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1 Introduction

Part One was based on bulk reconstruction and subregion duality in AdS/CFT. We

will now talk about the black hole information problem (BHIP) and the features

that AdS/CFT has that closely provide resolutions to the BHIP. The reader surely

must be familiar with the paradox regarding information, black holes and the famous

Hawking-Preskill-Thorne wager. Of course, black holes are not easy things to make

sense of, and have been the center of attention in hep-th for quite some time now

(see fig 1). AdS/CFT has brought an entirely new perspective on this problem, and

the bulk-boundary physics in this theory has shed light on this important problem.

Figure 1. Black holes when someone tries to understand them.
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While the traditional phrase to this entire scheme is the “black hole information

paradox”, we are obliged to call it a problem to (slightly) exaggerate the look of

this landscape as a problem. Black holes are, as it must be clear to anyone having

picked up some hep-th papers on the arXiv, definitely not an easy thing to make

sense of. A good deal of information theory is involved when dealing with the BHIP

in general, and most importantly in the AdS/CFT counterpart to the BHIP, there

are many reconstruction aspects that are involved. For instance, one could ask if the

interior of the black hole is something that can be made sense of by instead making

measurements to the CFT side. The purpose of these notes is to address these things

in a nice pedagogical way. The structure of these notes is as follows.

In section 2, we will quickly recap some basics of the BHIP, and the setup used

will be the usual Schwarzschild geometry. We will recap Hawking’s arguments on

the evaporation of black holes in semiclassical gravity, and the Page curve. We will

talk about the generalized second law as formulated by Bekenstein [1], and some

arguments therein. We will review complementarity [2, 3], and motivate AMPS [4]

and firewalls via the monogamy paradox [5]. We do not, however, review in detail

firewalls and fuzzballs and only allude to some arguments around them.

In section 3, we will discuss AdS/CFT aspects of the BHIP, particularly focusing

on the Raju-Papadodimas proposal on black hole interior reconstruction [5–7]. We

will discuss coupling an AdS black hole theory to a bath in 2D dilaton theory and

motivate quantum islands [8]. We will then discuss an ER=EPR paradox with the

TFD as argued by Marolf and Wall [9]. Finally, we will discuss briefly some aspects

of ER=EPR and (non-)traversable wormholes [10, 11]. For a lighter introduction to

BHIP, see Aayush’s excellent notes [12].

2 Black Hole Information Problem in a Nutshell

Classical black holes are great. One can do nice things with classical black holes,

like work with gravitational waves in mergers, or do lensing, and basically most of

the astrophysical works. The No Hair theorem shows that the after evaporation, the

only numbers required to describe black holes areM , Q and L, which in itself causes

some suspicion. Hawking showed that assuming the null energy condition,

TµνX
µXν ≥ 0 , (2.1)

classical black holes always have an increasing horizon area. Following Bekenstein

and Hawking’s argument that the entropy of a black hole is proportional to the area

of the horizon SBH ∼ A, it must, therefore, also be that the entropy of a black hole

is always increasing. This seems to be kind of nice. However, classical black holes

do not evaporate, which was shown to be a semiclassical issue.

But then, in semiclassical physics, would the evaporation and therefore decreas-

ing horizon area imply a violation of the second law of thermodynamics? This seems
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Figure 2. An evaporating black hole. The red line denotes an infalling shell of matter,

whereas the blue arrows indicate negative and positive fluxes of particles falling into and

escaping the horizon and escaping to I+ respectively.

so. However, Bekenstein argued that the correct quantity to work with in this situ-

ation is the generalized entropy Sgen,

Sgen =
Area of Horizon

4GN

+ Sext . (2.2)

The generalized second law of thermodynamics would then concern this quantity’s

monotonicity properties. One should, therefore, expect that as the horizon area

decreases, the exterior entanglement entropy compensates for this. However, there

are subtleties with how this von Neumann entropy functions, as we shall discuss. We

will first start by doing some quick analysis in the free scalar field situation across

the horizon, and the origin of Hawking radiation.

