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Abstract: This is a discussion on some modern aspects of AdS/CFT, with par-

ticular focus on entanglement entropy, bulk reconstruction, and operator algebraic

aspects of bulk and boundary subregions. Keep in mind that these are a very infor-

mal collection of things that I found interesting, and are in no way meant to be a

review or formal introduction whatsoever.

In Part One, we will discuss bulk reconstruction and some results surrounding

subregions as a motivation towards making sense of tools we will make use of in

Part Two and Three. We also mention some details of QES that will be elaborated

on more explicitly in Part Two. In Part Two, we will discuss the involvement of

quantum extremal surfaces and black hole physics arising from an understanding of

subregions and QES. We will talk about QES, purification, pre- and post-Page time

behaviour using QES and other related things. In Part Three, we will talk about

Jackiw-Teitelboim gravity and Sachdev-Ye-Kitaev model.
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1 Introduction

This discussion paper has grown out of conversations with colleagues on three im-

portant aspects of AdS/CFT: (1) holographic entanglement entropy, (2) bulk re-

construction and problems with making sense of bulk-boundary state-operator cor-

respondence, and (3) subregions and associated algebra dualities, which find very

important implications in making sense of the emergence of the bulk in AdS holog-

raphy. There are also some other aspects of things like black holes (in particular the

information paradox), Jackiw-Teitelboim (JT) gravity and its relation to random

matrix theory (RMT), Sachdev-Ye-Kitaev (SYK) model in exactly solvable models

of AdS/CFT in condensed matter, and so on in ese Parts, but none of these will be

explicitly pedagogical. Since I do not wish to turn this into a review paper, there will

not be sections or any specific distinction between sections. Rather, the organisation

of this paper will be into two sections – section 2, where we will discuss the three

core concepts mentioned above, and section 3, where we will mention two interesting

observations on QES that will be useful for motivating Part Two.

But first, for the sake of calling this section an “Introduction”, let me explain why

this discussion is needed, and why these subtleties (or at least some of these things
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which are subtle) are worthy of yet another discussion in the already vast literature1.

Most of the times, while discussing aspects of subregion duality or entanglement

wedges (as most of the recent things I have been interested in have to do with these),

the fundamental motivation is to make sense of the bulk-boundary duality by means

of things like bulk reconstruction, operator dictionaries, algebraic aspects involving

modular flows and Tomita-Takesaki, and so on. So, for people just getting into this

field, an obvious question seems to be, “so... Is this all about two-point functions

on the boundary and in the bulk?” And while the answer is a yes, there are, like

I said, many subtleties that turn up. For example, arguably the most important

work in AdS/CFT is that of Ryu-Takayanagi, but the argument clearly paves way

to subregions. This is “apparently” obvious, since instead of just the causal wedge

CW (A) for some boundary subregion A, we now have a much larger patch, the entan-

glement wedge EW (A) to deal with. Now, this will make you go “oh ok. So you have

a huge bulk wedge in which you have a kind of duality... But what duality?” Which

is the point of what people have been working on all this while! To go from Ryu-

Takayanagi (RT) [2] to Faulkner-Lewkowycz-Maldacena (FLM) [3] corrections, to

Engelhardt and Wall’s quantum extremal surfaces (QES) [4] to Jafferis-Lewkowycz-

Maldacena-Suh (JLMS) [5] relative entropy result, there are many issues – of which

I mentioned a few, like bulk reconstruction, operator dictionaries, modular theory,

etc.

Now turn to something that is intermediate – like Hubeny-Rangamani-Takayanagi

(HRT) formula. Now, this is nice, but if you think about it a little closely, you will

realise that there exists a coarse-graining prescription – found by Engelhardt and

Wall – that has some nice features, like relating the holographic “outer entropy” of

certain kinds of marginally outer trapped surfaces (called minimar surfaces) to the

HRT formula, which originally concerns only extremal surfaces. Naturally one ex-

pects extremal surfaces to be a special case of marginally trapped surfaces, but even

holographically, we now understand how to make sense of these surfaces and their

von Neumann entropies. Which is good. But we still turn out at the same end of the

numerous tunnels we could have gone through – “what to make of bulk and boundary

dualities for dealing with explicit operator construction?” In fact, if you look closely,

the RT formula is defined for a very strange case, where we can only make sense of

the situation where the lattice spacing ϵ → 0. Otherwise, we end up in a divergent

entanglement entropy situation, which is bad. (This is explained in terms of the type

III von Neumann factor nature of the boundary, a point which is made below.)

OK. Now try looking at an apparently whole different problem – what about

operator algebras? Maybe we can ask what the von Neumann algebra of the bound-

ary CFT is. Maybe that tells us something about emergence of the bulk – again the

1On Inspire (https://inspirehep.net/literature/451647), Maldacena’s AdS/CFT paper [1] has

18,908 citations.
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same end. Modular flows – Connes cocycle flow – better understanding of Tomita-

Takesaki in holography – everything finally ends up at the two core problems: (1)

what are we to make of the explicit bulk-boundary duality? and (2) how

does the emergence of bulk in AdS/CFT look mathematically? These two

questions are the core notions we wish to discuss in this discussion paper.

