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Abstract

This is my short article submission focusing on
what the nature of machine learning is at its
heart and some of the mutual overlaps with
physics. I also talk, among a number of other
things, the nature of the fine line between what
is counted as “theory” and “experimental” in
machine learning, and why this is a bad divide.

1 Introduction

Both machine learning and statistical mechanics
work with the complexity of high-dimensional
spaces, emergent properties, and stochastic dy-
namics. Now of course, statistical mechanics
studies the macroscopic behavior of systems
composed of many interacting components us-
ing results from probability and statistics to
bridge the gap between microscopic details and
observable phenomena. In fact, it does this so
well that most of the intuition to the workings
of the macroscopic world are built on it from
the fine-grained details.

Machine learning uses probabilistic tools to
learn patterns in large datasets, optimizing over
parameter spaces to make predictions or dis-
cover underlying structures, to carry out a par-
ticular task. There are many aspects of sta-
tistical mechanics, such as Boltzmann distribu-
tions, free energy minimization, and stochastic
processes that lie deeply within the tools and
algorithms that drive ML, including stochastic
gradient descent, regularization, and probabilis-
tic modeling.

(There are actually many other overlaps and
applications of pure mathematics in machine
learning as well, which we will not discuss since
it is out of scope.)

2 Boltzmann

One of the most fundamental correlations be-
tween the two subjects – of machine learning

and statistical mechanics – is the obvious use of
a number of information theoretic components
in machine learning. When we seek to define
a loss function J(θ) (where θ are the parame-
ters of the model), we usually define it to be
something like the cross entropy loss function,

JCE(P, Q, θ) = −EP (logQ) , (1)

where P is the true distribution and Q is the
selected probability distribution. E denotes the
expectation value and this just becomes the
usual form of −P logQ. Yes, yes, there’s some
measure theory stuff that happens when talk-
ing about this quantity rigorously but I can’t
be bothered to talk about that now. This is
essentially measuring the Kullback-Leiblar di-
vergence, but at the heart of it, all you need
to worry about is that it tells you the “loss”
of an observed distribution. Now what these
loss functions also tell you is how bad the other
choices are.

Imagine a huge parameter space. The prob-
lem of machine learning is to find the optimal
configuration through this parameter space so
that you have the least loss – best fit for the
predictions – in the model. In the context of
supervised learning, this is simply just making
better predictions, and might involve some more
tweaking with regularization/dropouts/etc.

Figure-1 shows you the minima of the loss
functions: the optimal state, so to speak, and
this is really hard both computationally as well
as theoretically sometimes, to reach. For most
of the heavy machine learning models we use,
the choice is that of stochastic gradient descent
– a fancy way of using the extremum deriva-
tive rule for arbitrary “learning steps”. This
brings down the computational costs by a sig-
nificant margin over normal gradient flow where
you have to estimate with smaller strides. The
price of using SGD over batch gradient descent
is that you never really converge onto the min-
ima; you just get really really close to it. As
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Figure 1: The minima is the little red dot in the
landscape of different loss configurations.

physicists, we obviously never complain about
doing stuff like this.

In generative machine learning, more specifi-
cally a branch called ICA – independent com-
ponents analysis, you end up with a heavy re-
liance on probabilistic models. Simply put, given
a probability distribution, you want to find the
loss function minima as usual, but the way you
do so isn’t by wildly sampling over the parame-
ter space or training with more and more data;
you instead view a Boltzmannian approach to
machine learning. The slogan here is: loss func-
tions are no longer just minimas, they are en-
ergy functions, and you seek to minimize the
energy.

As all of you know, in a Boltzmann distribu-
tion, for some input x, you have an associated
energy E(x) and a probability given by

p(x) =
exp (−βE)

Z
, (2)

where Z is a normalization term. Of course,
the physics people must have called the bluff
and said who are you kidding Vai that is a par-
tition function, just call it that, and yes it is a
partition function but bear with me for a sec-
ond, will you.

The objective here is to minimize the energy
loss function E(x), but not with ordinary gra-
dient descent. Instead, we want to use a flow
F so that the action of F on the energy space
E is to make higher values of the energy func-
tion larger and the lower values smaller. So,
you no longer just minimize by walking along
the function, you stretch it out, by something
like ẋ(t) = −∇E(x), something like an inverse
curvature flow.

This is something that has been done for quite
a while in machine learning now, and Yann Le-
Cun has a very good paper on this. In working
with energy loss functions instead of ordinary
loss functions, we have to restrict to certain
kinds of loss functions, but the most used loss
function, the cross-entropy loss (2) is inherently
a natural energy function.