Let us sit in the MD+1 spacetime with the metric

ds2 = −dUdV + δµνdx
µdxν . (2.3)

One also has to expect deviations to this form of the metric, but this is not

very essential here. One could pick a semiclassical state |Ψ⟩ and compute the two

correlator ⟨ϕ(x1)ϕ(x2)⟩Ψ. The general form looks like

Γ(D − 1)

2DπD/2Γ
(
D
2

) 1

γ
D−1
2

(1 + O(γ)) , (2.4)

where γ is the geodesic distance between x1 and x2. The coordinates are nice to

work with to emphasise on the importance of correlations across null surfaces. The

Schwarzschild setup can be written in terms of the tortoise coordinate r∗, which

blows up to negative infinity at the horizon r = H, by requiring

1

f(r)
≡ 1− M

r2
=
dr∗

dr
,
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where

M =
8GMπ1−D

2 Γ
(
D
2

)
D − 1

.

Then, the metric becomes

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
D−1 . (2.5)

We now want to work with small scale correlations around the horizon. Taking a

scalar field description, one has the Klein-Gordon solutions, denoted by ξin(ω, l, r∗)

and ξout(ω, l, r∗). Here, l and ω are the angular quantum numbers and the frequency

respectively. ξin(ω, l, r∗) in the r approaching H from outside limit, denoted by

r → H+ looks like

ξin(ω, l, r∗) = χω,le
−iωr∗ , (2.6)

whereas ξout(ω, l, r∗) in the r → H− limit looks like

ξout(ω, l, r∗) = eiωr
∗
+ χ′

ω,le
−iωr∗ . (2.7)

The factors χω,l and χ′
ω,l are not needed in this analysis, but can be computed

nonetheless. Then, one can write a field in terms of these something like

ϕ =
∑∫

dω
î
Aξin(ω, l, r∗) + Bξout(ω,l,r∗)

ó
e−iωtY (Ω) + hermitian conjugates .

(2.8)

In the Kruskal coordinates, we have

U =
−1
κ
eκ(r

∗−t) , and (2.9)

V =
1

κ
eκ(r

∗+t) . (2.10)

With precise calculations of a and ã, and the smearing functions associated to aω,l
and a†ω,l, the reader is directed to 2012.05770 and 1910.02992. For now, it is only

relevant that a = aω,l and ã = ãω,l with a normalized commutator. The two-point

function for this then is

⟨aω,la†ω,l⟩Ψ =
1

1− e−βω
, (2.11)

where β is the inverse temperature. This implies that there is a flux at I+.

2.1 Page Curve

Now, here is our situation: we know from Bekenstein and Hawking’s famous formula,

S =
A

4
, (2.12)

that the area of the horizon is proportional to the entropy of the black hole. Since

Hawking radiation exists, the positive flux to I+ tells us that the black hole evap-

orates, leading to a decreasing area of the horizon. So, at the least, we expect that
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the generalized second law holds [1], and (2.2) is monotonically increasing. Here is

where we encounter the Page curve dilemma.

The natural information theoretic interpretation of the Page curve [5, 13] is that

one could take a full system H, and pick a small subsystem S. If one takes the

ratio of the von Neumann entropy in terms of the ratio of S to H, one would find

that it obeys a very characteristic nature: it increases upto a certain point, at which

S = 1
2
H. Then, since the subsystem S becomes the larger system and S ′ = H − S

becomes smaller, the curve decreases steadily. This is the Page curve for H.
What we expect of black holes can be seen from usual aspects of von Neumann

entropy and states. The von Neumann entropy

SvN = −Tr(ρ log ρ) (2.13)

has the property that for pure states |ψ⟩, it vanishes. So we would expect that the

density matrix ρ looks like |ψ⟩⟨ψ|, for which the eigenvalues look like

ρ =

á
1

0

0

0

ë
.

An additional property is that the maximum value of SvN is given by the logarithm

of the dimensionality of the Hilbert space H.
Entropy bounds, however, also play a role here; one expects that the Bekenstein

bound (which is a certain limit of the Bousso bound)

S ≤ 2πER , (2.14)

where E is the energy and R is the radius of the smallest area sphere packing the

system. Then, denoting by Srad the entropy of Hawking radiation, we expect Srad = 0

for the pure state. We would expect that this, eventually goes back to zero, i.e. a

pure state. However, Hawking’s famous calculation showed that this is not the case;

instead, it increases, and saturates the Bekenstein bound without ever reaching zero

again. See fig. 3.