Of course, there are certainly other questions in AdS/CFT, that are not neces-

sarily about this whole bulk reconstruction or subregion duality debate. For instance,

in JT gravity, one could make sense of the Page time for an evaporating AdS black

hole. Or, you could ask about islands and entanglement entropy for an evaporating

black hole and the exact post-Page time behaviour, and so on. Or for the condensed

matter folks out there, you could be interested in the SYK model – the list goes

on. While these are very important (worthy enough of their own review, and I have

briefly talked about these in this paper as well), my present understanding is that the

question of holographic dictionaries lies far in the fundamentals of AdS/CFT (and

holography in general, so this also holds for dS/CFT and flat space holography), and

is the star of this paper.

Keep in mind that, since this is not a review of any kind, I have not captured

all recent developments. In general, there are many developments that have taken

place recently that are not as mainstream as previous works but ones that have a lot

of significant implications in AdS/CFT. In particular, one of those results is that of

Cauchy slice holography, introduced recently by Rifath Khan, Goncalo Regado and

Aron Wall [6]. This has many important prospects in AdS/CFT2.

2 Bulk Reconstruction, Subregions, and Entanglement

The starting point for our discussion is the RT formula, and how this “derives” the

notion of bulk reconstruction. We will approach bulk reconstruction twice – first, by

the natural expectation of bulk reconstruction from the extrapolate dictionary (which

is independent of RT), and second, from the RT formula and FLM corrections to

RT. We will also discuss HRT in the same spirit as RT, however it must be in mind

that the usual geometric procedure for each prescription are different3.

2Such also exist in de Sitter holography. In fact, more so, since de Sitter holography, as it

stands, is very little understood. While there exists dS/CFT due to Strominger [7] and a nice

understanding of perturbative quantum gravity, the question of finite bulk physics and deformations

is very controversial. So far, there are only two works incorporating Cauchy slice holography with

dS/CFT; by Regado [8] and Khan [9].
3For RT, we simply calculate the area of a minimal spacelike geodesic γA joining the endpoints of

the boundary subregion, and FLM corrections arise from an additional bulk corrections. For HRT,

we calculate the area of an extremal (minimal) surface XA homologous to the boundary subregion

A in the bulk from the maximin prescription. Semiclassical EW corrections to this arise from bulk

corrections, but this is a different calculation from the usual FLM corrections to the RT formula.
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2.1 From Ryu-Takayanagi

The RT formula dictates that the entanglement entropy of a boundary subregion A

is given by the area of a minimal spacelike geodesic joining the boundary endpoints:

S(A) =
c

3
log

γA
ϵ

≡ Area of γA
4GNℏ

. (2.1)

This can be extended into the HRT prescription, where the area of a bulk (minimal

when more than one) extremal surface gives the entanglement entropy. The notion

of EW (A) in both the cases is still the same – although in the HRT prescription,

it becomes more apparent as to what coarse-graining and other problems look like.

From the FLM corrections, we can expect what bulk corrections would look like.

For HRT, in the sense of quantum extremal surfaces, this becomes the generalized

entropy

Sgen =
Area of XHRT

4GN

+ Sbulk + . . . . (2.2)

This way, one could say that the entanglement entropy of A becomes something like

the following:

S(A) = Sgen(XHRT ) . (2.3)

This is at all orders in ℏ – that is, sitting in perturbative quantum gravity, we have

the following expansions in gµν for orders in ℏ4

gµν = g(0)µν + g(1/2)µν + g(1)µν + . . . . (2.4)

It is not hard to notice that, the XHRT surface lies deeper in the bulk than the causal

wedge CW (A). Indeed, recall that the causal wedge is union of the future and past

domains of dependence – that is, CW (A) = I+(D+(A)) ∪ I−(D−(A)). In fact, it

can be shown that XHRT always lies deeper in the bulk than CW (A). This is a very

subtle yet important result – if one picks the entanglement wedge w.r.t this surface,

clearly the picture of understanding bulk operators becomes affected. Since EW (A)

lies deeper in the bulk than CW (A), this is a larger bulk wedge in which we can ask

the duality question – “given a bulk operator, what is the dual CFT operator?”

Let me emphasise that the question of HRT in itself is a much larger set than

you can expect. For instance, let us ask if the area of a suitable marginally trapped

surface is related to the von Neumann entropy in the bulk-boundary prescription.

The following definition will be useful.

Minimar surfaces: A surface is said to be a minimar surface if it is a marginally

trapped surface and is homologous to the boundary subregion. Additionally, this ho-

mologous surface is also a weaker kind of a minimal HRT surface when extremal.