3 Attention Is All You Have

A natural sort of continuation from the above
discussion is to talk about the partition function
Z that I didn’t want to specifically talk about.
I still don’t, because there are subtleties around
actually computing it. Spoiler: you don’t really
consider it a “computable” quantity, but that is
fine.

When you work with Transformer neural net-
works, you usually work with the softmax func-
tion by taking in the raw logits zi and producing
a weighted attention weight pi:

softmax(z) =
exp zi∑

exp zi
. (3)

Look carefully at the denominator term. It is
technically just a partition function, and this
would generate “moments” akin to correlators
like 〈x1, x2, x3 . . . xn〉.

The first moment is the Helmholtz free en-
ergy F = − logZ, which is a very interesting
term. But there are more terms that also ap-
pear in working with these models, the most
important of them being the entropy S. This is
the usual Shannon entropy, but there are many
useful things that come out of these two terms.

The entropy

S = −pi log pi (4)

calculates the uncertainty of the model. And
LLMs are all about making that tradeoff be-
tween very deterministic responses and overly
diverse responses. This is a very simple task
indeed; for even something as well trained as
GPT-4o mini, you can end up with responses
that be too deterministic. The most natural
way an LLM generates an output is by greedy
sampling, where it simply picks the tokens with
the highest post-softmax’d weights. However,
the issue with this is that for out-of-distribution
scenarios, the responses will be – trash. So mod-
els typically use temperature to make more di-
versified generations. There is a tradeoff be-
tween strictly deterministic and highly diverse



outputs that models require, and it was sug-
gested early this year that there be dynamic
temperature sampling using entropy. Which
is really really interesting, and more recently,
@xjdr started Entropix, which is (last I remem-
ber) a Llama 3.1 model with entropy sampling.
I am, in fact, working on related things with en-
tropy sampling for attention sparsity that could
potentially make the complexity order of these
models less than O(n2) or O(n

√
n) as is usually

expected from adaptive sparsity. You could, al-
ternatively, use the free energy, which techni-
cally captures more information than the en-
tropy. In fact, sampling with free energy would
work on two sides: one, it would focus on the
lower energy functions subspace of E and could
potentially sample a larger subset, and two, it
would update the usual uncertainty metrics like
entropy and variance-entropy. However, I am
unaware of any models that use this yet.

Let me illustrate two machine-learning-in-
physics topics that I think are really interest-
ing. This is of course going to be somewhat
more technical than what I talked above. 1

4 Calabi-Yau Machine Learning

This is one of the most ambitious projects I have
seen in quite some time in theoretical physics
that has numerical calculations. Calabi-Yau
manifolds are Ricci-flat objects in string the-
ory that have many applications in dimensional
compactifications of extra dimensions.

Without going into too much technicalities,
due to a high level of sophistication as well as
my own lack of competence to phrase the tech-
nicalities in a readable format, the basic idea
is just that Calabi-Yau manifolds are closed
Kahler manifolds. More specifically, a Calabi-
Yau manifold is a compact Kahler manifold so
that equivalently, (1) the first Chern class van-
ishes, and (2) there exists a g that is Ricci
flat. Another way of stating this is that there
is a non-vanishing holomorphic n-form or has
holonomy in the special unitary group SU(n).
These manifolds generally appear in string the-
ory when working with dimensional compact-
ifications, as in taking a description of a 10D
N = 1 SUSY theory with a low-energy limit
on a D = 4 manifold, with the remaining 6 di-
mensions reduced onto a Calabi-Yau manifold.
There are certain topological invariants called
Hodge numbers, which for some level of vague

1To be fair, all I did was talk about energy based
models.

intuition, are related to the Euler characteristic
of the manifold.

At a high level, we basically just want to be
able to calculate these Hodge numbers. By tak-
ing a huge corpus of these Calabi-Yau data, it is
possible to train a neural network that predicts
the Hodge numbers very effectively. There are
other Calabi-Yau calculations where neural net-
works help, see for instance a recent paper by
Manki et al: (Fraser-Taliente et al., 2024). See
also this paper (Constantin, 2022) which has
some excellent discussions on the string theory
arena of machine learning.