Now this is bad. This tells us that in some sense, unitarity is being lost. One can

again see the usual expectation by noting that the dimension of the Hilbert spaces

of Hawking radiation and the evaporating black hole are supposed to compensate for

one another.

The more explicit calculation of the number of these particles generating this

flux is due to Hawking. Note that from the first law of black hole thermodynamics,

dM =
κ

π
dA+ ΦdQ+ ΩdL . (2.15)
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Figure 3. The Page curve. The red line is the thermodynamic entropy of the black hole,

which is monotonically decreasing as the black hole evaporates. The thick black line is the

Page curve, whereas Hawking’s calculation is the violet line.

Then, the number of these particles, Njωlmp is [14]

Γjωlmp

[
exp

(
2πκ−1 (ω − eΦ−mΩ)∓ 1

)]−1
, (2.16)

where the subscripts j, l, m and p denote species, spherical harmonic, angular quan-

tum number and helicity. The minus and plus signs are for bosons or fermions

respectively.

2.2 Generalized Second Law

Let us now concern ourselves with a little more on what the role of the GSL re-

ally is. Firstly, it is clear that this is a highly non-trivial law, since one has an

evaporating black hole without a proper construct of the variation of Sgen. A nice

modern approach to this is in terms of “holographic screens”, where one starts by

picking suitable marginally trapped surfaces inside the black hole and construct a

holographic screen of such surfaces. In semiclassical gravity, one takes quantum

marginally trapped surfaces, i.e. surfaces for which the quantum expansion is nega-

tive along one null congruence and zero along the null congruence orthogonal to it.

One can define Fλ(a), a one-parameter family of functions that can be used along a

null congruence parametrized by the affine λ and a along the spacelike codimension-2

surface I. This satisfies

∂λFλ(y) ≥ 0 .

Then, the quantum expansion is defined as

Θk(F ; a) =
4GN√
η

δSgen(IF)

δFa

, (2.17)

with the interpretation that similar to the classical expansion, one is making in-

finitesimal deformations to the surface I along the null congruence to measure the
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variation of the generalized entropy. Here, η is the induced metric, and we assume

that the surface is a compact surface (non-compactness is typically troublesome to

work with and plays a key role in singularity theorems). k is the outgoing null con-

gruence, whereas l will denote the ingoing null congruence. Associated to this would

be a pair of future and past congruences, so on an all we have k± and l±. The Bousso

bound states that the most entropy that can pass through I is bounded by the area

of it, assuming the null energy condition (so that the domains of dependence of the

lightsheet and the surface are closed and equal):

S(I) ≤ n
A(I)

4GN

, (2.18)

where n is the number of lightsheets. In this way, one expects that for (at least)

marginally trapped surfaces, this entropy bound is at most saturated. The Beken-

stein bound can be seen to be a slightly weaker form of this bound. A lot of work has

been done for evaporating black holes and such entropy bounds, and in particular

the holographic screen approach by Bousso and Engelhardt shows that the GSL is

preserved by taking semiclassical corrections to the holographic screen (dubbed the

Q-screen).

2.3 Complementarity

In regards to the full nature of physics in the black hole information paradox,

Susskind, Thorlacius and Uglum [2, 3] postulated three points dealing with (1) what

to expect of quantum field theory for an evaporating black hole, (2) the semiclassical

approximation of the field theory and (3) the dimensionality of the subspace giving

the black hole a description. These are fully expanded as follows:

1. Postulate 1. An evaporating black hole can be described by usual QFT. One

could make this more precise by saying that there exists an S-matrix describing

infalling matter and Hawking radiation:

S (infalling matter | Hawking radiation) .

In the face of this, there is a nice way of making sense of I+ in a holographic

sense in the asymptotically flat setting. Among many things, in a noncompact

situation, like Minkowski spacetime, one has some very fascinating observa-

tions, thanks to algebraic QFT. One such result is the split property, which

states that one can define a collar region ε around a bounded region U ⊂ M

on a noncompact Cauchy slice Σ, and for this there exists a type I factor R so

that the full Hilbert space factorizes like

H = HN ⊗HN̄ . (2.19)
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However, there exists a very interesting property of gravitational QFTs, called

holography of information, due to which information about U∪ε is also available

on the boundary of the Cauchy slice ∂Σ. This is clearly in opposition to the

assertion of the split property, which is that the state in U ∪ ε can be prepared

individually to that of the complement. These aspects also appear in the

AdS/CFT discussion of the BHIP.