4That is, contributions from graviton fluctuation expansions.
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At this point we can make sense of where we are working in terms of the coarse-

graining. It should be obvious that the conformal completion of the spacetime has to

be taken after coarse-graining, so as to find the complete coarse-grained spacetime.

This could be done by acting on the expansion and other relevant objects (such as the

trace of the extrinsic curvature K) with the CPT conjugation, which would generate

the completion (M ′, g′) to the coarse-grained (M, g) wedge. The main result in EW’s

paper is that the outer entropy for a minimar surface µ is given by a bound in terms

of a corresponding HRT surface whose area coincides with µ, implying that

Souter(µ) =
Area of µ

4GNℏ
. (2.5)

In order to make sense of this, we have to keep in mind that to patch µ to the outer

wedge OW (µ), we have to consider the junction conditions for the initial data across

OW (µ). This is a somewhat tedious thing to do, but can be done nonetheless. The

final construction leading to the core relation between µ and XHRT is to make use of

representatives, which are defined for minimar surfaces as µ̄(Σ) = N±(µ)∪Σ, where

N± are null congruences in the orthogonal outward null directions kµ±. From the null

energy condition (referred to as the null convergence condition in the paper), the

area of the representative is bounded to µ as Area of µ̄ ≤ Area of µ. By definition,

outer entropy is the maximized entropy corresponding to some ρ attributed to µ, and

we get

Souter(µ) ≤ Area of µ

4GNℏ
. (2.6)

Eventually, one can show that a unique extremal surface exists that defines the

HRT surface, and by CPT , one obtains the complete spacetime from the auxiliary

spacetime (M ′, g′) identified to match the extremal surfaces. This gies us the equality

as a saturation of (2.6).

Now, to come back to the topic, keep in mind that the results in the above case

is linked to that of reconstruction – of course, in the above discussion there was no

need to worry about bulk-boundary operator dictionary. However, the general idea

is that when one has a particular EW (A), it must also be possible to reconstruct

operators in the bulk given an understanding of the dual CFT operators. While

the overall discussion did not assume an understanding of bulk reconstruction (or

in fact any operator dictionary), the question as to “can you identify the operators

in EW (A)?” still remains. In fact, one can motivate this from RT itself, without

appealing to HRT! However, given that HRT in general is associated with the bulk

more intrinsically than RT, we take it that the HRT prescription also requires us to

understand bulk reconstruction and subregion duality in general.

2.2 Extrapolate dictionary

Now we will take a parallel but slightly distinct route to bulk reconstruction. Recall

that the general idea of AdS/CFT is that operators in the bulk are dual to operators
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in the CFT by a conformal weight ∆. The extrapolate dictionary is

lim
r→∞

r∆Φ(r, x) = OΦ(x) , (2.7)

which is to say that taking bulk operator insertions at the boundary gives us some

dual CFT operator OΦ. Then, one can also use the extrapolate dictionary in the

sense of n-point functions by (2.7):

lim
r→∞

rn∆⟨Φ(r1, x1) . . .Φ(rn, xn)⟩ = ⟨OΦ(x1) . . .OΦ(xn)⟩CFT . (2.8)

Keep in mind that the bulk operator insertions are necessarily at the near-boundary

limit for the extrapolate dictionary. However, for the moment this will suffice. The

Hamilton-Kabat-Lyfschytz-Lowe (HKLL) proposal from 2006 states that this dictio-

nary can be used to reconstruct bulk operators by taking a bulk field Φ inserted at

some Y, and then taking the double-lightcone of this. Then, the spacelike patch that

is bounded by the double-lightcone, say S contains a smearing function K(Y|x) –

this Green’s function has a support in S, and Φ(Y) can be expressed as:

Φ(Y)

∫
dDx f∆(Y|x)OΦ(x) + . . .O(1/n) . (2.9)

The interesting thing is that at leading order in 1/N , the bulk locality can be ex-

pressed in terms of factorization in large N limit. The function K(Y|x) can be found

by inverting (2.9). In this way, one comes back towards the question of reconstruc-

tion. Initially, like stated in the previous subsection, the problem seemed to be for

CW (A), which in itself is only a part of the bulk that can be reconstructed from CFT

operators. However, after HRT, the picture was found to be incomplete, being a part

of the entanglement wedge EW (A). So, to make sense of these things, some notion of

reconstruction must be first motivated – so that the notion of subregion-subregion

duality can be found, either mathematically or physically. Of course, the latter is

much more intuitive than the former, as we shall see soon. As of now, we wil shift

our focus from purely talking about bulk reconstruction to a quick understanding of

Quantum Error Correction (QEC).