5 Discrete Theory Space 101

The above discussion of CY manifold machine
learning was straightforward to speculate on.
However, in many cases, there are no discrete
theory spaces for a particular constraint prob-
lem. My example of this would be the Wheeler-
DeWitt equation,

HΨ[g,Φ] = 0 , (5)

where g is the metric and Φ are the matter fields
on the manifold (M, g). States of this constraint
are hard to solve unless you impose specific con-
ditions such as asymptotic bulk limits, restric-
tion to isometry groups, etc. and compose the
Hilbert space of perturbative canonical quan-
tum gravity when solved around perturbations.
One could ask if there is a machine learning op-
timization task that could help us solve con-
straint (5). This is a technical problem but just
consider the following. Take the decomposition
of WDW states Ψ[g,Φ] into two “branches”, Z+

and Z−. This happens because the Hamiltonian
constraint is quadratic in nature, and usually
there is one dominant branch. In any case, the
collection of Z generate the so-called “theory
space” and have a universal counterterm S[g,Φ]
from holographic renormalization that applies
to the entire theory space. This is good.

However, if you want to model NNs that pre-
dict these counterterms, unlike the prediction of
Hodge numbers, you end up with terms that are
not “discrete”, in the sense that numerically, it
does not make sense to have a collection of uni-
versal counterterms that define a particular the-
ory space simply because there aren’t a discrete
subset of these to begin with. You could seek
to define other things that could be more nu-
merically discrete, so that for specific cases you
have specific values and then try to predict the
values for the term in other cases. This goes on



to just illustrate a level of obstruction for what
can be computed and what cannot be, even if
fundamentally they are just purely numeric co-
efficients.

6 In Phenomenology

Often in physics, we have to calculate physi-
cal couplings for theories. These are quantities
that tell us a lot about the theory and the con-
cretely observable properties of the theory as
well. In particle collider experiments such as at
the LHC CMS or ATLAS, by computing the
phenomenology of particle collisions, you can
gain a lot of insight into the interaction be-
tween, say, partons. As a way of illustrating
the role of machine learning in such phenomeno-
logical calculations, when working with QCD,
it is very important to work with parton dis-
tribution functions, which are measured in par-
tonic interaction experiments and give informa-
tion about the cross-sections and interactions.
The usual way of calculating or checking these
distribution functions are either too complex or
too time-taking, due to which large-scale com-
putations become less feasible. In this paper
(Liu et al., 2022), the collaborators trained a
neural network to calculate the log-likelihood
χ2 from parton experiments at LHC. In fact,
machine learning finds several roles in hadronic
physics and pheno/experiment research, such as
in working with meson production, heavy-ion
collisions, and even beyond standard model par-
ticle interactions.

7 Theory vs Experiment

Here I would like to draw a comparison that I
think is very important. In high energy physics
theory, there is an inherent distinction between
theory and experiment. When I say that there
is a holography of information in an evaporat-
ing black hole spacetime, I typically mean that
there are some concrete observables, but these
aren’t observables that you can actually cal-
culate in real life as a part of an experiment.
For that matter, one of the last theory-meets-
experiment timelines we had was closed around
the time the CP violation was observed, because
it was an observable phenomena. We do not
have a way to calculate the amount of radia-
tion collected from an evaporating black hole
in anti-de Sitter space or the entropy of an is-
land in AdS/CFT. This is the case with a lot
of hep-th2. The case with machine learning is

2With celestial holography, you get nothing anyway.

the polar opposite; there are significantly good
resources to actually check a theory. This has
been known from the time we had RNNs and
LSTMs, which still hold up nearly as well as
some of the smaller-end base model Transformer
architectures like BERT. In such cases, the line
between theory and “experiment” must not be
drawn, and the mathematical (often referred to
as “pedantic”) aspects that comprise machine
learning should not be discarded. Since, af-
ter all, machine learning is essentially statistical
mechanics with better marketing.

However, there is an important distinction
between physics and the applied physics aspects
of machine learning. By this, I mean that there
are many things like Ising models, diffusion
models, Langevin dynamics, phase transitions,
etc. that are used in machine learning that arise
from statistical mechanics. However, this does
not count as doing physics. I say this because
the 2024 Nobel Prize in physics was controver-
sial and many (hep-th) academics questioned
the principles on which this was given. How-
ever, if there is stringent applied physics being
used in things like quantum computing or ma-
chine learning, this lies within the domain of
“physics” in general.

8 Conclusion

In summary, there are a lot of interesting stuff to
work on in machine learning and physics, and
the overlaps between the two fields3, and you
should go check out the arXivs for hep-th and
cs-LG (or stat-ML and cs-AI). And the so-called
“this part of Twitter” (tpot) will illustrate the
necessity of this article.
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