2. Postulate 2. Physics to a good deal is semiclassical understood outside the

stretched horizon.

3. Postulate 3. The dimensionality of the subspace of states describing this black

hole is related to the Bekenstein bound:

Dim
(
HBH(M)

)
= eSBek(M) . (2.20)

2.4 Monogamy and Firewalls

One could argue that there is a fourth postulate which largely encompasses the other

three postulates of complementarity:

4. Postulate 4. For an infalling observer, the horizon of the evaporating black

hole should be natural.

The argument of Almheiri, Marolf, Polchinski and Sully (AMPS) [4] is that this

postulate, along with a bit of the others is somewhat dangerously naive. One expects

that there is a bad counter-example of this in the form of “firewalls”. Before going

there, we will quickly revisit a monogamy paradox. (Monogamy is, after all, a good

and ethical thing.)

I+

I−

i0

A
B

C

Figure 4. A suitable Cauchy slice, for which there are three sections of interest: A, which

lies just inside the horizon, B, which lies just outside the horizon, and C, which extends

to the boundary of the Cauchy slice ∂Σ at i0.
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One could follow this discussion intently, but at a point realise the meaning of

this entire problem for old black holes. Take a black hole geometry so that one can

find a “good” Cauchy slice Σ to i0, so that it is cut into three sections: a region A

that lies just inside the horizon, B which lies just outside, and C, which lies at ∂Σ;

the idea being that the slice cuts the interior and the exterior of the black hole and

the Hawking radiation. Now, we already know from the discussion above that across

the horizon, modes are entangled, so

A←→ B .

Ok. Now, for an old black hole, the near horizon modes are entangled with Hawking

radiation extending to I+. However, this now implies that

B ←→ C ,

which goes badly with the monogamy of entanglement. Another way of arriving at

this discrepancy is to assume that the Hilbert space of the full theory factorizes like

[5]

H → HA ⊗HB ⊗HC . (2.21)

Clearly, this violates strong subadditivity entanglement entropy. One way of resolv-

ing this anti-monogamy problem is to go against one of the complementarity pos-

tulates. What AMPS presented in a paper titled “Complementarity or Firewalls?”

is to replace the horizon with a firewall (see fig. 5). Of course, this is against the

equivalence principle and complementarity in entirety. So, one could argue that per-

haps in a loophole-ish way that after all, one has to measure the Hawking radiation

first. In Susskind’s argument, the two famous protagonists Alice and Bob are made

to do these measurements in the cloning setup, where Alice jumps in with a qubit,

with Bob just outside the horizon, and Bob waits for the information to come out

as Hawking radiation, and jumps in. The non-firewall situation in the entanglement

picture looks something like this: initially, we only have maximal entanglement be-

tween A←→ B, and Alice sits in B. In later times, we would have A←→ C, and one

could get a conservation of entanglement, as Susskind coined it. What the firewall

situation does is simplify the paradox by quite a bit – by simply saying that in the

cloning setup, by the time Bob can jump in following Alice in early pre-Page time,

Bob waits till about at or after the Page time, but he is destroyed at the firewall.

Or, if Alice herself waits till the Page time, she herself is destroyed at the firewall.

Essentially, one could motivate firewalls simply computationally, by saying that the

correlator ⟨Tµν⟩ diverges at the firewall.

Susskind then goes on to argue that the firewall situation is not as “neat” as it

seems. For instance, when Alice jumps in, what she observes is an apparent horizon,

which changes the location of the actual horizon. Eventually, Bob jumping in would

also change the location of the horizon, and seemingly it complicates the firewall
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Figure 5. A firewall (thick red line) in a young black hole, with the Hawking radiation

identified.

solution. With the scrambling time vs Page time debate, there are many arguments to

each side. However, even just the post-Page time situation looks rather complicated.

If one views the firewall as an extension of the singularity, and taking into account of

the changing horizon, the cloning setup would clearly give a different result without

enough satisfaction from the firewalls picture (see fig. 6).