2.3 Reconstructing EW and the Code Subspace

The reconstruction of the bulk operators does not span the full CFT Hilbert space

HCFT , but instead a subspace of it, referred to as the code subspace. In the scheme of

entanglement wedge reconstruction, which is a subset of bulk reconstruction, there

are primarily two subregions associated to each of the boundary and bulk side – the

boundary subregion A and its complement Ā, and the corresponding bulk subregion

a and its complement ā. To see how this looks like in EW reconstruction, identify

the bulk-boundary duality in terms of the factorizing Hilbert spaces. That is, first

identify the CFT Hilbert space as

HCFT = HA ⊗HĀ . (2.10)
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From this, identify that the corresponding entanglement wedges factorize into Hilbert

space

Hcode = Ha ⊗Hā , (2.11)

where Hcode is the code subspace. The duality between A and a can be used to say

that the complements also have a duality, i.e. Ā is dual to ā. This way, the operators

in a and the CFT operators in A are dual, whereas bulk operators in ā are dual to

the CFT operators in Ā. However, it should be clear that if we consider something

like a two-component boundary subregion A = A1∪A2, we would have two extremal

surfaces such that two bulk subregions would be dual, say a1 and a2. Since the

corresponding entanglement wedges become EW (A1) and EW (A2), one could ask if

by increasing A we could reconstruct an operator that lies deeper in the bulk than

the entanglement wedges, since the complements Ā1 and Ā2 instead become smaller.

This has some interesting aspects, having to do with partial code subspace sharing

between A and Ā, but we will defer a discussion on this to Appendix A.

This aspect of the entanglement wedge reconstruction and operators in the sense

of the reconstruction theorem due to Dong, Harlow and Wall (DHW) will be discusse

later in our discussion of the Connes cocycle flow, JLMS and one-sided modular flow.

For now, we will discuss the involvement of modular flows and modular Hamiltonians,

which will motivate our discussion of the JLMS result for relative entropy equivalence

between bulk and boundary sides.

2.4 Modular flows and Hamiltonian

As stated previously, at leading order in 1/N , bulk locality can be expressed in

terms of large N factorization. The entanglement wedge reconstruction aspect has a

nice aspect in the discussion, since we can cover it in AdS-Rindler coordinates and

describe an HKLL-type reconstruction. We get something like the following, taking

a vacuum state in CFT:

Φ(Y, EW (A)) =

∫
D(A)

dx fRindler
∆ (Y|x)OΦ(x) , (2.12)

where D(A) is the double-lightcone system.

We can now define a modular flow based description of (2.12) by describing a

modular flow on basis of ρA (dropping the Φ subscripts on all O’s)

Os(xA) = ρ
−is/2π
A O(xA)e

is/2π , (2.13)

for which equation (2.12) becomes modified to include Os in (2.13). To motivate

what will be the case in the JLMS prescription, we will discuss aspects of the modular

Hamiltonian as well. Define a modular Hamiltonian KA as:

KA =
A(∂a)

4GN

+Kbulk, a +O(GN) , (2.14)

– 7 –



where Kρ = − log ρ (we will revisit this later as well). (2.14) can also be seen

to motivate the equivalence between the commutators of Kbdy and Kbulk with bulk

fields, which is essentially the motivation to the JLMS formula, which a little more

explicitly takes into consideration of the relative entropy.

As mentioned in the earlier discussion on HKLL reconstruction, one can take the

extrapolate dictionary (2.7) and the invert construction (2.9) for a bulk-boundary

correlator, to find the function K(Y|x). In this way, this distribution can be for-

mally understood. To see how this all adds up, one can take the above mentioned

equivalence of the modular Hamiltonian on both sides with the 1/N corrections:

[Φ(YA), KA, bdy] = [Φ(YA), KA, bulk] + O(1/N , ) (2.15)

which gives the bulk modular flow that Faulkner and Lewkowycz found:

eiKAsΦ(Y)eiKAs = eiKA, bulksΦ(YA)e
iKA, bulks . (2.16)

This has some subtleties with the exponential of the modular flow and modular

Hamiltonian, which can be put aside in the present discussion in the sense of low

energy theory. One can then explicitly make sense of this modular flow and the

exponentiated JLMS formula, although a very formal discussion on this has not

been provided in this paper (see section 2.6 for an informal set of remarks on this).

Finally, we will discuss the notion of relative entropy and why it is natural to

find relative entropy in AdS/CFT. As we shall discuss, relative entropy in a sense is

more fundamental than the usual entanglement entropy computed by the analytic

continuation n → 1 of Renyi entropy Sn due to the type III nature of general local

quantum field theories. We will discuss relative entropy in Araki’s approach in terms

of Tomita-Takesaki theory.

2.5 Relative entropy and Tomita-Takesaki

We will first start by mentioning the somewhat straightforward aspects of relative

entropy. For some ρ and σ, we have the relative entropy defined as

S(ρ|σ) = Trρ log ρ− Trρ log σ . (2.17)

One could then find the properties of S(ρ|σ), such as monotonicity, etc. However,

for our purposes, this is not a very solid definition. A better approach is to use

Tomita-Takesaki theory.

