
Essence of LLMs and Transformers I

Vaibhav Kalvakota

Bayesian Group

June, 2024

1 / 23



Based on upcoming mini-paper on sparsity Transformers

Related notes will be posted on my website
vkalvakotamath.github.io/files/2024-LLM-1.

2 / 23



Natural Language Processing is very important.

Large Language Models are a subset of NLP.

“Why are polar bears cute?” Relevant tokens: polar bears
(animal), cute (characteristic), why (question, output has to
be an answer).

“Polar bears are often seen as ”cute” because of a
combination of physical traits and behaviors that we humans
tend to find endearing. Some of the reasons include:
Fluffy Appearance: Polar bears have thick fur that looks soft
and fluffy, giving them a cuddly appearance, especially in
pictures or videos. Their fur covers their entire body, including
their round ears and large paws, enhancing the sense of
softness...”

3 / 23



Very large chunks of data and parameters to be trained.
Typically a three stage process:

Pretraining −→ Fine-tuning −→ Repeat! (1)

To work with the LLM, we essentially want to work out these
in large chunks of data. After we obtain a base model, we
fine-tune parameters and try to make the model “better”

4 / 23



LLMs, fundamentally: Suppose you had a sequence of N
words and wanted to train a model to predict the next word.
That is, you want to find

p(xN |XN−1) . (2)

That is, given N − 1 context words XN−1 = {x1 . . . xN−1},
what is the p(xN) given those inputs?

We want to somehow (1) keep a track of those N − 1 inputs,
(2) “encode” positional information (“how did the cat eat the
cheese” is different from “how did the cheese eat the cat”)
and (3) optimize this model in all sorts of ways.

The how: Encode positional information, add
contextualization, use neural networks, and obtain a base
model.

This is not as easy as it sounds, lmao.

5 / 23



Autoregressive Generative models

Objective: Make an NLP model that can understand
meaningful contextualization of inputs in a sequence
Σ(x1, x2 . . . xn) and generate a meaningful output.

How do you do this?

Early example was of Recurrent neural networks (RNNs)
that would store a state Ψ based on input before processing
the next input.

That is, let xi (ti ) be the input at t = i . Then, we store in a
“hidden layer” a state Ψ(t = i), which will be passed on to
input xi+1(ti+1).

6 / 23



xt
HL−Ψt

Ot
xt+1 HL−Ψt+1

Ot+1 xt+2

This is a vanilla forward propagating RNN with one forward
pass hidden layer.

There are also bidirectional RNNs where there is a forward
and a backward propagating hidden layer.

7 / 23



Then there are also LSTM models which are VERY good.

They don’t have the vanishing gradient problem, and are
significantly better at long sequence contextualization.

However, the breakthrough came with Attention Is All You
Need by Vaswani et al, 2017.

8 / 23



9 / 23



Wait!

ML models are computationally expensive!

Base LLMs use fairly short code on nearly 50TB of text data,
500GB of parameters, MANY GPUs for the duration of
training, very costly both computationally as well as
financially!

Model architecture optimization is a real dealbreaker. Bad
optimization and neural network architecture = bad models =
BAD!

Transformers: Tokenize, positionally encode, self-attention,
MLPs, etc. etc. Optimization involves making the model
more efficient. This means making the model faster,
productive and optimization over parameters.

But we are at a very good place! Transformers > RNNs and
LSTMs. Computationally efficient and not bulky to work with!

Base GPT, Claude and Llama.

10 / 23



The How

Obtain a base model after pretraining.

Soft-launch for testing; next step is fine-tuning.

Retrain all θ’s with autoregression. In some cases, use PEFT
or parameter-efficient fine-tuning to retrain only select
parameters.

Use gradient descent algorithm to minimize negative
log-likelihood → minimize cross-entropy loss JCE .

Fine-tune θN to find the optimal parameters for the model.

Use RLHF to maximize reward by human feedback.

Obtain a better model, go back to step 1 with new and better
optimized base model.

11 / 23



The How

Init: causal LMs with self-attention, where

attt =
∑
t≥T

ϕtTXT . (3)

That is, input attention correlations are only forward
propagating.

Problem: Backward contextualization does not happen.

I absolutely Dune Part 2 . (4)

Since context is forward propagating, it would not predict
love in the blank.

Solution: Bidirectional LMs.

Attention correlations propagate throughout the entire input
sequence.

12 / 23



CoT

Improving the performance of LLMs on evaluation
benchmarks is very important. As of today (28th of
September, 2024 0600 hrs New York time), two of the best
performing LLMs are GPT-4o and Claude 3.5 Sonnet, with
3.5 Sonnet performing better in GPQA and HumanEval and
GPT-4o in MMLU and mathematical evaluation.