Alice

Bob

Figure 6. Adapted from Susskind’s paper. The firewall, extended from the singularity,

and the apparent horizons (thick blue lines) are identified with changes from infalling Alice

and Bob.

So, the fuzzballs and firewalls proposals contain some pros and cons:

1. Firewalls: Looks good with the monogamy paradox – strong subadditivity

of entropy is restored! Goes well with the AMPS, a little worrisome with

complementarity. But not preferred, following Susskind’s arguments.

2. Fuzzballs: Looks good with SUGRA and monogamy paradox, since one no

longer has the multiple entanglement partners. But seemingly against EFT (?)
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3 AdS/CFT and BHIP

We will now turn our attention to the AdS/CFT picture of BHIP. This is a very in-

teresting version of the information paradox, with the added intricacies of AdS/CFT.

One can make sense of the usual properties of black holes in AdS in almost the same

way, except that when needed there are some brane-y things. For instance, black

hole evaporation in AdS is complicated and requires coupling the bulk gravitating

region to a “bath”. Most of what one does with islands and things requires doing so

with branes in the geometry, but this is will be slightly put aside in the discussion.

For instance, the temperature for an eternal AdS black brane is [5]

T =
ℏcd

4πzHkB
. (3.1)

We will start by reviewing bulk fields and CFT operators outside and inside an

AdS black hole, where the interpolation of operators in regions I and III (see fig. 7)

are used to find operators in region II.

3.1 Raju-Papadodimas

The point of this subsection is to recap quickly an interesting result from Suvrat

Raju and Kyriakos Papadodimas [5–7], regarding reconstruction of bulk fields in the

interior of AdS black holes. We are, of course, missing a lot of details on the nature of

partner operators. Ideally, we should have started with the splitting into coarse- and

fine-grained Hilbert spaces, but the final result that we wanted is that the horizon

interior is the same for all pure states. The infalling observer does not find anything

special, and this is a contradiction to the fuzzballs proposal. We will once again be

starting from solutions of the scalar field equation (□−m2)Φ = 0,

ξω,k(t, x, z) . (3.2)

These can be expanded like

e−kx−iωtψω,k(z) , (3.3)

where ψω,k have a unique normalizable solution once we fix ω and k. We then identify

three regions of interest in the spacetime – see fig. 7.

Fields in, say, region I of this geometry can be transformed into fields in region

II by operating ϕI with a CPT-conjugation operator ΘCPT :

Θ†ϕIΘ = ϕIII , (3.4)

where we have ϕI(r, t,Ω) and ϕIII(t,−t,Ω). Decompose the respective Hamiltonians

into right and left terms HR and HL. The basis of HR eigenstates relate to those of

HL like

|i∗⟩L = Θ†|i⟩R . (3.5)
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I

II

III

Figure 7. The three regions in the AdS black hole geometry. Bulk fields in region I are

nicely make sense of from usual bulk reconstruction.

Now the usual quantization process applies, which is not very non-trivial. One

has the usual expansion of a bulk field in region I in terms of creation and annihilation

modes aω,k and a†ω,k:

ϕ(t, x, z) =

∫
dωdD−1k

(2π)D
√
2ω

Ä
aω,kξ̃ω,k(t, x, z) + Hermitian conjugates

ä
. (3.6)

The modes aω,k and a
†
ω,k satisfy the usual commutator rule. Similarly, one has modes

in region III, which we will call ãω,k and ã†ω,k. Then, the pair of modes aω,k and a†ω,k,

and ãω,k and ã†ω,k together are used to construct region II.

Now, notice that in region I, we can define a CFT operator1,

ϕI
CFT =

∫
dωdD−1k

(2π)D

Ä
Oω,kξω,k +O†

ω,kξ
∗
ω,k

ä
. (3.7)

One then defines operators Õ, with the Fourier modes

Õω,k =

∫
dtdD−1x e−ikx+iωtÕ(t, x) . (3.8)

With this, we can write an operator in region III like

ϕIII
CFT =

dωdD−1k

(2π)D

Ä
Õω,kξω,k + Õ†ξ∗ω,k

ä
. (3.9)

Here, the idea is that the partner operators are the Tilde-d ones in the thermofield

double Hilbert space. Effectively, this allows us to write a nice description for the