Let |Ψ⟩ ∈ HQFT be a an excited state w.r.t some |Ω⟩. Then, the relative Tomita

operator looks like

SΨ|Ω;A(α|Ψ⟩+ |χ⟩) = π(Ψ)α†|Ω⟩ , (2.18)

where χ ∈ (1 − π′(Ψ))H and in the cyclic separating case (although this is usually

not a condition), π(Ψ) is the unit operator. The relative modular operator is defined

as

∆Ψ|Ω = S†
Ψ|ΩSΨ|Ω . (2.19)
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The relative entropy then is a quantity that is definite, i.e.

S(Ψ|Ω;A) <∞ . (2.20)

From Tomita-Takesaki, define an antilinear unitary J and ∆, which is a positive

self-adjoint operator. Then, the relative entropy is defined as

S(Φ|Ψ)− ⟨Ψ| log∆Φ,Ψ|Ψ⟩ . (2.21)

This way, let ϕ and ψ be two faithful and normal positive functionals in a von

Neumann algebra A, and let Φ and Ψ be the cyclic separating vector representatives

of respectively ϕ and ψ. Then, ∆Φ,Ψ is the relative modular operator in (2.21), which

on evaluation gives us (2.17).

In general, relative entropy is a naturally defined quantity for type III von Neu-

mann factors, which is the von Neumann factor of local QFTs. We will also see later,

on the topic of type III factors, that the emergence of bulk causality in AdS/CFT is

due to a type III1 von Neumann algebra on the boundary side. However, for now,

we will discuss the nature and implications of the modular Hamiltonian.

As said previously, the nature of (2.14) can be used to find that there is an

equivalence between the commutator with bulk fields:

[Kbdy,Φ] = [Kbulk,Φ] . (2.22)

This in itself is half of the picture of JLMS formula in the context of operator

dictionaries between a boundary subregion and its bulk dual. However, to give

this the explicit information theoretic description, we have to make sense of relative

entropy associated to A and a.

2.6 JLMS and Bulk reconstruction

We are now in a position to talk about the full nature of the JLMS argument [5].

For the derivation of the JLMS result, I will be referring to Dong, Harlow and Wall’s

paper [10].

Start by noting that the relative entropy S(ρ|σ) can be written as

−S(ρ) + Tr(ρKσ) . (2.23)

In order to proceed, we will make use of the so-called first law of entanglement, where

for some ρ→ ρ+ δρ, we have

S(ρ+ δρ)− S(ρ) = Tr(δρKσ) + O(δρ2) . (2.24)

Faulkner’s paper showed that one can define a bulk operator Aloc given by

Aloc =
Area of XHRT

4GN

(2.25)
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at leading order in GN . Using this, one finds that

S(ρA) = S(ρa) + Tr(ρaAloc) . (2.26)

Here the n-th Renyi entropy is computed by a bulk path integral to find the analytic

continuation n → 1 for finding von Neumann entropy. (2.26) in the sense of quan-

tum extremal surfaces also holds at 1/N orders, by extremizing over the generalized

entropy contribution. Then, we have

S(ρ+ δρ)− S(ρ) = Tr ((σa + δρa)Aloc) + S (σaδρa) . (2.27)

Now, we can find the terms like Tr(ρAKσA
). This term looks like

Tr (ρAKσA
) = Tr (ρ (Aloc +Kσa)) . (2.28)

From the first law of entanglement (2.24), for some perturbation of σA in Hcode, we

have

Tr(δσAKσA
) = Tr (δσa (Aloc +Kσa)) . (2.29)

All this boils down to

Tr(ρAKσA
) = Tr (ρa (Aloc +Kσa)) , (2.30)

which using (2.23) finally gives us the required JLMS formula,5

S(ρA|σA) = S(ρa|σa) . (2.31)

For the time being, I will discuss some of the aspects of bulk reconstruction in

the sense of subregion-subregion duality. I will not put this discussion as a subsection

since this is a naive formulation of what subregion duality is, but in the next section

we will delve deeper into some of the mathematical aspects of this, specifically, in

the direction of Liu and Leutheusser’s work on subregion-subalgebra duality and

emergence.

2.7 Subregions and Subalgebras

Bulk locality is a very interesting thing. One usually attributes this to the notion

of emergence of the bulk in AdS/CFT, although the mathematical aspects of these

usually has to do with a very nice aspect of operator algebras associated to the

boundary CFT. In general, the idea of the type of von Neumann algebra on the bulk

and boundary sides is a very fascinating thing; the boundary CFT is of type III1,

but one can simply introduce a lattice spacing ϵ as discussed previously to turn it

into a type I algebra, thereby giving us a nice regulated holographic entanglement

5I know that I have skipped over a lot of details, but the point of this derivation is to capture

some essentials and not have to reproduce the entire discussion for our purposes.
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entropy. Taking into account of 1/N corrections, the type III1 nature becomes type

II∞ – this has also been the center of interest in Chandrasekaran, Longo, Pennington

and Witten’s work on the algebra of observables in static patch de Sitter holography.

