometric background. At least in this lecture we
will not arrive at the complete structure of the uniformisation theorem in terms of Ricci flow, or
discuss Ricci flow in detail for that matter. The purpose of this lecture is simply to motivate the
notion of Ricci flow and summarise what we will be doing in the next notes.

It all starts with a Riemannian manifold M – who doesn’t love a good Riemannian manifold? And
then you say it is smooth and compact, not to mention that it is equipped with a nice metric
g for vectors X,Y ∈ TpM that defines another nice thing, the Ricci curvature Ricg(p) at every
point p ∈ M . Naturally one would expect some trivial geometries such as the 2−sphere or the
2−Euclidean space to have a constant Ricg; in other words,

S2 =⇒ Ricg(p) = +1; R2 =⇒ Ricg(p) = 0; H2 =⇒ Ricg(p) = −1.

This is the statement of the uniformisation conjecture1: every compact manifold can be set a
constant curvature metric, and a corollary of this is that every compact and connected surface is
diffeomorphic to a quotient of one of the three constant curvature geometries C. In N = 1, the whole
question becomes a moo-point, since the only such surface is a circle with no intrinsic geometry to
consider. In N = 2, the above statement coalesces with the N = 2 Poincaré conjecture:

Theorem 1. Every compact and simply connected compact surface is diffeomorphic to the 2−sphere.

The motivation of the uniformisation conjecture is to arrive at a classification of topological mani-
folds based on the connected sum decomposition. There are many ways to work out the uniformi-
sation theorem, one of them being Ricci flow. In these notes, we will look at a very untechnical
outlook of what Ricci flow is first, before arriving at the Poincaré conjecture.

Simply stated, the Ricci flow is the evolution of a Riemannian compact closed manifold under the
PDE given some t ∈ R for some g(t) with g0 being the initial metric.

(1)
∂

∂t
g(t) = −2Ricg.

By just mere thoughts one can see that there could evolve singularities, where Ricg → ∞ in a finite
time over the Riemannian manifold, which is where we stop the flow. This is an important thing –
we want to work out the uniformisation theorem in terms of this Ricci flow. For example, in N = 2
by evolving sufficiently, we want the metric to evolve into a conformal metric described by one of
the C geometries. Consider the homothetic evolution of a sphere into a point-like surface. This
evolution is guaranteed by looking at the nature of the metric, and is a part of a class of manifolds
called Einstein manifolds; for instance, in the solutions to the field equations Gµν+gµνΛ = 8πGTµν ,

one finds that Ric takes the form of Ric = 2Λ
N−2gµν , which is an N−dimensional vacuum Einstein

metric solution to the field equations +Λ. Simply stated, if one has

Ric = λg0 and λ ∈ R,

1Throughout these notes we will assume that the surfaces are also smooth, unless where specified.



then it is straightforward to see that the metric takes the form of

g(t) = (1− 2λt) g0.

This allows one to see the final evolution of the metric; for instance, for a sphere this would tell
us the time after which the evolution becomes point-like. For a hyperbolic space, this would be a
positive evolution in that the manifold would homothetically expand.

There is a particularly nice theorem by Hamilton 1988, Chow 1991 and Chen-Lu Tian 2005, which
goes as follows:

Theorem 2. If the topology of M is a sphere, there exists a singularity in finite time Ricci flow
and the (renormalized) manifold becomes that of C at the blow-up time.

This implies the uniformisation theorem, although the original Hamilton-Chow argument was based
on the uniformisation theorem. In Chen-Lu Tien’s work this was removed and the uniformisation
theorem was implied. But first, let us talk about what the ”renormalized” in the above theorem
means.

A Ricci soliton is some pair (M, g) such that for some vector field X(t), one has the following:

(2) Ric = λg − 1

2
Lχg,

where L is the Lie derivative. Define σ(t) = 1 − 2λt and let X(t) = 1
σ(t)Y , we get a set of

diffeomorphisms ψ∗
t with ψ∗

0 = id and the star being the pullback. Then, define

(3) g̃(t) = σ(t)ψ∗(t) (g(t)) ,

which is a Ricci flow:

(4)
∂

∂t
g̃(t) = −2Ricg̃.