In these benchmarks one of the many forerunners are CoT or
Chain of Thought LLMs.

As an example, to [input] how many apples does Paul Atreides
have if he starts with 12, eats 6, gives 2 to Chani and 1 to
Stilgar? [/input], a badly performing model could say [output]
5 [/output]. With CoT, it could perform better reasoning and
ergo better arithmetic calculations.

To illustrate an example of why CoT improves LLMs, see this
plot from Wei et al, 2022:

13 / 23



14 / 23



15 / 23



Scaling Laws

How do you know what resources and how much time it
will take to implement an LLM?

Not a trivial question.

Scaling laws: three primary factors to consider:

1. Amount of training data,
2. # of compute and resources (Limitations, GPUs, etc),
3. # of parameters and complexity for fine-tuning, etc.

There are other factors like the neural network model itself,
vocabulary size, etc.

See Kaplan et al, 2020 on scaling laws. Trained
decoder-only Transformer on WebText2 with BPE and
Nvocab = 50257, NContext = 1024 and loss function = negative
log-likelihood minimization or cross-entropy loss.

16 / 23



The Why

What makes Transformers better than RNNs and
LSTMs?

Primarily three factors:

1. Parallelization: RNNs and LSTMs don’t have parallelization
because HL−Ψt−1 is needed to infer anything about xt and
Ot ,

2. RNNs are “strongly causal”, in the sense that they depend
on the last t − n (t > n) inputs and have vanishing gradient
problems w.r.t backpropagation. This means bad long range
dependencies. LSTMs correct this. Transformers do not have
this issue at all.

3. Positional encoding makes Transformers better than RNNs
and LSTMs.

17 / 23



RNNs LSTMs Transformers
Vanishing Gradient Significant Not an issue Not an issue

Long-term Dependencies Bad Somewhat better Very effective

Complexity O(nd2) O(nd2) O(n2d)

Parallelization By sequence By sequence Parallel computation

Memory Usage ∝ O(n · d) O(n · d) O(n2 + nd)

Context Handling By sequence By sequence Parallel

While Transformer complexities and memory usages are high,
they can use GPUs and TPUs VERY effectively to parallel
compute matrix multiplications and work very well for LLMs.

There are ways to optimize Transformers.

Two things I am interested in: (1) knowledge distillation,
and (2) adaptive/learnable sparse models.

Fascinating links to scaling laws, which are yet to be clear.

18 / 23



Vanilla Transformer models compute attention weights with
softmax. Since softmax(z) ∝ exp(z), this value can never be
0. This refers to the dense nature of attention weights in the
model.

This also implies that there are irrelevant-relevant input
correlations in the model that cannot be minimized. Artificial
clipping might help, but not clear how to do this right.

Adaptive sparsity by Correia et al, 2019 tries to change
this by replacing softmax with α− entmax. Superficially, this
allows the model to be sparse.

By treating α as a learnable dynamic parameter, it is possible
to make the model more accurate.

Makes complexity go down from O(n2) as previously seen.
But how would they change performance-wise with GPUs and
TPUs?

Open problems: Scaling laws, dynamics of
complexity-accuracy trade-offs, etc?

19 / 23



The Sus

AI safety is important!

Like e/acc, but at what cost? Better to ensure ethical and
moral grounds for AI are concrete.

E.g. don’t let jack-a’s ask your LLM how to make a malware,
or illegal web scraping.

Prompt injections, unintentional unethical data in training,
etc. have to be considered. Example: PDF/text reading LLMs
could could go through a corrupt PDF/doc with
hidden/disguised prompt injection code and send GET
requests to attacker servers with info in the url. This is bad!

This doesn’t happen with high-level LLMs.

20 / 23



The Sus

This doesn’t have to be so high-level either. Corrupt or
malformed training data is sufficient to make LLMs make bad
predictions or produce misinformation.

From a code development POV, since coding with AI is very
popular, it is important to ensure LLM-generated code lies
within ethics and copyrights.

E.g. Google Colab with Gemini-produced code shows citations
for code suggestions. Very good!

Arguably, in text-to-art generative models these ethics become
more stronger and difficult to base on.

Would generative models be reiterating and generating based
on someone’s art design and would this count, technically at
least, as plagiarism?

21 / 23



Finally...

LLMs are awesome.

You can make a GPT-like LLM yourself! assuming you have the

money, compute and time for it.

There are many interesting problems and factors to work with.
And ethical principles to stick to.

Not formal, but it is worth to work with LLMs!

22 / 23



Thank you for your

attention!

23 / 23