1Throughout, for these integrals we take ω > 0, although we do not explicitly mention it for

convenience.
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black hole interior. The point of all this is to similarly be able to write an expansion

in region II. Take solutions to the Klein-Gordon equation,

g
(1,2)
ω,k = eikx−iωtχ(1,2)(z) , (3.10)

with the properties that will be discussed below. Then, we can write an operator in

region II like

ϕII
CFT =

∫
dωdD−1k

(2π)D

Ä
Oω,kg

1
ω,k + Õω,kg

2
ω,k + Hermitian conjugates

ä
. (3.11)

One can explicitly compute the correlator

⟨ϕ(x1) . . . ϕ(xn)⟩Ψ (3.12)

in a pure CFT state |Ψ⟩, telling us what an infalling observer would experience

when going from region I to II. What Raju-Papadodimas tells us is that as Alice

falls through the horizon (see fig. 8), she experiences natural physics, essentially

augmenting Postulate 4 of black hole complementarity. Clearly, this suggests that

the argument of fuzzballs (or firewalls, although fuzzballs are more natural a de-

scription in comparison to firewalls) seems in contradiction with what one should

and does expect of black hole horizons. There are some more arguments about what

these correlators constitute and what the entire proposal on a complete scale would

provide, in comparison to fuzzballs, but we will defer a discussion of those.

We will now turn to a second interesting aspect of AdS black holes, which has

to do with coupling a bath to the bulk AdS and entanglement wedges.

I

II

III

Figure 8. Infalling observer in the AdS black hole setup.

3.2 Entanglement Wedges

We will now discuss an intriguing aspect of entanglement wedges in AdS black hole

spacetimes. Evaporation in AdS black hole spacetimes is weird and usually requires
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coupling to a bath [5, 8, 15]. Take the gravitating bulk AdSD with the matter content

a holographic CFT itself. This would have a dual CFT in D − 1. We then couple

this to a CFTD in a flat background, and this is referred to as the AdS/CFT+bath

system. For now, our interest would be in AdS/CFT with the following total action:

S(g(2)µν , ϕ, χ) = Sgrav(g
(2)
µν , ϕ) + SCFT (g

(2)
µν , χ) , (3.13)

where ϕ is the dilaton field. The matter fields are taken to constitute a holographic

CFT2, and we locate the bath CFT as some CFT2 (see upper fig. 9). One can

then imagine the CFT2 as living on the boundary of some AdS3 theory, with the 2D

dilaton theory description being on a Planck brane, as shown in lower fig. 9.

Sgrav

Ä
g
(2)
µν , ϕ

ä
+ SCFT

Ä
g
(2)
µν , χ

ä CFT2

Sgrav

Ä
g
(2)
µν , ϕ

ä
+ SCFT

Ä
g
(2)
µν , χ

ä
CFT2

AdS3

Figure 9. (Top) A CFT2 bath (thick red wavey line) coupled to the 2D dilaton system.

(Bottom) The 2D dilaton theory is on a Planck brane, with CFT2 the dual to an AdS3
bulk.

Let y be a point in the 2D theory. The generalized entropy would be

Sgen(y) =
ϕ(y)

4GN

+ Sbulk(Ry) , (3.14)

where R is some interval to a weakly coupled region in the theory, and Sbulk measures

the bulk von Neumann entropy of Ry. For convenience, ignoring fluctuations of ϕ

and the metric, we will write Sgen(y) as

Sgen(y) ∼
ϕ(y)

4GN

+
A(Xy)

4GN

. (3.15)

The entanglement wedge corresponding to Xy can then be found out, which looks

something like fig. 10.
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CFT2

AdS3

2D Dilaton theory EW

Figure 10. The entanglement wedge associated to Xy.