The sign of λ tells us the nature of the Ricci soliton, i.e. steady, expanding or shrinking based
on sign(λ) = 0, +1 or −1 respectively. A Ricci soliton whose Y can be expressed as grad (f) for
f :M → R is a gradient Ricci soliton, and for this the Hessian satisfies the following:

(5) Hessg0(f) = λg0 − Ricg0 ,

where we used the fact that LY g0 = 2Hessg0(f). Hamilton’s cigar soliton is an example of a
steady gradient soliton that opens up cylindrically at infinity – see the reference [CigarSoliton] in
/mathDG/Poincare to see a graphic demonstration of the. In R3, the Bryant soliton is an example
of a steady gradient soliton that opens up paraboloid-ically at infinity.

Consider a case where a singularity occurs locally such that the region can be identified and removed
so that the Ricci flow can be continued. If there is a set O(t) ⊆MN such that O(t) ∼= Q

(
SN−1 × I

)
(where I is an closed interval in R), thenMN is said to have a neckpinch if the pullback approaches
the shrinking cylinder soliton. We can then identify surgery, where we remove the particular patch
so that the flow can be continued. This is essentially prime decomposition, and finally we arrive
at two prime manifolds. One could now argue that this decomposition might take forever, i.e. the
prime manifolds that are found as the connected sum of this surgery might take forever to actually
arrive at. However, Perelman argued that this is not so – in a finite time, one should be able to
find only a finite number of these decompositions.

But why are we bothered about this? The fundamental reason one is even concerned with this in
the first place is due to Thurston’s Geometrization conjecture, which states that that every
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smooth oriented compact 3−manifold can be broken down to a finite decomposition of the eight
Thurston geometries of these sums. That is, every 3−manifold can be constructed by a finite gluing
of the eight Thurston geometries:

S3, R3, H3, S2 × R, H2 × R, UC (SL2R) , H(R2), Solv(S2).
Thurston had verified this conjecture for a class of manifolds called Haken manifolds, which we
would discuss in the next notes.

An observation I think we can include here is that one could say that there are manifolds with
constant negative curvature such that the Ricci flow does not lead to a singularity in finite time in
the first place; in this case, one can use the Sachs-Uhlenbeck formulation of non-trivial π2(M) to
show that minimal spheres exist. In the case of Colding-Minicozzi and Perelman, as long as π3(M)
is non-trivial, such singularities would form in finite-time, and from Hurewicz’s theorem, one can
be sure that both π2(M) and π3(M) cannot be trivial, due to which one has the necessary existence
of finite-time singularities. Then, one can show that under Ricci flow the area of these minimal
spheres goes to zero, resulting in a finite-time singularity for all simply-connected manifolds. The
next stop would be that of showing that the surgery can be done finitely, and due to this the
Ricci flow will vanish in a finite-time evolution of the manifold. This has some subtleties, such as
the problem the injectivity radius must not go to zero faster than allowed. This was solved by
Perelman’s non-collapsing theorem, which has a lower bound on the injectivity radius in terms of
a bounded Ricci curvature. There are several other interesting points, which we will discuss in
part-II continuation of this lecture.

The present situation seems somewhat messy, but ultimately, this can be summarised as follows:
given a compact closed 3−manifold, it is diffeomorphic or homeomorphic to the 3−sphere. At this
point, it seems too premature to find a reasonable approach to this, since the previous discussions
were seemingly purely naive. However, in the direction in which we would be going in (as well as
the direction in which any attempt at understanding Ricci flow and Poincaré would lie in) can be
outlined as follows2:

(1) The maximum principle,
(2) Summary of existence of parabolic PDE and the nature of Ricci flow,
(3) Existence of Ricci flow,
(4) DeTurck and short-time existence,
(5) On the Uhlenbeck Trick,
(6) Ricci flow as a gradient flow
(7) Compactness, convergence and other aspects of Riemannian manifolds,
(8) Curvature aspects of Ricci flow,
(9) On 3−manifolds with non-negative Ricci curvature,

(10) W entropy functional,
(11) The F-functional.

2This is not necessarily in a chronological order, however subsequent updates to the order may take place.
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