However, a much more mathematically fundamental notion has to do with un-

derstanding the subregion-subregion duality of the bulk and boundary. At finitely

large N , the bulk Hilbert spaceHbulk and the CFT Hilbert spaceHCFT are equivalent

in the sense of identifying bulk and boundary states equivalently:

Hbulk = HCFT . (2.32)

In fact, this should not be a surprise – the entire program of bulk reconstruction

and operator dictionaries comes from this! From RT itself, one can see that bulk

subregions have an interesting property: they emerge from boundary operator sub-

algebras. This is the starting point for our discussion on subregion-subregion and

subregion-subalgebra duality. The example of RT is in fact quite fundamental, since

the idea of entanglement wedge duality to boundary subregion subalgebra is derived

from the fact that the entanglement wedge contains operators that contain informa-

tion about the boundary subregion. This way, bulk properties like locality arise from

purely boundary subalgebra properties – that is, the bulk is emergent from boundary

subalgebra.

For the sake of discussion, consider also the case of an eternal black hole in

AdS. The “right” external region in AdS is dual to operators6 in the algebra of the

“right” boundary in the thermofield double (TFD). In the same way, for some bulk

subregion inside the right wedge, we have a dual subalgebra of CFT operators in

the corresponding boundary subregion. This extends to all sorts of subregions in

AdS/CFT, although keep in mind that the implication so far is that we are working

in the large N limit. Subregion-subalgebra duality also is in this limit, although we

will not exactly emphasise on this aspect in the discussion.

We will discuss two aspects of subregion duality in this subsection; (1) on entan-

glement wedge reconstruction in the sense of modular flows [11], and (2) on subregion-

subalgebra duality [12, 13]. The former is a motivation towards using more algebraic

aspects in the sense of reconstruction and bulk subregion emergence, while the lat-

ter is an explicit description of Liu and Leutheusser’s work on subregion-subalgebra

duality.

Modular flows: We will start from the modular Hamiltonian (2.22). More

precisely, let me rewrite this to include the fact that (2.22) is the case at leading

order in 1/N :

[Kbdy,Φ] = [Kbulk,Φ] + O(1/N) . (2.33)

6By this in general we will refer to single-trace operators.
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Now, by again ignoring the aspect of exponentiation in JLMS, we will rewrite this

in the sense of a modular flow, something like

e−iKAsΦ(Y)eiKAs . (2.34)

Now why would we want to do something like this? Because the modular Hamilo-

tonian has a natural interpretation as the generator of automorphism. This plays

a very important role in understanding type III algebras from Tomita-Takesaki as

pointed out before. What we could do now is to express an operator X ∈ AA in the

form of a modular flow, like

Xs = eiKAsXe−iKAs ∈ AA . (2.35)

One can naturally see that the commutator (2.33) looks somewhat fishy – it looks

like something you would get also from the boundary side. Then, the duality reduces

to something of the form

e−iKAsΦ(Y)eiKAs = e−iKA, bulksΦ(Y)eiKA, bulks . (2.36)

Now this seems nice. Clearly, this also has some nice subregion aspects, and this

is most explicit when considering the case of entanglement wedge reconstruction.

However, notice something interesting about the entire argument.

Clearly, the boundary CFT algebra is of type III1. And this entire argument

seems to be intrinsically based on this fact; one could now conjecture that there is a

type III operator algebra for such subregion-duality. In fact, one could go ahead and

see for the case of RT or eternal black hole case mentioned previously in discussion.

If this really were the case, could one enforce this statement by explicitly computing

the subregion-subalgebra duality?

Subregion-Subalgebra duality: As said above, the notion of a type III subal-

gebra on the boundary side seems to correspond to bulk subregion emergence. This

is what was referred to as the subregion-subalgebra duality in a paper by Hong Liu

and Samuel Leutheusser. Simply stated, the following discussion is the key result of

their work, which we will discuss in this bit of the subsection.

The starting point now is (2.32). If we start from some CFT state |Ψ⟩, we can

express a relation between the bulk Fock space and the GNS-constructed Hilbert

space boundary HIlbert space,

HFock
Ψ = HGNS

Ψ . (2.37)

Let us denote by χ (same convention as Liu-Leutheusser) the collection of bulk fields

+ metric. By χΨ we mean χ corresponding to Ψ, and choose the vacuum state to

be |0⟩χΨ
defined by bulk fields + metric perturbations around |0⟩χΨ

. The example

cited in Liu-Leutheusser is that of a bulk field, which looks like [13]

Φ(Y) = Φ0(Y) +
∑
n

(
un(Y)an + u∗n(Y)a†n

)
. (2.38)
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Here un denote mode functions. The Fock space HFock
Ψ then is found by operating

successively on |0⟩χΨ
with a†n. The GNS Hilbert space is obtained using the GNS

construction from single-trace operators S’s on |Ψ⟩.
Now, let the algebra of single-trace operators acting on HGNS