What is interesting about this construction, among many things, is that this

links to islands and entanglement wedges in an interesting fashion. Taking the HRT

prescription into account with islands, one can formulate, in a quantum min-ext

formalism, the entropy of some A in terms of the area of the boundary of an island

+ corrections:

S(A) = min ext

Å
A(∂I)

4GN

+ S(A ∪ I)
ã
, (3.16)

which also leads to an interesting Bousso-like bound for the generalized entropy of

the entanglement wedge and a region A [8]:

Sgen(EW , A) <
Area of (A)

4GN

. (3.17)

3.3 An ER=EPR Paradox?

One remarkable thing about the eternal AdS black hole is that one can take the left

and right boundary CFTs in the thermofield double state |TFD⟩, which leads to an

interesting paradox2. Start by noting that the TFD state is

|TFD⟩ = Z− 1
2

β exp−βE
2
|E, E⟩ , (3.18)

where |E, E⟩ are eigenstates of the left and right Hamiltonians HL and HR. It is a

very well-known thing that the state |TFD⟩ is dual to an eternal AdS black hole. So

now, one could say that operating on either CFT does not affect the other due to the

nature of the TFD state. However, this leads to a paradox, which can be visualised

by our usual protagonists Alice and Bob again. Let us say that Alice jumps in from

the right wedge (an excitation on the right CFT), whereas Bob jumps in from the

left wedge (an excitation on the left CFT). Since both fall into the black hole, where

Alice and Bob meet is clearly affected by each other [9]. See fig. 11.

2I thank Aayush Verma for pointing out this paradox for inclusion in these notes.
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Figure 11. Alice (thick blue line) and Bob (thick red line) meeting behind the horizon.

The above thought experiment can be made more precise mathematically by

identifying a state |W ⟩ and |TFD⟩ as in Marolf and Wall’s paper. The unitaries

become

eiA and eiB (3.19)

for Alice and Bob respectively. Then, the probabilities of meeting behind the black

hole horizon is non-zero with Bob, that is,

⟨e−i(A+B)Pei(A+B)⟩W ∼ 1 , (3.20)

whereas ∼ 0 without Bob. A little more precision can be adopted by the use of

superselection in the language [9], but we will not do so here.

3.4 Firewalls In Our Time

Let us reverse the locations of Alice and Bob, partly because Bob never does anything

other than hover over a horizon while Alice does most of the work, and let us say that

she now hates Bob. Alice could affect the boundary conditions on the left boundary

CFT, so that it generates a firewall (with decay), which basically fries anyone it

comes into contact with. One could ask if Bob experiences the firewall, which clearly

is dependent on whether Alice shoots the shockwave in the first place [11].

If you imagine the two black holes to be very distant in one space without

entanglement, there does not exist an ER bridge and all is good. However, suppose

that both were prepared in an entangled state. Then, the ER bridge joining them

is not traversable (in agreement with non-locality). However, what one could do, is

to jump inside the black holes and meet behind the horizon in the entangled state,

due to which communication would be possible. Of course, this seems impractical,

but on a more cautious note, Alice may very well send in shockwaves, whereas Bob

would jump in and get fried waiting for Alice.

– 16 –



It is, however, possible that there are traversable wormholes in this fashion of

ER=EPR, as Jafferis, Gao and Wall showed [10], in which case there are some inter-

esting observations linking to the above discussion. However, one still has to main-

tain that in the Alice-hates-Bob scenario, the systems are non-interacting, whereas

in [10], this is not so. You can read the paper and find the consequences of the

present situation for yourself.

4 Conclusion

In the grand scheme of theoretical high energy physics, there are few things more

fascinating than the black hole information problem. In this discussion, we covered

a few interesting things, like the flat space discussion of the BHIP in a pedagogical

manner, particularly discussing some aspects of Hawking radiation, the Page curve,

the generalized second law, complementarity and a monogamy paradox, with firewalls

as a solution. We have not covered firewalls and fuzzballs with a lot of details,

but as they stand, the discussion is sufficient for a motivation to the BHIP. In the

AdS/CFT section, we discussed an argument on black hole interior reconstruction

[7]. We then remarked on entanglement wedges and the coupling of a bath for

the evaporation of an AdS black hole [8]. We then briefly discussed an ER=EPR

paradox, and finally commented on traversability of wormholes and ER=EPR [9, 10].

While this discussion has not been very sophisticated with a lot of mathematics or

lengthy elaboration, in the next Part, we will try to be a little more elaborate with

some recent developments in the particular direction of Alheiri, Engelhardt, Marolf

and Maxfield’s work [16], along with Pennington’s work on entanglement wedge

reconstruction and BHIP [17].
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