Ψ be denoted by

AGNS
Ψ , and the algebra of bulk fields on HFock

Ψ be denoted by ÃFock
χΨ

. Then, looking

at (2.37), we must have a correspondence of the form

AGNS
Ψ = ÃFock

χΨ
. (2.39)

This motivates subregion-subalgebra duality. If one picks a bulk subregion a and

denotes by Ya the bulk algebra, one can notice that in the usual limit it must be of

type III1. From this, one can see from the previous discussions that there must exist

a boundary subalgebra Ȳ ∈ AGNS
Ψ of type III1, so that we have

Ya = Ȳ . (2.40)

2.8 Connectedness and Algebras

(This discussion is based on Netta Engelhardt’s talk [14] on her (upcoming) work

with Hong Liu, given at Strings 2023. The discussion is made of musings that I found

interesting from the talk, and is not based on a paper as of yet.)

The discussion on QES physics has an interesting aspect, that has been the center

of interest from many people – that of canonical purification. As mentioned earlier

in section 2.1, what one can do is to take a CPT reflection around a “constructed”

(in the sense of EW construction this is the coarse-grained) spacetime with initial

data specified. That is, for some initial data on the constructed H(Σ, h, . . . ). By

CPT reflecting H, one obtains a “mirror” of the initial data on the wedge, giving

us a complete geometry from Σ∪ Σ̃, where Tilde-d quantities are the CPT reflected

ones. With this, the entire coarse-grained spacetime can be constructed by taking

these completed wedges OW (σ)∪ÕW (σ̃) (glued across the HRT surface by identifying

the codimension 2 junction conditions) and evolving them. In the sense of canonical

purification, one now first finds the gravity dual for the CP (canonically purified)

boundary, and then one does the CPT reflection across XHRT to obtain the “full”

spacetime. For instance, taking the CFT in a mixed state ρ, the CP-completed

spacetime gives the appropriate full Schwarzschild-AdS spacetime. This happens

around the QES, which plays a very important role: the connectedness of Σ and

Σ̃ is determined by this nontrivial QES (see fig:1). However, there are some very

interesting algebraic aspects to this.

In general, when one says that the bulk emerges because of entanglement between

the two boundaries in TFD, this aspect of connectedness arising from a common

QES is the determining factor. If the two boundaries were to be disconnected,

reconstruction from CPT reflection around the QES would not “connect” the two
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ΣΣ̃

EW (ρ, XHRT )Â�EW (XHRT )

XHRT

CPT

Figure 1. CPT reflection and continuity around the QES.

boundaries. If two boundary subregions, A1 on CFTL and A2 on CFTR (where CFTL
and CFTR depict left and right boundaries respectively), then the entanglement

wedges would have a common edge as seen previously. However, as discussed in

section 2.7, recollect that in the large N limit, the algebra of bulk operators is type

III. The usual way of purifying is to double the Hilbert space, which gives us the

TFD state,

|TFD⟩ = 1

Z

∑
e−βEn/2|ni⟩|nj⟩ . (2.41)

We recover this from the Gibbs state, which gives us |TFD⟩. As said before, the

connectedness of this purified state is based on whether or not the full geometry

can be constructed from CPT reflection and evolution from the constraints imposed

on H. If one considers the cases of a pre-Page time and a post-Page time, one can

see that the full spacetime geometry in the former case is different from that of the

latter. On the basis of connectedness, we see that one is not connected, whereas the

other one is connected. In order to better make sense of this, we will use the type

III nature and (2.37) that we looked at in section 2.7.

First, start by noticing two interesting details: if the two geometries associated

with A1 and A2 (and corresponding entanglement wedges EW (A1) and EW (A2)) are

connected, then they must share an edge, as evident from the constructed geometry.

Similarly, it must also be that there must not exist states in the bulk Fock spaceHFock

that factorize into product states in EW (A1) or EW (A2). From (2.37), it must also

be that the same goes for the GNS Hilbert space HGNS. From subregion-subalgebra

and emergent type III factors, it is also clear that the operator algebra of the bulk

is type III. If the geometry were to be connected, HGNS must also be type III from

subregion-subalgebra. Therefore, one can conjecture that the connectedness of these

two boundary sides is based on the algebraic emergence in the large N limit. It
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should also be clear from these observations that if the algebra of bulk operators is

type I, then they must be disconnected.

Before remarking further, I wish to briefly take a detour to point out the no

transmission principle (NTP), which states that if two CFTs are independent, then

the corresponding bulk duals must also be independent [15]. This has some nice

implications, for instance in the strong cosmic censorship situation in AdS/CFT

[15, 16], but this also has a bit of relevance to the present discussion on the relation

between the type of operator algebras and connectedness.

Start by keeping in mind that the NTP would ordinarily prevent dependent

descriptions between two bulks that are dual to two independent CFTs. However,

one could similarly argue that there is an algebraic check on this principle. If one

wanted to ensure that the two bulk duals were independent, then as seen above,

the corresponding bulk algebra of operators must be of type I. This way, one can

argue that if the the algebra of bulk operators were type III, then the NTP allows

for the connectedness of the two geometries as seen above. Therefore, one could

also propose an algebraic description of NTP and algebraic ER=EPR as proposed

by Engelhardt and Liu. Of course, the two descriptions are identical, but one could

make a more rigorous statement on the NTP by exactly showing that this is related

to connectedness. However, I will leave this for future considerations.

Finally, the statement of the Engelhardt-Liu speculation of algebraic ER=EPR

is that if the algebras A(A1) and A(A2) associated to A1 and A2 are of type III,

they are connected. If they are type I, they are disconnected. However, there is

an intermediate case here – what about type II algebras? Does there exist a case

that satisfies some of the properties outlined above, but maybe not all? Clearly, if

there were to exist a type II situation, it could be possible that there are divergent

entropies but ones for which a trace can be defined.

The pre-Page time case is exactly an example we can use here. This cannot be

type III or type I, since in the GN → 0 limit there is clearly a divergence of entropy,

but trace can be defined nonetheless. This becomes the type II example we were

looking for, and therefore it must also be that this is “somewhat” connected. The

speculation by Engelhardt and Liu is that there is a classical ER=EPR description

in type III, a quantum connectedness description for type II and no connectedness

for type I cases [14]. There is also a further description of phase transitions between

bulk subregions being type III, but we will not discuss that here.

I will conclude this discussion by saying that among many important results, I

feel that this fundamentally has an interesting statement: that entanglement between

two boundaries building the full spacetime is not true has been shown from the above

algebraic ER=EPR description, and it would be interesting to see how this looks like

in the islands description and the full post-Page time behaviour.
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Figure 2. We have a pre-Page time t1 and a post-Page time t2 associated to some value

of SvN [ρBH ].

3 Quantum Extremal Surfaces

Our discussion in Part Two is based on QES applications to the black hole informa-

tion problem. We will talk about some of the aspects in which entanglement wedge

reconstruction and local bulk operators play a very important role in understanding

the information problem in AdS/CFT, and how the nature of QES plays a key role.

Keep in mind that the discussions are rather superficial, and I would recommend

seeing Suvrat Raju’s notes on the information paradox [17] to get a better idea of

why AdS/CFT is a good playground for seeing the resolutions to the information

problem. See also Aayush Verma’s notes on the black hole information problem [18]

for an introductory discussion and motivation in a non-AdS/CFT background. As

of now, I will mention two points that I feel motivate this discussion significantly.

3.1 QES, Purification and JT gravity

The discussion of connectedness in section 2.8 had a very interesting aspect men-

tioned, which was that of choosing times around the Page time to canonically purify.

In figure 2, we choose between two times, either pre- or post-Page time to purify.

Depending upon this, one also makes sense of entanglement wedges of the radi-

ation and the CFT to the boundary. Together, the picture to discuss would be of

purification in evaporating black holes, and the involvement of QES and JT gravity

as done by Engelhardt and Folkestad.

Our interest in Part Two is in working in JT gravity, which coupled to a CFT

takes the action

SJT =
1

16πGN

ï
ϕ

Å∫
M

R + 2

∫
∂M

K

ã
+

∫
M

ϕ(R + 2) + 2

∫
∂M

ϕ(K − 1)

ò
+ SCFT .

(3.1)
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3.2 Page-time, Hayden-Preskill and QES

This discussion would be more at length in Part Two, since I feel that this partic-

ular aspect of QES and entanglement wedges has several correlations to the above

discussed aspects of black hole information paradox. So, for now, I will introduce

the core elements of Geoff Pennington’s work on this.

As seen in section 3.1, one can identify a (minimal) QES in the case of an

evaporating black hole to understand its dynamics. Our interest now is to see what

happens when we consider different times around the Page time (as before), but in

the sense of the entanglement wedge corresponding to the QES given some absorbing

boundary conditions. Given such a minimal QES, from the Replica trick, we can see

that the BH entropy would be the (extremized) generalized entropy of XQES:

S[BH, XQES] = ext

ï
Area of XQES

4GN

+ Sbulk(XQES)

ò
. (3.2)

We will now make use of the Hayden-Preskil motivation. Consider the post-Page

time case. where we throw in a diary into the evaporating black hole. Initially, the

worldline of the diary is in the entanglement wedge of the CFT EW (XQES). In this

case, there is no information about the diary from the Hawking radiation escaping

the black hole. However, the RT surface moves as the black hole further evaporates.

Due to this, eventually, after scrambling-time, the worldline lies in the entanglement

wedge of the radiation, due to which we see that the state of the diary escapes in

the Hawking radiation.

Acknowledgements: I would like to thank K. Narayan for discussions on de

Sitter aspects of bulk reconstruction and Aayush Verma for invaluable discussions

on most of the points in this paper.
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